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OVALS WITH 2-TRANSITIVE GROUPS FIXING A POINT
ELIANA FRANCOT

1 Introduction

Let it be a projective plane of order n,£2 an oval of & and G a collineation groups of & leaving
) invariant. When G acts 2-transitively on the points of Z, the structure of G is known for
odd n [16], while for even n the structure of G has been extensively investigated but it 1 not
vet determinated (e.g. see [7]). Recently Biliotti, Jha and Johnson investigated the possible
structure of G when n 1s even, G fixes a point of £ and acts 2-transitively on the remaining
points [2]. The aim of this paper is to carry on an analogous investigation in the case of n
odd.

So throughout the paper m denotes a finite projective plane of odd order n. We refere to
[8] for standard notions about projective planes. An oval £ of 1 is a set of n+ | points of
mt, no three of which are collinear. A line r of = 1s called an external line, a tangent or a
secant of £ according to whether |{rM€2{ = 0,1 or 2. It is well known that a finite group G
possesses a unique maximal normal semisimple subgroup, which is called the layer of G and
is denoted by L(G). If F{G) is the Fitting subgroup of G then F*(G) = L(G)F(G) is called
the generalized Fitting subgroup of .

Below we give some results which will be useful in the following.

Denote by G a collineation group of nt that fixes a point P on £2.

Proposition 1 An elementary abelian 2-subgroup of G has order at most 4.

For a proof see [4] Result 1.4 (3).

Proposition 2 Let O(G) be the maximal normal subgroup of G of odd order. Suppose that G
is not irreducible over © and put G = G/O(G). Then one of the following holds:

1. G is a 2-group with m(G) < 2;

2. Gisa{2,3}-group and F*(G) = F(G) ~ Qg,Qg 0 Z»,Qg © Dy, or Qg x Zpn;

3. Gisa{2,5}-group and F*(G) = F(G) ~ Qg 0 Dg or Ugy;

4. Gisa{2,3,5}-group and F*(G) = F(G) =~ Qg o Dg;

5. F*(G) ~SL(2,q) x Zy,SL(2,g) 0 Z» ,SL(2,q) 0 D or F*(G) == (A7) Z3) X Zon,(A7/Z3) 0
Zan or (A7 ij} o [,

For a proof use [6] Theorem 5.6 (2) and Proposition 1.

Suppose G acts as a finite doubly transitive permutation group on Q — {P}. Let us observe
that, by Proposition 2, F*(G) does not contain any normal non abelian simple subgroup. So
the unique minimal normal subgrouo of G is elementary abelian. Therefore we are interested
in 2-transitive permutation groups of the form H = HpA where Hp denotes a one point sta-
bilizer, A is the minimal normal subgroup of H,A is elementary abelian, |JA| = p" with p a
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prime. We may regard A as a vector space over a suitable subfield of GF(p") on which H,
acts as a transitive linear group. Denote by R the maximal solvable normal subgroup of H
and by E(H) the group generated by all the minimal normal subgroups of H/R.

Proposition 3 If the minimal normal subgroup of H is elementary abelian then either H is
solvable or H has exactly one non solvable composition factor and E(H) is non abelian
simple.

For a proof see [10] Satz 4 and [11] Theorem 6.1.

Proposition 4 Let H be a doubly transitive solvable permutation group of odd degree n, then
one of the following occurs:

1. H<TL(1,n) and n = p"

2. SL(2,3) < Hy and n = 3%,5%,77,112,23% or 3.

For a proof see [13].

Proposition 5 Let H be a doubly transitive permutation group of odd degree n so that the
minimal normal subgroup is elementary abelian. If E(H) ~ PSL(2.q), with g odd and g > 5,
then one of the following occurs:

1. SL(2,q) < Hy and n = g°

2. SL(2,5)<aHp and n = 5%.112,19%,29% 592 or 34

3. SL(2,13) <t Hy and n = 3°.

For a proof use {11} Theorem 6.4 and the fact that the minimal normal subgroup of H is
elementary abelian.

Proposition 6 Let G be a collineation group of T which preserves an oval ) and fixes a
point P of Q. If G acts 2-transitively on £ — {P} and E(G) is non abelian simple, then
E(G) ~ PSL(2,q) with ¢ odd and g > 5.

Proof. By Proposition 3, £(G) is the unique non-solvable composition factor of G and it
is non abelian simple. Looking at the composition factors of G in Proposition 2, we easily
obtain the possible structure for E{(G). In the cases 1, 2 and 3 all composition factors of G are
solvable. In the case 4 the only possible occurrence is E(G) =~ As, because Aut{(Qg o Dg) =~
Ss, while in the case 5 E(G) ~ PSL(2,q) or A;. The case E(G) ~ A7 can be excluded by
[11] Theorem 6.5 taking account that the mininal normal subgroup of &G must be elementary
abelian of odd order. O]

Lemma 7 Let B be a collineation group of ® fixing a Baer subplane ® pointwise and pre-
serving an oval Q of m. Then |B| < 2.

Proof. Let Q be a point of 2 — ®, Q lies in a line of @ which is a tangent or a secant
of €, that is |Q%| = 1 or 2 and Q is fixed only by the identity of B since @ € ®. Hence
B] = |Q¥|Bo| < 2. 0

Lemma 8 Let G be a collineation group of T of degree n which preserves an oval £ and
fixes a point P of L. Let A be the minimal normal elementary abelian subgroup of G. If G
acts 2-transitively on Q — {P} and n = p* with p a prime, then |Gox| < 2, where Goy is the
stabilizer of the point X of Q2 — {P,0}.
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Proof. The minimal normal subgroup of G is a vector space of dimension two over GF(p)
and G acts as a transitive linear group on it. Every collineation o € Gy fixes a subspace of
dimension one of A pointwise, that means that o leaves invariant p + 1 points of €. Therefore
¢ fixes a Baer subolane of ® pointwise. By Lemma 7 it following |Goy| < 2.

Now we can prove the main theorem of the paper. ]

Theorem 9 Let t be a projective plane of odd oder n admitting a collineation group GG which
preserves an oval Q of T and fixes a point P of Q. Suppose G acts 2-transitively on Q — {P}
and Gg denotes the stabilizer of the point O of Q — { P}, then n is a prime power p" and one

of the following holds:

(1) G<TL(1,n) n=p'

(2) SL(2,5)<9Gp n=p* and p= 29,59

(3) SL(2,3)<Go n=p°> and p= 57,11,23
n=p* and p= 3

(4) Go~SL(2,13) n=p® and p= 3

Proof. When G is a solvable group we may apply Proposition 4 to obtain (1) and (3). Note
that the case n = 3% of Proposition 4.1 cannot occur. Indeed by [13] there are two non
isomorphic groups of degree 3%, namely in Huppert’s notation

Gy, ={A.B,C,D,}  G3,={A.B,C}

11 0 -1 0 -1 -1 0
=(1 L)e= (00t )e= (0 )= (Y

over GF(3).
Since Gy has order 3 inside G?z .. this case cannot occur by Lemma 8.

where

Now we consider E{G) non abelian simple. By Proposition 1, E(G) ~ PSL(2,q), so we
have (2) and (4) by Proposition 5. Indeed the following cases of Proposition 5 cannot occur.

1. SL(2,9) < Gy and n = g where g is the power of a prime p.

In this case SL(2,q) acts in the natural manner over a 2-dimensional vector space A over
GF(g). A p-element o € SL(2,q) fixes a 1-dimensional subspace of A pointwise and hence
¢ 1s a Baer collineation. Since p is an odd prime this contradicts Lemma 7.

2. SL(2,5) < Ggand n = 113,19°,3%,

i) n=11%

Gox has order 5, contrary to Lemma 8. (see [8] 5.2.5)

(2.i)) n=19°

By [18] Gpx has an abelian subgroup of order 9 and so it cannot be regular in Q — {P, O}
by [17], Theorem 18.1. Therefore there is an element ¢ in G of period at least 3 that fixes a
point of Q — {P,O}. By LLemma 8 we have a contradiction.

(2.iii)  n = 3%

By [1], §6 we have that Gp has an element o of period 3 which fixes a 2-dimensional
vector space over GF (3) pointwise. Hence ¢t is a Baer collineation and we can exclude this
case by Lemma 7.
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This complete the proof. O]

Below we list the admissible degrees for which some, but not all, of the corresponding
groups can be excluded. For sake of completeness we list, for each of these degrees, all the
possible groups.

1) n=5%

Go, ={A,B,C,D,2E} G, ={A,B,C,2E} G% ,={A,B,C}

where
2 0 0 -1 1 2 1 2
A:(ﬂ —2)’B:(| 0 )‘C_(l —2)*5’”(—2 —1)
over GF(5).
G oy has order 4 inside G;] contrary to Lemma 8.
N n=7%
G$ , ={A.B,C,D,2E} G%,={A,B,C,D}
where
2 3 0 -1 0 -2 3 -1
“"=(3 -z)*3=<1 0 )'62(4 —1)*5_(3 —3)
over GF(7).
Goy has order 3 inside G%J and this contradicts Lemma 8.
) n = 3*:
G% , =1{A,B.C.D.F.G} G%,=1{A,B,C,D,F,G*} GY,,={A,B,C,D,F}
where
0 1 0 0 1 0 0 O 1 0 1 0
—1 0 0 0 0O -1 0 0 1 01 0 ]
A=l o 00 1|00 10 [Tl 10 -1 0
0 0 -1 0 0 0 0 -1 0O 1 0 -]
0 0 -1 0 -1 1 11 1 0 1 0
0O 0 0 -1 -1 -1 1 =1 0O 0 0 -1
P=t1 00 o [P0 1 10 |'°T] <10 1 0
0O 1 0 0 0 -1 1 0 0 -1 0 0
over GF(3).
Let us note that in G:':,f:',‘2 there is a ciclic group of order 4, genereted by G?, that fixes a

subspace of dimension two pointwise and hence it induces a baer collineation in m. Hence by

LLemma 7 the cases Gf; 5 and G,ﬂ | cannot occur.



Ovals with 2-transitive groups fixing a point 23

References

[1] J. André, “Projektive Ebenen iiber Fastkorpern™, Marh. Zeitschr. 62, (1955), 137-160.

[2] M. Biliotti, V. Jha, N.L. Johnson, *“Two transitive parabolic ovals™, J. Geometry, (sub-
mitted).

|3] M. Biliotti, G. Korchmaros, Collineation groups which are primitive on an oval of a
projective plane of odd order, J. London Math. Soc. (2) 33, (1986), 525-534.

(4] M. Biliotti, G. Korchmaros, Collineation groups preserving an unital of a projective
plane of odd order, J. of Algebra (1) 122 (1989), 130-149.

[5] M. Biliotti, G. Korchmaros, Collineation groups preserving an oval in a projective plane
of odd order, J. Austral. Math. Soc. (Series A) 48, (1990), 156-170.

[6] M. Biliotti, G. Korchmaros, “The structure of a collineation group preserving an oval in
a projective plane of odd order”, Geom. Dedicata 57, (1993}, 73-89.

[7] A. Bonisoli, On a Theorem of Hering and two-transitive ovals with a fixed external line,
Mostly Finite Geometries. Lecture Notes in Pure and Applied Math., Vol. 190 (1996),
169-183.

[8] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, Heidelberg, New York
1958.

[9] L.E. Dickson, Linear Groups, Dover, New York 1938.

[10] C. Hering, “Zweifach transitive Permutationsgruppen, in denen 2 die maximale Anwahl
von Fixpunkten von Involutionen ist”, Math. Zeitschr. 104, (1968), 150-174.

[11] C. Hering, “Transitive” linear groups and linear groups which contain irreducible sub-
groups of prime order, Geom. Dedicata 2 (1974), 425-460.

(12] Y. Hiramine, “On finite affine planes with a 2-transitive orbit on [.."”, J. of Algebra 162
(1993), 392-409.

[13] B. Huppert, “Zweifach transitive, auflosbare Permutationsgruppen”, Math. Zeitschr. 68
(1957), 126-150.

[14] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York 1982.

[15] W.M. Kantor, “Homogeneous designs and geometric lattices™, J. of Comb. Theory (Se-
ries A) 38 (1985), 66-74.

[16] G. Korchmaros, “A group property of the plane involutions that permute into themselves
an oval in a finite projective plane”, Ann. Met. Pura Appl. (4) 116 (1978), 189-205.

[17] D. Passman, Permutation groups, New York, Amsterdam, 1968.

[18] H. Zassenhaus, “Uber endliche Fastkorper”, Abh. Math. Sem. Univ. Hamburg 11 (1936),
187-220.



24 E. Francot

Received January 19, 1999
Eliana Francot

Dipartimento di Matematica
Universita di Lecce
73100 Lecce, ITALY



