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Abstract 

Human threats on the world ocean are multiple and escalating. These increasing 

pressures are causing long-standing regime shifts from high diversity ecosystems to 

low diversity, degraded ones, usually featured by reduced resilience. The 

understanding of the effects of multiple threats in affecting marine ecosystems, and 

the identification of the processes allowing for the recovery of biodiversity are a 

challenge to ecology. In some areas of the Mediterranean Sea, rocky assemblages 

can be reduced to complete barrens by the illegal date-mussel fishery. This low 

diversity state is maintained by sea urchin grazing. These substrates are paradigmatic 

examples of the degraded state of marine ecosystems after human impact. We 

explored, through a manipulative experiment, the interplay between nutrient supply 

and grazing pressure in the recovery trajectories of benthic assemblages impacted by 

the date mussel fishery. Our results show that grazing pressure significantly affects 

the resilience of disturbed assemblages, strongly decreasing the recovery rates of 

disturbed assemblages. When herbivores are removed, experimental nutrient 

enrichment enhances recolonization patterns, significantly increasing the number of 

macroalgal taxa, with about the 30% of recovery by macroalgal turf. The combined 

effect of herbivores in presence of enriched conditions decreased benthic diversity 

and cover. These findings suggest that 1- The presence of grazers imperils any 

potential of restoration of disturbed assemblages, 2- in enriched plots where grazers 

were also removed, recolonization by macroalgae can be observed in 12 months, 3- 

the two factors have an antagonistic effects. This experimental study is likely to 

provide useful indications for the management of disturbed assemblages to promote 

the recovery of assemblages under different trophic conditions.  
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Introduction 
 
 
1. Human activities and environmental impacts: the 

effects on marine biodiversity 
 

Humans depend on natural systems for a wide range of services essential for their 

well-being (Peterson and Lubchenco 1997; Holmulund and Hammer 1999). 

Anthropogenic disturbance of coastal ecosystems is a threat to the critical services 

they provide, valued globally at US $12.6 trillion (Costanza et al. 1998).  However, 

present-day societies tend to take many of these natural services for granted (Levin 

and Lubchenco 2008). It has been estimated that, throughout history, humans have 

severely modified or exploited to complete loss >70% of natural habitats in the 

habitable portion of the planet (Hannah et al. 1994), causing the extinction of 5–20% 

of the species in many groups of organisms. Current rates of extinction are estimated 

to be 100–1,000 times greater than pre-human rates (Pimm et al. 1995; Mumby et al. 

2007) and we are still losing somewhere between 0.5% and 1.5% of wild nature each 

year (Balmford et al. 2003). In the marine environment, overexploitation, pollution, 

physical alteration of habitats and the human-mediate invasions of non-indigenous 

species have profoundly changed marine systems at a global scale (Pauly et al. 1998, 

2002; Myers and Worm 2003; Millennium Ecosystem Assessment 2006; Worm et al. 

2006) causing relevant changes and loss in biodiversity (Sala et al. 2000; Steneck 

and Carlton 2001; Worm et al. 2006; Airoldi and Beck 2007). Lotze et al. (2006) put 

in evidence that during the market–colonial development period, human impacts 

rapidly escalated, through a systematic resource depletion that continued in the two 

global market periods, 1900–1950 and 1950–2000 (Fig. 1.1). These general trends 

suggest that rapid degradation was driven by human history rather than natural 

change. Systems with the longest history of intense human impacts and highest total 

human population were among the most degraded, including the Adriatic, the 

Wadden, and the Baltic Sea. Species such as salmon and sturgeon were depleted 

first, because easily accessible. They were successively followed by large pelagics 

such as tuna and sharks, groundfish such as cod and halibut, and small pelagics such 

as herring and sardines. Oysters were among the first invertebrates suffering 

depletion because  
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Fig.1.1: History and present state of 12 estuarine and coastal ecosystems in North America, 

Europe, and Australia. (A) Relative abundance of six taxonomic groups (as arithmetic means) 

over real time and (B) cultural periods (Pre, prehuman; HG, huntergatherer; Agr, agricultural; 

Est, market–colonial establishment; Dev, market–colonial development; Glo1, global market 

1900–1950; and Glo2, global market 1950–2000). (C) Human population growth over real time 

and (D) cultural period (Baltic and Adriatic x10
-1
; Fundy x10; Pamlico x10

2
 to fit scale). (E) 

Present state of relative abundance. Color codes depict study systems as shown in (E) (From 

Lotze et al. 2006) 

 

of high value, accessibility, and simple destructive exploitation methods. Because of 

their reef-forming and filtration capacity, depletion of oysters reduced the 

ecosystem’s ability to provide high water quality and complex habitats (Kirbi et al. 

2004; Lotze et al. 2006; Beck et al. 2009). Other habitat-building filter-feeders 

including corals, sponges, and hydrozoans rapidly declined with expanding seafloor 

trawling. Mussels, crustaceans, and other mobile invertebrates have been harvested 

throughout history, but only recently became targets of a expanding “low–trophic 

level fisheries” (Pauly et al. 1998). Over time, 67% of wetlands, 65% of seagrasses, 

and 48% of other submerged aquatic vegetation were lost because of trawling, 

eutrophication and disease with a considerable losses of nursery habitats, nutrient 

and sediment sinks, and coastline protection (Airoldi and Beck 2007). 
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From 1990 to 1995 the number of people living within 100 km of the coast increased 

from roughly 2 billion to 2.2 billion (Burke et al. 2001). Future perspectives indicate 

that the population living on the coast will double in the next 30 years with an 

expected 75% of the world’s population residing in coastal areas by 2025 (EEA 

1999a). Coastal systems provide many important services to humans such as nutrient 

cycling, food production, provision of habitat/refugia, disturbance regulation, natural 

barriers to erosion, control of water quality, and nursery grounds. The global value of 

services from seagrasses, estuaries and coastal wetlands is estimated to be 10 times 

higher than that of any terrestrial ecosystems (Costanza et al. 1998). As human 

population has increased in coastal areas, habitat conversion represents a major 

source of pressure on coastal ecosystems through an increasing demand for coastal 

resources (Danielsen et al. 2005; Adger et al. 2005; Airoldi and Beck 2007).   

Human activities vary in their intensity of impact on the ecological condition of 

communities and in their spatial distribution across the seascape (Halpern et al. 

2007). Land-based activities affect the runoff of pollutants and nutrients into coastal 

waters (Syvitski et al. 2005; Vitousek et al. 1997) and remove, alter, or destroy 

natural habitat. Ocean-based activities extract resources, add pollution, and change 

species composition (Pauly et al. 2005).  These changes represent a potential for 

disasters, as demonstrated in numerous evidences for fisheries collapses (Jackson et 

al. 2001; Lotze et al. 2006) and the recent impacts of the 2004 Asian tsunami and 

2005 Hurricane Katrina that were exacerbated by historical losses of mangroves and 

wetlands (Adger et al. 2005; Stokstad 2005). 

 

Fisheries exploitation can change natural marine ecosystems more rapidly and at a 

spatial scale larger then most human induced effects (Pauly et al. 1998; Gray et al. 

2007; Hilborn 2009). Almost half of the world’s fish stocks are fully exploited and 

another 22% overexploited fisheries often target apex predator for their high food 

and economic value (e.g., tunas, large groupers, billfishes) (Hilborn et al. 2007). 

Such predators have a disproportionately large impact on the rest of the ecosystem 

because of their role as predators. Examples of single top predators or keystone 

species are well known for many marine ecosystems (Paine et al. 1969; Simestad et 

al. 1978; Menge et al. 1994; Christianou and Ebenman 2005), but more recently the 

loss of entire trophic level and of their functional role has been recognized as crucial 

within the scientific community (Meyers and Worm 2003; Heithaus et al. 2008).  
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Widespread declines of large predators across the world’s oceans are expected to 

strongly influence smaller-bodied mesoconsumers and the species that are eaten by 

mesoconsumers (resource species). For example, research surveys on the US eastern 

seaboard conducted from 1970 to 2005 indicate rapid declines in the abundance of 11 

species of large sharks and concurrent increases for 12 of 14 small elasmobranch 

mesoconsumers (Myers 2007). These studies suggest that mesoconsumer 

communities can respond strongly to top predator declines, and that these effects 

play out over large spatial and temporal scales (Heithaus et al. 2008). Pauly et al. 

(1998) called “fishing down marine food webs” this progressive trophic depletion. In 

kelp forest the overexploitation of otters caused the enhancement of grazing by sea 

urchins on kelp allowing an abundant assemblage of macroalgae to develop (Estes 

and Palmisano 1974; Tegner and Dayton 2000; Steneck et al. 2004). Carpenter and 

Kitchell (1993) referred to these interactions as “trophic cascades”.  Interactions 

across food webs are known in many ecosystems, including several coastal benthic 

systems a few in the open sea from temperate to tropical shores (Botsford et al. 1997; 

Lindberg et al. 1998; Pace et al. 1999; Pinnegar et al. 2000; Guidetti et al. 2006; 

Mumby 2007).  

One of the indirect effects of fishing activities is “by-catch”. Trawling for shrimps, 

crabs and targeted demersal fishes produces a by-catch of non commercial species or 

juveniles of species with commercial or recreational value as forage fish for various 

piscivores, including fish, seabirds and marine mammals. Consequently, the fate of 

by-catch can have significant effects on other species. The subsequent impact is the 

reduced production and fisheries yield of those species that as adults are targets of 

fisheries. At the same time, those species with naturally low juvenile survivorship 

may show little demographic effects of imposing further mortality on the juveniles 

(Steneck and Carlton 2001).  

Extensive areas of benthic habitat have been lost or their physical integrity 

compromised as a result of fishing (e.g. sabellid reefs in the Wadden Sea: Reise 

1982; Riesen and Reise 1982; oyster bars in Chesapeake Bay: Rothschild et al. 1994; 

sponge communities in the Gulf of Maine: Auster et al. 1996). In many areas, the 

spatial extent and the severity of physical disturbance, the potentially slow recovery 

of impacted ecosystems, as well as the frequency of occurrence over time (heavily 

fished areas may be impacted many times in a year), directly attributable to fishing 
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far exceed the effects of other disturbance agents (e.g. waves, tidal currents, 

bioturbation processes, and anthropogenic processes such as dredging and extractive 

activities) (Turner et al. 1999; Thrush and Dayton 2002). 

Humans enhance invasions. The increased invasion rate has affected terrestrial, 

aquatic and marine systems promoting the potential for a global homogenization of 

species diversity (McKinney and Lockwood, 1999). Biological invasions of non 

indigenous species are caused by both natural movements for range expansion and 

by human mediated transport. Vessels, aquaculture, bait and aquarium industries, 

commercial, government and private endevours, scientists and canals. These 

mediated transport vectors are capable of moving supralittoral, littoral, or subtidal 

infauna or epibenthic species and planktonic, suspendend, or drifting species. The 

alien species may have the potential to act negatively on populations of resident 

species through competitive interactions, predators and biotic disturbance (Steneck 

and Carlton 2001; Occhipinti-Ambrogi and Savini 2003). Endemic species unable to 

sustain the system alteration will meet extinction, while alien species (called the 

'winners') survive and rapidly colonize the disturbed system (McKinney 1999) 

altering patterns of distribution of assemblages at a variety of scales.  Range 

expansions of invasive species may be affected by many factors including  

disturbance regimes within the invaded habitat and although a variety of classic 

studies have established the importance of natural disturbance and its effect on space 

allocation and recruitment in marine benthic communities (Dayton 1971; Connell 

and Keough 1985; Sousa 2001; Altman and Withlatch 2007) and theory predicts that 

increased disturbance should lead to increased invader success, results from 

empirical studies do not always support this theory (Hobbs 1989; Stachowicz et al. 

1999; Seabloom et al. 2003; Gilbert and Lechowicz, 2005; Klein et al. 2005; Gross et 

al. 2005; Altman and Withlatch 2007).  

 

In marine systems in general, and particularly in coastal systems, eutrophication, 

hypoxia and contamination by chemicals have caused significant deterioration of the 

ecosystems in the most industrialized regions of the planet (Smith 2003; Islam et al. 

2004) and in developing countries (Miller 2000; Wu 2002). The input of large 

quantities of nutrients in coastal waters originates from human activities like 

agriculture, and discharge of urban waste water and sewage (Otway et al. 1996, 
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Smith et al. 1999; Kaiser and Enserink 2000; Nixon 2003; Donner et al. 2004). Other 

contaminants are placed in the waters directly through industrial discharges and other 

human activities (e.g., fertilization, pest control, harbours, shipping, antifouling 

products, spills of petroleum, mining, radioactive contamination, effluent high 

temperature) (Clark et al. 1997). Organic enrichment on coastal biota can alter the 

structure of populations causing the loss of biodiversity and local extinction when 

hypoxia or critical level of eutrophication occur (Gray 1992; Saiz-Salinas 1997; 

Roberts et al. 1998; Terlizzi et al. 2002). Many contaminants can alter the physiology 

of organisms causing teratogenic and mutagenic events (Terlizzi et al. 2001), 

sometimes with serious effects on their behaviour (Hardege 1999; Robinson et al. 

2003). Finally, the accumulation of these substances in organisms often leads to the 

phenomena of biological magnification, with the spread and concentration of 

contaminants along the trophic web (Figueira and Cunha 1998; Giesy and Kannan 

2001; Ciesielski et al. 2004) with serious consequences for ecosystems health 

(Jenssen et al. 2003). Excessive nutrient enrichment has been historically a problem 

in European waters (Islam and Tanaka 2004). Hoffman (2005) reports that 

archaeological signs of eutrophication from dense, mainly urban populations were 

detected on the Bodensee shore at Konstanz (Germany) in late-mediaeval times, and 

that in 1415 a royal ordinance tried to mitigate the low water quality of the Seine 

below Paris. Nutrient loads started to rise probably around 1700–1800, increased 

significantly in the early 1900s and steeply accelerated after the 1950s (Lotze et al. 

2006). It is estimated that in the Baltic and North Sea regions nitrogen (N) and 

phosphorus (P) loads from land and atmosphere have increased about 2–4 and 4–8 

times, respectively, since the 1940s (Nehring 1992; EEA 2001; Karlson et al. 2002). 

The historical development in nutrient loads to the Mediterranean and Black Seas is 

unknown, but is probably of the same magnitude (UNEP/FAO/WHO 1996, EEA 

1999b). For example, in the north Adriatic Sea nutrient load has been increasing 

since at least 1900 and it markedly intensified after 1930 (Barmawidjaja et al. 1995; 

Sangiorgi and Donders 2004), with a doubling of nutrient loads in the Po river 

between 1968 and 1980 (Marchetti et al. 1989). In the Black Sea, concentrations of 

nitrate have increased 5 times and phosphate 20 times from the 1960s to 1980s 

(Gomoiu 1992). The increased eutrophication has led, as a secondary effect, to 

increased oxygen consumption on the sea bed and expansion of areas with hypoxia 

and anoxia (Diaz 2001; Karlson et al. 2002). In the Black Sea up to 90% of the 
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waters are anoxic. The Kattegat has been affected by seasonal hypoxia since the 

beginning of the 1980s, which has followed a more than 3-fold increase in N input in 

the 1960s and 1970s (Rosenberg et al. 1990). Similarly, in the north Adriatic Sea the 

first signs of hypoxia started around 1960 and developed into severe anoxic events 

over the past 20 yr (Barmawidjaja et al. 1995; Diaz 2001). Since the middle of the 

1980s the phosphorus load has generally levelled off or declined locally. In some 

areas such as the North Sea there have been declines in P up to 50% due to improved 

sewage treatment, reduced industrial discharges and a change to phosphorus-free 

detergents (Frid et al. 2003). However, does not seem to be discernible European-

scale reduction of nitrogen inputs yet, marine eutrophication or extent of anoxic areas 

(Karlson et al. 2002). Another source of enrichment is surely represented by 

mariculture industry, in particular the offshore one. The waste produced by this 

industry has a strong impact on the ecology of the sea bottom (Pusceddu et al. 2007) 

and the rapidity of the expansion of aquaculture has increased the risk for 

degradation of sensitive marine habitats such as rocky reefs, macroalgal beds, 

seagrass meadows and rhodolith communities (Holmer et al. 2003; Cancemi et al. 

2003; Wilson et al. 2004). Furthermore many environmental requirements for coastal 

fish farming (e.g. good water quality and adequate water renewal) are, unfortunately, 

almost the same sea-grasses meadows and this is causing in the Mediterranean sea 

the decreasing in density and extension of Posidonia oceanica (Holmer et al. 2008).  

Today one of the most dramatic consequences of human pressure on natural systems 

is the loss and fragmentation of habitats (FAO 2003; Gill 2005; Airoldi and Beck 

2007; Murdoch et al. 2007), with serious implication on biodiversity and ecosystems 

functioning. Habitat loss occurs when natural habitats such as salt marshes are filled 

with sediments and blocked from the sea to form agricultural fields (Airoldi and 

Beck 2007). In some cases, a conversion of habitat is likely to occur: from complex 

natural habitats to less-complex habitats (e.g., oyster reefs are dredged and mudflats 

are left). This less-complex habitat may still have some natural value, but usually 

with lower diversity and productivity (Heck and Crowder 1991; Beck et al. 2001). 

Habitats are rarely converted from less-complex to more complex ones. When a 

degradation is ongoing, it represent a change in conditions and not a change in 

distributions with serious ecosystem implications likely to led to a loss of whole 

natural habitats (Airold and Beck 2007). It happens, for example, with the invasion 
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of non-native algae into seagrass meadows or ditching in marshes. This degradation 

results in much less efficient transfer of nutrients and species at this critical 

terrestrial/marine interface (Minello et al. 1994). Habitat fragmentation falls between 

loss and degradation. Fragmentation occurs when previously continuous habitats 

become patchier (e.g., loss of patches of seagrass within a larger bed). 

Recent reviews have examined the extent of habitat loss and fragmentation in 

tropical environments across large regions for coral reefs (Sebens 1994; Spalding et 

al. 2001; Pandolfi et al. 2003; Wilkinson 2004) and mangroves (Burke et al. 2001; 

Valiela et al. 2001; Alongi 2002; Wilkie and Fortuna 2003). These studies have 

largely contribute to the advancement of our understanding of the status and trends of 

tropical marine ecosystems at regional scale, providing an important support for 

conservation and management of tropical systems.  

In temperate systems, in particular in Europe, many European coastal habitats have 

been lost or severely degraded, and it is estimated that only a small percentage of the 

European coastline (<15%) is in ‘good’ condition (EEA 1999a; Airoldi and Beck 

2007). Several reviews on the status of key temperate habitats (Kennish 2002; 

Steneck et al. 2002; Thompson et al. 2002; Lotze et al. 2006) and some recent 

exemplary efforts to pull together global distribution data on seagrasses have been 

published (Short and Wyllie-Echeverria 1996; Duarte 2002; Short et al. 2007). 

Nonetheless, huge gaps still remain in our knowledge on habitat loss in temperate 

coasts and estuaries, where some of the most productive, diverse ecosystems coexist 

with the most degraded ecosystems on Earth (Suchanek 1994; Edgar et al. 2000; 

Fraschetti et al. 2008). 

In the Wadden Sea region, about 15,000 km of wetland, lagoons, coastal lakes and 

tidal flats have been embanked, drained and converted into arable land and pasture 

over the centuries (Wolff 1997). In the United Kingdom land reclamation has 

affected at least 85% of the estuaries since Roman times, with losses of intertidal 

areas ranging between 25 and up to >80% (Davidson et al. 1991); such widespread 

claim of estuarine land is continuing at rates of 0.2–0.7% yr −1 and affects also 

estuaries of recognised international wildlife importance included in the 

Ramsar/Special Protection Area (SPA) network. Data from the CORINE project 

indicate that 22,000 km 2 of the coastal zone in Europe are covered in concrete or 

asphalt (EEA 2005), and that artificial surfaces increased by almost 1900 km 2 

between 1990 and 2000 alone (EEA 2006a). About two thirds of euro-Mediterranean 
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coastline is urbanised, with this fraction exceeding 75% in the regions with the most 

developed industries (UNEP/MAP/PAP 2001). More than 50% of the Mediterranean 

coasts are dominated by concrete with >1500 km of artificial coasts, of which about 

1250 km are developed for harbours and ports (EEA 1999c). Growth of cities 

(particularly tourist developments) and development of industry in some regions 

have taken up to 90% of the coastline (Cencini 1998). In Italy, a survey carried out 

by World Wildlife Fund (WWF) showed that, in 1996, 42.6% of the entire Italian 

coast was subjected to intensive human occupation (areas completely occupied by 

built-up centres and infrastructures), 13% had extensive occupation (free zones 

occupied only by extensive building and infrastructures) and only 29% was free from 

buildings and infrastructures (EEA 1999c). Coastal zone urbanisation will further 

increase in the near future, with projected increases of 10–20% for most 

Mediterranean countries (EEA 2006a). Severe decreases of water quality have 

generally followed population growth with organic pollution as a major driving 

factor (Jansson and Dahlberg 1999; Diaz 2001; van Beusekom 2005). 

 

1.1. Biodiversity and ecosystem functioning 
 

Diversity at all organizational levels, ranging from genetic diversity within 

populations to the diversity of ecosystems, contributes to global biodiversity. Species 

diversity has functional consequences because the number and the identity of the 

different species influence ecosystem processes (Chapin et al. 2000). Species 

mediate energy and material fluxes directly in some cases altering abiotic conditions, 

or limiting resources. Components of species diversity are the species richness 

(number of species present), the evenness (their relative abundances), the species 

identity, the interactions among species (non-additive effects), and the temporal and 

spatial variation in these properties. Species diversity affects both the functioning of 

an ecosystem and its resilience and resistance to environmental changes. Specific 

ecosystems like estuaries (Lotze et al. 2006), coral reefs (Pandolfi et al. 2003), and 

coastal (Jackson et al. 2001) and oceanic fish communities (Worm et al. 2005) are 

rapidly losing single populations, a number of species, or entire functional groups. 

Although it is clear that key species provide critical services to society, the role of 

biodiversity per se remains untested at the ecosystem level and in respect to 

functioning and services. In the last decade, this important relationship has emerged 
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as a central issue in ecological and environmental science. In this respect, 

understanding the connection between taxonomic and functional diversity has 

important implications for predicting consequences of disturbances and management 

strategies on the functioning of marine ecosystems. 

Ecosystem functioning is a general concept referring to the overall performance of 

ecosystems (Jax 2005). It includes, individually or in combination, ecosystem 

processes (such as biogeochemical cycles), properties (e.g. pools of organic matter), 

goods (e.g. food and medicines) and services (e.g. regulating climate or cleansing air 

and water) as well as the temporal resistance or resilience of these factors over time 

or in response to disturbance (Bengtsson 1998; Biles et al. 2002; Diaz and Cabido 

2001; Giller et al. 2004; Naeem et al. 2004; Jax 2005; Hooper et al. 2005; Duffy and  

Stachowicz 2006). 

Worm et al. (2006) analyze the effects of changes in marine biodiversity on primary 

ecosystem services through a meta-analysis across multiple spatial and temporal 

scales, combining available data from sources ranging from small scale experiments 

to global fisheries. They conclude that biodiversity loss increases an ecosystem’s 

susceptibility to unexpected change and is closely associated with regional loss of 

ecosystem services (Loreau et al. 2001; Worm et al. 2006): systems with higher 

regional species richness appeared more stable, showing lower rates of collapse and 

extinction of commercially important fish and invertebrate taxa over time.  

It has been often supported the idea that biodiversity provides an “insurance” against 

environmental variability (Loreu et al. 2001; Hughes et al. 2005), because different 

species respond differently to these fluctuations, leading to more predictable 

aggregate community or ecosystem properties. In this hypothesis, species that are 

functionally redundant for an ecosystem process at a given time are no longer 

redundant through time (stability-versus complexity debate). The value of taxonomic 

and functional diversity for ecosystem services and community stability is postulated 

theoretically and frequently found experimentally (Loreau et al. 2001; Giller et al. 

2004; Balvanera et al. 2006) sometimes with  the formulation of models about the 

heterogeneous distribution of diversity at different scales in space and in time 

(Connell 1978; Huston 1994; Hubbell 2001). It has been found that species diversity 

and/or genetic diversity enhance the ability of natural systems to withstand recurrent 

perturbations often modifying its composition in such changing environment. Levin e 

Lubchenco (2008) remind in their work the “adaptation” concept in the evolutionary 
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theory of Fisher. Without variance, there can be no adaptation; and without this 

adaptive capacity, populations are at risk. At higher levels of organization, without 

variation, there can be no adaptive response. Some examples include the coral reefs 

assemblages in Jamaica (Jackson 1994; Jackson et al. 2001) and the rocky shores 

community in Panama (Menge et al. 1986): removal of single species or single 

functional groups (such as herbivorous fishes) had little observable impact, because 

other species or functional groups (for example, other herbivores such as crabs, 

limpets, chitons, or urchins) could compensate for the function formerly performed 

by the removed species or group. Only when all groups were removed in either 

system (herbivores, historically, in the case of Jamaica; all consumers, 

experimentally, in the case of Panama) a catastrophic change did occur. 

 

2. Regime shift and ecosystem resilience 
 

The accelerating rate of biological impoverishment may render ecosystems incapable 

of compensating for the loss of biodiversity, thereby reducing their resilience to 

environmental change (Vinebrooke et al. 2004). Emerging theories and new multi-

disciplinary approaches aim to enhance the importance of assessing and managing 

resilience. Many authors considered the resilience the extent to which ecosystems 

can absorb recurrent natural and human perturbations and continue to regenerate 

without slowly degrading or unexpectedly flipping into alternate states (Folke et al. 

2004; Nystrom et al. 2000; Gundersen and Pritchard 2002). In many locations, 

anthropogenic stresses and climatic changes have caused dramatic shifts in species 

composition, known as “phase” or “regime shifts” , which are often long lasting and 

difficult to reverse (Scheffer and Carpenter 2003; Folke et al. 2004; Hughes et al. 

2005) (Fig 2.1).  
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Fig. 2.1: Alternate states in different ecosystems (1, 4) and causes (2) and triggers (3) behind loss 

of resilience and regime shifts (from Folke et al. 2004) 

 

The term ‘‘regime shift’’ was first used to describe the concurrent alternations 

between sardines and anchovies in different areas of the world (Lluch-Belda et al. 

1989). Following the signature 1976–1977 regime shift in the North Pacific (Hare 

and Mantua 2000), the term has been used commonly to describe abrupt changes in 

time in the abundance of a particular  component (often a commercially important 

fish species) of an ecosystem. Notwithstanding the recent interest in regime shifts, 

such abrupt changes have been noted previously in terrestrial, lake, and marine 

ecosystems. For example, outbreaks of spruce budworm have occurred in eastern 

Canada with periods of 30–60 years. The Russell cycle involved abrupt changes at 

several trophic levels that coincided with lower phosphate levels in the English 

Channel (Collie et al. 2004). In coastal seas, the collapse of pelagic fisheries and 

nutrient additions has contributed to unprecedented plankton blooms (MacKenzie et 

al. 2001; Mills 2001) through a trophic cascade that further reduces the resilience of 

many marine community. In the North Atlantic, the collapse of ground fish stocks 
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has led to a precarious economic reliance on lobsters and other crustaceans that have 

been released from their major predators (Steneck et al. 2004). Some common 

examples are shift on coral reefs and in kelp forests (Aronson et al. 2000; Bellwood 

et al. 2004; Steneck et al. 2004) associated with  declines in canopy forming species, 

and the collapse of many coastal and oceanic fisheries (Meyer and Worm 2003; 

Pauly et al. 2002).  Overfishing and climate change have reduced the average life 

span of many marine species, producing unstable systems that are more responsive to 

pulses of recruitment and short-term environmental fluctuations, and less capable of 

supporting sustained exploitation (Meyer and Worm 2003; Russ and Alcala 2003; 

Hughes et al. 2005). For example, removal of herbivorous parrotfish and surgeonfish 

can promote blooms of macroalgae that replace corals. On some reefs, reduced levels 

of predation and competition from fishes have triggered unsustainably high 

populations of grazing sea urchins. This phase shift is unstable because of emergent 

diseases that cause mass mortalities of sea urchins (Harvell et al. 2004), and because 

bio-erosion of the substrate by sea urchin feeding can exceed the accretion rate of the 

reef (Eakin, 1956). In kelp forests worldwide, depletion of fish and lobster stocks has 

also led to increased abundance of sea urchins, promoting phase shifts to overgrazed 

urchin barrens (Steneck et al. 2002; Johnson et al. 2004; Lafferty et al. 2004). A 

disease outbreak in lobsters, similar to die-offs of tropical and temperate sea urchins 

(Harvell et al. 2004; Lafferty 2004) would have devastating social and economic 

impacts on coastal communities. In all these examples, the erosion of resilience, 

associated with the simplification of food chains, is driven by “market demands” 

(Thrush et al. 2009). Several studies have illustrated that ecological systems and the 

services that they generate can be transformed by human action into less productive 

or otherwise less desired states. Regime shifts imply shifts in ecosystem services 

consequent impacts on human societies. Connel et al. (2004) consider the regime 

shifts to be low-frequency, high-amplitude changes in oceanic conditions that may 

propagate through several trophic levels and be especially pronounced in biological 

variables. It is often assumed that the rapid temporal changes in the abundances of 

pelagic fish species imply a correlated change in the interaction of ecosystem 

constituents or in the ecosystem structure, statistical analyses of time series data 

alone do not identify such changes. Thus, a regime shift is rightly assessed in marine 

ecosystems, when persistent shifts in population abundance occur simultaneously 

with autocorrelated changes in the forcing variables (e.g., ocean climate). 
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Discontinuous regime shifts involve an unexpected response between alternative 

stable states. The discontinuity occurs when the forcing variable exceeds a threshold 

value and the response variable passes through the unstable equilibrium to the lower 

stable equilibrium (see description in Collie et al. 2004). 

The idea that ecological systems may have multiple stable states can be traced back 

to Lewontin (1969). May (1977) provided a survey of several systems that display 

thresholds and multiple stable states, including a grazing system, a harvesting 

system, insect pests, and a host–parasitoid system. The notion of a discontinuous 

regime shift derives from the catastrophe theory, which is a topological approach for 

analyzing dynamic systems (Jones and Walters 1976). Although the dynamics of 

marine fish populations were first described under constant environmental conditions 

in the middle of the 20th century the development of the fishing theory followed a 

similar path incorporating in different fishery model ocean variability (Beverton and 

Holt 1993). In marine systems, the external forcing is ocean variability and the 

internal structure corresponds to trophic interactions. In this generic example, the 

rapidly changing (response) variable smoothly tracks the gradual changes in ocean 

conditions. Alteration of the internal structure (e.g., reduction in the carrying 

capacity or increased predator efficiency) moves the systems across the cusp to the 

folded area with multiple equilibria. At a certain level of the external forcing, the 

response variable ‘‘flips’’ to the other equilibrium. When the external forcing 

reverses, the response variable will flip back to the original equilibrium, but at a 

different level. Human activities can move the system along both of the horizontal 

axes (Collie et al. 2004). 

Currently, the health of an ecosystem is typically measured by monitoring 

abundances of a few conspicuous species. The weakness of this approach is that the 

mechanisms driving temporal or spatial variation in abundance are often poorly 

known, and the consequences of changes in these few species to the ecosystem as a 

whole are rarely considered. Developing new metrics that are process oriented and 

that account for ecosystem dynamics is an urgent priority for improved stewardship 

of marine resilience (Bellwood et al. 2004). An emerging approach highlights the 

importance of key processes undertaken by crucial functional groups (i.e. collections 

of species that perform a similar function, irrespective of their taxonomic affinities) 

(Steneck 2001). This perspective shifts the focus from conservation of targeted 

(often, commercially important) species to active management of functional groups 
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that support essential processes and sustain ecosystem services, such as fisheries. An 

important issue is whether high species richness confers greater resilience to marine 

ecosystems, as suggested by some small-scale experimental studies of biodiversity 

and ecosystem function (Loreau et al. 2001). Certainly, depauperate marine 

assemblages are often functionally compromised, and richer biotas are more likely to 

have greater levels of functional redundancy (Bellwood et al. 2004; Steneck et al. 

2004). However, if all species within a functional group respond similarly to 

pressures such as overfishing or pollution, then higher biodiversity will not afford 

additional protection (Elmqvist et al. 2003; Hughes et al. 2005). For example, the 

low diversity coral reefs of the Caribbean undoubtedly have lower functional 

redundancy than do most reefs in the Indo-Pacific; nevertheless, coral reefs 

worldwide are threatened by severe overfishing and climate change (Wilkinson 

2004). 

The capacity of ecosystems to regenerate further sources of disturbance depends on 

sources of resilience that operate at multiple scales. The successional processes that 

follow the disturbance events are the product of interactions within the disturbed area 

and the supply of recruits (Rhoads et al. 1977; Pearson and Rosenberg 1978; 

Rosenberg 2001; Thrush and Whitlatch 2001; Costanza et al. 2001; Berkes et al. 

2003). Traditionally local populations are considered by ecologists open and the 

production and supply of larvae, although often highly variable, is effectively 

inexhaustible. However, larval dispersal is surprisingly limited for many coastal 

species (Strathman et al. 2002) and, consequently, the local loss of reproductive 

adults due to human pressure can split stock–recruitment relationships (Hughes et al. 

2000). When particular pressures cause in time fragmentation of habitat, self-seeding 

populations on remote islands or reefs are particularly vulnerable (Ayre and Hughes 

2004), conversely, species with long-distance dispersal seem to be more resistant, 

leading to a filtering effect that selectively impacts on species with limited dispersal 

abilities. Even where local populations are highly interconnected by multiple sources 

of larvae, if too many patches of habitat degrade, the remaining healthy ones can 

catastrophically collapse, once a critical threshold is passed (Klausmeier 2001). 

Most studies proposing indicators of regime shifts emphasizing the need for 

knowledge of ecological mechanisms and feedbacks (Carpenter and Brock 2006). 

Thus, regime shifts have been identified as a result of changes in productivity (Ware 
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and Thomson 2005), shifts in the timing of events leading to decoupling of processes 

(Edwards and Richardson 2004), changes in recruitment and juvenile mortality 

(Casini et al. 2009) as well as prior shifts in key environmental factors (Weijerman et 

al. 2005). Thrush et al. (2009) sustain that the knowledge of some important 

ecological mechanisms that cause these patterns is often lacking, thus assessing risk 

of a regime shift will depend on the relative importance of the variables for which 

data are available. Folke and other authors (2004) put in evidence through their 

dissertation about the role of human action on natural systems resilience, that 

ecosystem management of resilience and regime shifts needs to address the attributes 

reported by Walker et al. (2004) and other authors (Plummer and Armitage 2006; 

Levin and Lubchenco, 2008;): Latitude as the maximum amount the system can be 

changed before losing its ability to reorganize within the same state; Resistance, is 

the ease or difficulty of changing the system; 3. Precariousness that is how close the 

current trajectory of the system is to a threshold that, if breached, makes 

reorganization difficult or impossible. 4. Cross-scale relations is how the above three 

attributes are influenced by the states and dynamics over, below and across the scale 

of interest (Scheffer et al. 2001; Scheffer and Carpenter 2003; Folke et al. 2004; 

Nystrom et al. 2000; Hughes et al. 2003; Berkes et al. 2003; Nystrom and Folke 

2001; Elmqvist et al. 2003; Walker et al. 2004; Kinzig et al. 2006) . 

Resilience of degraded communities often makes it difficult for the system to return 

to its previous, non-degraded state limiting the potential for restoration (Scheffer et 

al. 2001). Schroder et al. (2005) proposed four tests for hysteresis: discontinuity in 

the response to an environmental driver; lack of recovery potential after a 

perturbation; divergence due to different initial conditions; and random divergence. 

They analysed 35 experimental studies using the minimum turnover of individuals in 

terms of lifespan to assess the stability of different states and found that although 

there was evidence of hysteresis effects in some systems, there was a range of 

potential system dynamics that resulted in context-dependent results. 

Intertidal rocky-shore experiments, for instance, provide many examples of 

successional processes ranging from inhibition to facilitation involving limpets, turf 

algae, barnacles and mussels, with many nuances influenced by environmental 

variables such as relative desiccation, shade, and sediment trapping. Dominant 

species are not necessarily resistant to stress, particularly stressors outside their 

evolutionary history. For example, an investigation of engineering resilience in 
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fucoid-dominated rocky-shore communities highlighted that while the key 

structurally dominant species increased diversity, the high diversity treatments 

responded poorly to heat stress (Allison 2004). These effects highlight the 

importance of individual species in driving ecosystem responses and the fact that it is 

easier to detect diversity shifts in more diverse assemblages as they have more 

species to lose. Other experiments on the removal of dominant fucoids have failed to 

identify functional replacement, indicating little buffering should these species be 

lost or severely reduced in abundance (Schiel 2006). In soft-sediment habitats, major 

shifts in ecosystem performance are often associated with changes in species that 

influence sediment stability or nutrient processing (Lohrer et al. 2004; Norkko et al. 

2006; van Nes et al. 2007). A lot of examples can be used to illustrate how species 

with an important ecological role in influencing habitat, recovery rates or energy 

transfer can affect resilience (Ludwig et al. 1997). Once the relationships between 

specific key species and ecosystem functions are defined, experiments on the 

response of the key species to stressors should provide meaningful insight into the 

risk of a regime shift, even though, variations in the sensitivity of a species to a 

stressor across landscapes must be take in account (Thrush et al. 2008). Historical 

reconstructions have highlighted that the loss of suspension-feeding bivalves from 

coastal systems have profoundly influenced trophic relationships and ecosystem 

function (Nichols et al. 1986; Lotze et al. 2006; Airoldi et al. 2008). At the same 

time, most studies on regime-shifts focus on the loss of species and ecosystem 

services, demonstrate that shifts can also increase ecological values. In the North 

Sea, hydrodynamic changes caused by coastal engineering activity slightly increased 

the salinity of a Danish fjord, enabling colonization by suspension-feeding bivalves 

with associated changes in trophic relations and water clarity. More generally, 

however, eutrophication-induced hypoxia and anoxia reduce the role of deep-

burrowing, and bioturbating taxa that are functionally important in organic matter 

recycling. Conley et al. (2007) have argued that loss of benthic fauna and altered 

energy pathways are the reasons why major reductions of nutrients to coastal waters 

have not resulted in improvements in eutrophication status. 
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3. Multiple stressors 
 
3.1. Disturbances and stressors 

 
Many authors refers to pollutants, eutrophication, alteration of habitat and 

hydrological regimes as “multiple stressors” that can impact resources through 

single, cumulative or synergistic processes, lowering the overall system stability 

(Folt et al. 1999; Sala et al. 2000; Vinebrooke et al. 2004; Steffen et al. 2004; 

Dolbeth et al. 2007; Cardoso et al. 2008; Crain et al. 2008). Grime (1977) identifies 

the stress with the reduction of organism’s potential for growth whereas a 

disturbance with the removal of biomass. From a population dynamics perspective, 

the removal of even a single individual constitutes a disturbance, although small and 

probably inconsequential to overall dynamics. Thus, a disturbance often refers to an 

external agent or force that causes damage or mortality. Sousa (2001) defines a 

disturbance the damage or mortality itself that is the effect of some external agent or 

force. Biological disturbance includes partial or complete consumption of prey by 

predators or grazer, the deaths of parasitized hosts, harmful alteration of the 

environment caused by activities of animals (e.g. bio-turbation) or movements of 

plants and the displacement of mobile, space-holding prey due to behavioral escape 

from predators. Dayton (1975) described this case in tide pools on the outer coast of 

Washington State: large numbers of sea urchins stampeded away from a sea star 

predator, thereby creating open, ungrazed space for algal colonization within tide 

pools. Biological disturbance also includes inadvertent mortality, damage, or 

displacement suffered by non-prey species as an indirect result of foraging or other 

behaviors of consumers. 

How much damage or mortality must these agents cause, before we consider it a 

disturbance? From a population-community point of view, an event that doesn’t alter 

population size or community structure, even though causing physiological or 

mechanical stress to individuals, would not constitute a disturbance. Only when the 

organism’s tolerance is exceeded, resulting in its death or a sufficient loss of biomass 

that the recruitment or survival of other individuals is affected, has a disturbance 

occurred. Selye (1956) defined stress as "the state manifested by the specific 

syndrome which consists of all the non-specifically induced changes within a 

biologic system." Stress could be considered, generally, a perturbation (stressor) 
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applied to a system which is foreign to that system or which is natural to that system 

but applied at an excessive level (e.g., nitrogen, phosphorus, or water): an abiotic or 

biotic (e.g. introduction of an alien species) variable that exceeds its range of normal 

variation, and adversely affects individual physiology or population performance in a 

statistically significant way (Barret et al. 1976; Auerback 1981; Vinebroke et al. 

2004). 

Stressors are expected to exert complex interactive effects given the stress-induced 

tolerances (Blanck 2002), differences in environmental sensitivity among trophic 

levels (Vinebrooke et al. 2003; Petchey et al. 2004; Raffaeli 2004). Unfortunately, 

interactions among multiple stressors cannot be easily modelled because they 

generate net impacts that either exceed (i.e. synergism) or fall below (i.e. 

antagonism) their expected additive effects (Folt et al. 1999). 

Our understanding of the ecological effects of global change remains limited by lack 

of both and empirical evidence from only a few multi-factorial studies of aquatic 

(Doyle et al. 2005; Persaud and Williamson 2005; Przeslawski et al. 2005) and 

terrestrial (Zavaleta et al. 2003; Hanson et al. 2005; Henry et al. 2005) ecosystems 

(Christensen 2008). Yet, natural systems are almost always simultaneously subjected 

to multiple human-derived stressors (Breitburg et al. 1998; Venter et al. 2006; 

Halpern et al. 2007, 2008). 

 

3.2. Interaction of multiple stressors: synergistic effects 
 

The need to better understand the interactive and cumulative effects of multiple 

stressors was highlighted a decade ago (Breitburg et al. 1998) and is still cited as one 

of the most pressing questions in ecology and conservation (e.g. Sala et al. 2000; 

Zeidberg and Robison 2007). In both theoretical and applied research, the effect of 

multiple stressors is often assumed to be the additive accumulation of impacts 

associated with single stressors (Bryant et al. 1998; Sanderson et al. 2002; Halpern et 

al. 2007a 2008b; Ban and Alder 2008). Changes in coastal water quality and living 

resources are the result of multiple stressors (Breitburg et al. 1999), so a broader 

view of coastal eutrophication will consider how anthropogenic nutrient enrichment 

interacts with other stressors such as translocation of species, habitat loss, 

overfishing, inputs of toxic contaminants, manipulation of freshwater flows, 

aquaculture, and climate change (Cloern et al. 2001). Numerous empirical and 
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correlational studies have documented that multiple stressors can exacerbate negative 

impacts to systems when acting in concert, such as when increased UV radiation 

greatly increases the negative effects of a toxin (Pelletier et al. 2006), raising concern 

that synergisms may be common in nature. In contrast, other studies show that the 

effect of multiple stressors in concert can be based on their individual effects, 

potentially even mitigating stressor impacts, such as when nutrient enrichment 

compensate the negative effect of a second stressor, such as toxins or UV (Breitburg 

et al. 1998; Wulff et al. 2000). Folt et al. (1999) summarized three broad categories 

of interaction types describing the outcome of multiple stressors, with components 

that vary depending on the direction of each single stressor effects. When a stressor 

A interact with a second stressor B, and each stressor has a negative effect if applied 

individually, e.g. stressor A reduces the response by “a” and stressor B by “b”, then 

the cumulative effect under A + B conditions is a reduction of the response from 

control levels that is additive (=a + b), antagonistic (< a + b) or synergistic (> a + b) 

(Fig 3.2.1).  

Two variations of this interaction model are described through the multiplicative 

model, when cumulative effects are the product of individual stress effects, and the 

comparative model, when a single dominant stressor drives the cumulative outcome. 

Stressors themselves can interact, so impacts can change with additional stressors. 

For instance, chemical properties of a toxin shift at different temperatures, or 

species-response to invasion varies under different nutrient regimes (is context 

dependent) (Crain et al. 2008).   
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Fig. 3.2.1: Conceptual framework to interpret interactions from population or community 

response data presented in factorial studies (a–c) and corresponding individual and interactive 

effect sizes measured with Hedge_s d (d–f) before combining across studies using metaanalysis. 

Treatments in factorial studies include control (CT), with stressor A (A), with stressor B (B), 

and with both stressors (A + B). Interaction types (additive, synergistic and antagonistic) vary 

depending on A + B response and are illustrated here for stressors that have double negative (a 

and d), opposing (b and e), and double positive (c and f) main effects on the response variable of 

interest (from Crain et al. 2008). 

 

Furthermore, species may respond similarly or differently to sets of stressors due to 

evolutionarily or ecologically derived tolerances (Vinebrooke et al. 2004) and, 

community response to stressors can differ due to changing interactions between 

component species under different stressor scenarios, for instance when species 

switch from competitive to facilitative interactions under different salinity regimes 

(Crain 2008). Predicting community or ecosystem response to multiple stressors is 

additionally complicated by interaction among the component species and factors 

like species diversity (redundancy and resilience), openness of a system that can 

influence dynamics of disturbance recovery, and environmental stochasticity 

(Breitburg et al. 1998). Stressor occurrence often shows particular temporal patterns, 

with significant differences in frequency and intensity of the stressor, and which 

response variable is measured (e.g. Relyea and Hoverman 2006) influence the 

estimates of cumulative stressor effects.  

Crain et al. (2008) conducted a meta-analysis, synthesizing findings from studies on 

multiple stressors with the aim of define general patterns in cumulative stressor 

effects. They considered the average interaction strength across studies, how does it 
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vary by key ecological and methodological variables, if the frequency of interaction 

types shift due to context dependency, which pairs of stressors have been evaluated 

empirically and, in contrast, where do key research gaps exist for multiple stressors. 

Some researchers try to assess cumulative effects of a combination of direct and 

indirect impacts like algal response to nutrients and fishing, via trophic cascades. In 

many cases it is difficult to find the correct theoretical and experimental approach to 

handle this issue, first because there is a need to first understand interactions among 

direct effects before addressing indirect effects, and second, because the individual 

impact (positive or negative) of indirect interactions will vary depending on 

subsequent biotic interactions within the community, so that the interaction type is 

not easily classified. For example, the indirect impact of fishing on primary 

producers can occur via an increase or decrease in grazing pressure depending on 

whether the fished species is itself a predator or grazer. Experimental manipulations 

that remove all grazing pressure do not clearly mimic fishing stress as removing top 

predators likely increases and decreases populations of various herbivores. The meta-

analysis across all studies revealed a significant overall synergistic interaction effect 

indicating that cumulative effects of multiple stressors is often be worse than 

expected based on single stressor impacts. Previous meta-analyses of a single 

stressor pair (i.e. nutrient enrichment and reduced grazing pressure) in marine 

systems also found synergistic interactions (Burkepile and Hay 2006; Gruner et al. 

2008). Past studies had documented synergisms between different source of impact. 

(Hughes and Connell 1999; Jackson 2001; Przeslawski et al. 2005). Nevertheless, all 

three type of interaction (additive, antagonistic and synergistic) were commonly 

found among individual studies, suggesting that while synergisms may dominate 

overall effects, outcomes will vary in specific scenarios. Covariates and context 

dependency play a major role in driving multiple stressor effects, and exploring these 

drivers can help better predict how specific stressors interact (Crain et al. 2008). 

Results of some studies reveal that on average many specific stressor pairs are 

additive, lending support to cumulative models that assume additivity of stressor 

effects (Bryant et al. 1998; Sanderson et al. 2002; Ban and Alder 2008; Halpern et al. 

2008). Exploring which stressor pairs deviated from additive may provide insight 

into when multiple stressors have interactive effects (Crain et al. 2008). For instance, 

nutrients and toxins had opposing main effects and interacted antagonistically, 

indicating that the positive effect of nutrients can overcompensate for the negative 
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effect of toxins. In contrast, a synergistic interaction was seen between nutrients and 

sea level rise in intertidal. Antagonistic effects were also seen for salinity paired with 

both temperature and toxins and may have arisen because these stressors potentially 

mitigate each other or because one stress reduced the response of the second stress 

(comparative model described before, Folt et al. 1999). Alternatively, in cases where 

stressors are applied consecutively rather than simultaneously, a negative effect of 

the first stressor may pre-condition the species or community to be less sensitive to 

the second stressor. Synergistic interactions were found for UV paired with both 

temperature and toxins. In this case chemical reactions change when these stressors 

are combined, such as has been found with phototoxicity, the increasingly negative 

effect of toxins in the presence of UV (Pelletier et al. 2006). Alternatively, with 

consecutive exposure, populations or communities that survive UV exposure could 

be more sensitive to a second stressor. Understanding the mechanisms by which each 

stressor individually drives population or community response may help interpret or 

predict when and where cumulative stressors interact. Thus, stressors acting through 

similar mechanisms may be additive, while those acting through alternative but 

dependent pathways may be synergistic and non-additive interactions are driven by 

the degree of similarity of individual stressor effects (Blanck 2002; Christensen et al. 

2006). Thus, stress-induced species tolerances lead to antagonistic interactions since 

tolerance to one stressor can improve tolerance to a second stressor that acts through 

similar mechanisms (Blanck 2002), while ecological trade-offs lead to synergistic 

interactions since exposure to one stressor will select for species or individuals 

robust to that stressor but susceptible to a second stressor (Kneitel and Chase 2004). 

Thus, understanding the mechanisms and effects of single stressors may be key to 

predict the nature of stressor interactions, but these hypotheses require validation 

through continued empirical tests. 

Trophic level may be an important driver of interaction type. Organisms with 

fundamentally different methods of energy acquisition may respond differently to 

stressors. Increased CO2 can benefit plants but harm invertebrates causing 

acidification. Three stressor pairs had sufficient sample size to allow for analysis of 

differential responses between trophic levels, and two of these pairs switched from 

overall synergistic interaction effects for heterotrophs to antagonistic interaction 

effects for autotrophs. In studies of trophic cascades (indirect effects of fishing · 

nutrients; Borer et al. 2006), interaction effects were slightly antagonistic for plants 
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and synergistic for herbivores, but these effects were not significantly different from 

additive. This pattern among trophic levels within stressor pairs is consistent with the 

results obtained by Christensen and collegues (2006): autotroph studies had 

significantly antagonistic effects and heterotroph studies had significantly synergistic 

cumulative effects. Taken together, their results indicate that interactive effects of 

multiple stressors could be more negative for organisms at higher trophic levels. A 

similar trend for single stressors to harm consumers but benefit producers has been 

attributed to loss of biological insurance as taxonomic, physiological and genetic 

diversity decrease with increasing trophic level (Christensen et al. 2006 and 

references therein). Cumulative stressor effects may also depend on the response 

level (species vs. community) examined since species-level impacts can be 

dampened or exacerbated through species interactions. When analyzed across all 

studies, interaction effects were significantly synergistic in population level studies 

and antagonistic in community level studies. These results suggest that species 

interactions within communities dampen and diffuse the impacts of multiple stressors 

that can have strong negative effects on a given species. Consequently, species-level 

data may have limited utility in predicting community or ecosystem response to 

multiple stressors. The impact of multiple stressors on marine systems will depend 

not only on species-level responses, but additionally on species interactions, species 

diversity and redundancy, trophic complexity, ecological history, and ecosystem type 

(Vinebrooke et al. 2004), suggesting a clear need to increase research on community-

level or whole-ecosystem responses to multiple stressors (Breitburg et al. 1998). As 

the number of stressors in a system increases (most natural systems are subject to 

more than two stressors), stressor pair interactions become increasingly complex and 

more commonly synergistic. 

The majority of factorial experiments have been conducted in laboratory or in 

mesocosms. This may lead to artificial or uncompleted conclusions because lab 

studies remove the important contextual factors of real ecosystems. In addiction, 

there could be significant differences in overall interaction types depending on 

experimental methods. Studies carried out under laboratory conditions were strongly 

synergistic, possibly because researchers target potentially negative interactions to 

study in the lab. Mesocosm studies were significantly antagonistic, possibly because 

they were mostly community-level studies that we have shown to be more commonly 

antagonistic (Crain et al. 2008). 
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4. Anthropogenic pressures in the Mediterranean sea 
 

4.1. General contest 
 

The Mediterranean Sea, for its particular conformation, reacts very quickly to 

environmental changes, both anthropogenic and natural. It is subjected to marked 

seasonal cycles of temperature and nutrient concentration, and this seasonality  

causes, for example, large changes in biomass of dominant species of benthic algae 

that are reflected in the communities of associated invertebrates (Zabala et al. 1989; 

Ballesteros 1992; Hall 1997). The water exchange time is of about 80 years and this 

slow turnover rate results in a high anthropogenic impact (Zorita et al. 2007). The 

Mediterranean Sea coasts have always been among the most densely populated 

regions on Earth, with an estimated 5700–6600 people km-1 of coastline in 2000 

(UNEP/MAP/PAP 2001). Along the coasts, the population increased by 46% 

between 1980 (84.5 million) and 2000 (123.7 million), and it is projected to nearly 

double between 2000 and 2025 (UNEP/MAP/PAP 2001).  

Urbanisation has been particularly growing along the coastline, to accommodate both 

permanent and temporal population (the Mediterranean is the greatest tourism 

destination in the world), with the result of a substantial modification of the coast and 

adverse effects on the quality of the environment. There is a large range of industrial 

activities widespread all along the Mediterranean basin, and a number of highly 

industrialised spots that are concentrated mainly in the NW part of the region. All 

these activities constitute sources of pollution through direct disposal, continental 

runoff and atmospheric transport (UNEP Chemicals, 2002). The presence of these 

pollution hot spots, located generally in semi-enclosed gulfs and bays near important 

harbours, big cities and industrial areas, is probably the major problem in the 

Mediterranean Sea (EEA, 1999). Regarding only petroleum hydrocarbon pollution, 

between 1987 and the end of 1996 an estimated 22 223 tonnes of oil entered the 

Mediterranean Sea as the result of shipping incidents causing localised damage to the 

Mediterranean marine and coastal environment (EEA, 1999), and 250 000 tonnes of 

petroleum hydrocarbons are discharged per year due to shipping operations (UNEP 

Chemicals, 2002). Other chemicals such as polychlorinated biphenyls (PCBs) and 

derivates, pesticides and metals are also continuous sources of pollution.  
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Studies on the effect of sewage outfall and pollution on macroalgae reveal the 

sensitivity of some brown perennial species to this kind of disturbance (Giaccone, 

1993; Janssen et al. 1993; Soltan et al. 2001; Thibaut, 2005). Discharge from sewage 

treatment and industrial plants during several years often produce a change in the 

Mediterranean basin from perennial, stable benthic algae communities to more 

stress-tolerant and opportunistic species (Bokn et al. 1996; Middelboe and Sand-

Jensen, 2000; Terlizzi et al. 2002; Pinedo et al. 2003). The most eutrophic waters are 

therefore more numerous along the northern coastline such as in the Adriatic Sea 

(Sangiorgi, 2004). Here  ‘‘red tides’’, massive diatom and dinoflagellate blooms, 

sometimes associated with toxicity episodes, are well known along the northwestern 

Adriatic coast (Sangiorgi et al. 2004, and references therein); but areas such as the 

Nile Delta are also eutrophic (Abdalla et al. 1995; Nixon 2003). This problem has 

been increasing gradually over the last 2–3 decades, so much that the regions of high 

algal pigment concentrations, characteristic of eutrophic waters, are clearly visible 

from satellite images.  

The impact of fishing on a few targeted species is community-wide and affects all 

trophic groups (McClanahan and Sala 1997; Sala et al. 1998) representing the major 

factor causing changes in the structure of coastal food webs. The Mediterranean has 

been exploited since antiquity. Large predators like the monk seal (Monachus 

monachus) or the brown Mediterranean grouper (Epinephelus marginatus), now 

seriously endangered species, have been hunted since Neolithic times (Rosemberg et 

al. 2006). In the last century, the conversion of coastal fisheries from a small-scale to  

industrialized, has resulted in the extinction of apex predators apical label such as 

sharks, groupers and turtles. As many important fish stock depends on annual 

reproduction, the dramatic decrease of commercial species cause a massive depletion 

of new recruits (Sala et al. 2000). This causes a weakness of the stock, its poor ability 

to maintain the biomass especially when playing annual and minimum values (Pauly 

et al. 1998). Less charismatic benthic organisms such as sponges and mother-of-pearl 

Pinna nobilis have also been long exploited. Sponge commercial fisheries in the 

Eastern Mediterranean were started by the ancient Greeks and continued until the 

20th century (Moore 1910; Hughes 1994). Numerous evidences indicates that the 

removal of biological filters can result in the microbialization of coastal food webs 

associated with increased eutrophication (Jackson and others 2001). 
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Looking to anthropogenic drivers of changes over the last thirty years in the north-

western Mediterranean, significant changes in the physico-chemical properties of 

water have occurred. Phosphate concentration increased of 0.5% per year, 6% zinc 

and lead and 2% copper and cadmium. During the same period, the water 

temperature and salinity have increased strongly (Emeis et al. 2000). These rapid 

changes principally in the deep waters are reflected in changes in the surface layers 

of water due to nutrient enrichment, global warming, loss of natural buffer systems, 

etc (Rosenberg et al. 2006).  

 

In recent years there are evidences that in some coastal systems of the Mediterranean 

invasive algal species have transformed communities originating in algal 

monocultures and hard substrate habitats dominated by canopy-forming algal 

populations, characterized by high biodiversity, have been turned into barren 

dominated by urchins and encrusting coralline algae (Fraschetti et al. 2001; Bulleri et 

al. 2002; Guidetti et al. 2003). Also, there is an ongoing seagrass loss in the 

Mediterranean Sea as a consequence of the invasion of Caulerpa taxifolia (Jaubert et 

al. 2003). This species competes for space and resources with the seagrass 

Cymodocea nodosa (Ceccherelli and Cinelli 1997) and is thought to be able to 

damage Posidonia oceanica beds, particularly when these are already under stress 

(e.g., de Villèle and Verlaque 1995).  

Present-day seagrasses along Mediterranean coasts are often described as in a 

degraded state (Marbà et al. 1996; Delgado et al. 1997; Duarte 2002; Green and 

Short 2003), with low shoot densities, high mortality rates, and high fragmentation. 

In some deeper ones along the southeastern coasts, trawling damages up to 40% of 

the total Posidonia oceanica surface (Tudela 2004). It is estimated that in the past 

Posidonia oceanica meadows may have covered 50,000 km2 in the whole basin 

(Duarte 2002), which considering present estimated covers of seagrasses in the 

Mediterranean and Euro-Asian Seas (Green and Short 2003) would make an overall 

loss >85% (but probably many existing seagrass meadows are not presently 

documented). Rapid local regression (up to complete disappearance) of P. oceanica 

meadows is known to have occurred at numerous localities in France, Italy and 

Spain. It is estimated that shoot density of P. oceanica in the western Mediterranean 

has decreased by up to 50% over a few decades, with major losses between 10 and 
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20 m depth (EUCC 19 98). Along the Ligurian coast of Italy,  P. oceanica meadows 

(50 beds covering 48 km2 ) have been severely degraded due to coastal modification 

and town developments (Bianchi and Peirano 1995). Some of these beds were 

severely damaged in the early 1990s by the wreck of the oil tanker Haven (Sandulli 

et al. 1994).  

One of the most dramatic effect caused by human pressure in the Mediterranean sea 

is represented by the shift from complex benthic communities to persistent sea-

urchin barrens (Vukovic 1982; Sala et al. 1998; Guidetti et al. 2003), in which 

reductions in the abundance of a few predators of sea urchins can result in an 

increase of sea-urchin grazing and consequently an order-of magnitude decrease in 

the number of algal and invertebrate species (Sala 2004; Tuya et al. 2004). The 

species-impoverished sea-urchin barrens can be maintained not only by fishing, but 

also by food subsidies coming from nearby sea-grass beds (Verlaque and Nedelec 

1983) or eutrophication (Sala et al. 1998). In marine reserves, where fishing is 

prohibited and sea-urchin grazing can be mediated by predatory fishes (Sala and 

Zabala 1996; Guidetti e Sala 2007), there can be changes in algal community 

structure where chemically defended introduced species dominate seasonally (Sala 

and Boudouresque 1997), hence causing shifts in the diet of herbivores.  

  

4.2. Rocky hard substrate: the date mussel fishery 
 

Subtidal rocky habitats are considered among the most important for the entire 

coastal system for their characteristics of high species richness, functioning and 

phylogeny, and for their high primary and secondary productivity (Levington 1995; 

Kondoh 2001). The dimensional complexity of these habitats provide refuge from 

disturbance (such as predation or hydrodynamism), and an excellent nursery ground, 

ideal for reproduction and feeding for many organisms, including many important 

commercial species (Turner et al. 1999; Bruno et al. 2001; Levin and Hay 2002). 
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Illegal fishing of shellfish date mussel (Lithophaga lithophaga, Fig. 4.2.1) is one of 

the most harmful human activities affecting subtidal rocky habitats in the 

Mediterranean Sea and is still widely practiced on the Italian coast, despite being  

 

 

banned since 1988 (Fanelli et al. 1994; Bevilacqua et al. 2006). Mussels are 

exploited through a systematic bedrock with hammer and chisel. Because of its slow 

growth phase, the species is considered a renewable resource only in a very long 

time. Fishermen destroy the substrate within the first meters of depth, where the clam 

reaches higher densities and where scuba diving can take place without time limits 

and extends thereafter deeper to move, finally, into a new area. The main 

consequence of fishing date is the removal of the biological cover of macro-algae 

and zoobenthos, creating small patches bare till a complete desertification. 

The complex three-dimensional architecture that characterizes the subtidal rocky 

assemblages is greatly simplified and the removal of macroalgae causes a significant 

reduction in primary productivity with serious consequences for higher trophic levels 

(Bevilacqua et al. 2006). The barren housing benthic and fish populations are less 

diverse and less abundant, probable because the lower structural complexity that is of 

a lower availability of shelter, of a lower abundance of invertebrates (often 

associated with algae), a decreased availability of plants for herbivores feeding and 

detritus for detritivorous, which are preyed by many coastal fish species. 

Fig.4.2.1: Lithophaga lithophaga and barren ground with sea urchins and encrusting algae 
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The fishing activity causes a direct loss of biomass, but other biological processes, 

such as grazing herbivores, competitive capacity and the variations in the success of 

recruitment, occurs ad interactive processes that could compromise the overall 

resilience of the system. These processes, in fact, affect the subsequent re-

colonization mechanisms (Connell and Keough 1985) and often maintain secondary 

succession in the initial stage (Nyström et al. 1998; Bulleri et al. 2002). During the 

process of colonization, newly settled larvae or juvenile stages of many sessile 

organisms, are particularly susceptible to predation (Pohle et al. 1991, Osman and 

Witlatch 1995; Gosselin and Quian 1997). From an ecological point of view,  

predation is defined as the biotic process that can affect not only the distribution of 

prey, but also the structure of communities (Hairston et al. 1960) through interactive 

processes such as 'trophic cascades' (Paine, 1980; Pace et al. 1999). For this reason, 

predation may therefore be a primary factor in determining the post-settlement 

mortality and, consequently, the process of colonization (Thorson, 1966; Osman and 

Whitlatch 1995). In this framework, sea urchins have a crucial role on the structure 

and dynamics of settlement of many species in coastal environments, including 

seagrass beds (Valentine and Heck 1991), beds of kelp and other macroalgae 

(Lawrence 1975; Sousa et al. 1981; Hawkins and Hartnoll 1983; Himmelman et al. 

1983; Scheibling 1986; Witman 1987; Johnson and Mann 1988; Andrew 1993; 

Andrew and Underwood 1993; Leinaas and Christie 1996). When they are present 

with high densities, urchins may eliminate macrophytes quickly erected even on 

large areas, resulting in what are called habitat "barren" characterized by the 

presence of encrusting coralline algae. Guidetti et al. (2003) showed that substrates 

affected by the date fishery, are featured by an higher sea urchins biomass than 

control areas, also due to the reduction in the abundance of some fish species by 

overfishing, natural predators of sea urchins. 

In these damaged areas, grazers usually feed in areas far from their shelters limiting 

the recovery of benthic populations through non-selective grazing on macroalgae, 

with potentially significant effect for those fish species that use macroalgae for food, 

settlement and shelter. Palacin (1998) has conducted manipulative field experiments 

by changing density of echinoids on hard substrate, in order to assess the different 

degrees of pressure on algal communities. These studies have found that low density 

of sea urchins, although not lead to a lifting of the algal mat, can influence the degree 

of development of algal communities. In addition, the movements of sea urchins on a 
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small scale can be a factor in structuring benthic communities, as their ability to 

graze is a function of surface involved (Benedetti-Cecchi and Cinelli 1995). 

The existence of barren in Marine Protected Areas (MPAs) where fish predators are 

abundant (Hall et al. 1998) suggests that other processes such as migration or drain 

may be crucial in determining the density of sea urchins and thus the composition 

and structure of the benthic community. Only in MPAs effectively managed, with 

high densities of fish predators, if half the distance between the shelters is smaller 

than the entire home range of sea urchins, the formation of barren is favoured 

(Andrew 1993; Hereu 2005). Thus,  those factors that influence the movements of 

the grazers and reduce the range of grazing, such as predation (Nelson and Vance 

1979; Carpenter 1984; Scheibling and Hamm 1991), food availability (Mattison et al. 

1977; Russo 1979; Harrold and Reed 1985; Andrew and Stocker 1986) or current 

(Kawamata 1998), could enhance the structure and dynamics of algal communities 

(Hereu 2005; Bevilacqua et al. 2006).  

 

4.2.1. Recovery strategies  

 

Recruitment within disturbed patches is highly dependent on the small scale 

heterogeneity of the substrate (Bourget et al. 1994; Hills and Thomason 1998; 

Glasby 2000; Guichard et al. 2001; Goldberg and Foster 2002) and also the 

mineralogy of the rock may have a significant effect on these processes (Bavestrello 

et al. 2000; Cattaneo-Vietti et al. 2002; Faimali et al. 2004; Guarnieri et al. 2009). 

The recolonization may also be influenced by the effect of the topography of the 

substrate as splits, cracks, presence of boulders, which may represent a refuge for 

new settlers from physical and biological disturbance (Lubchenco 1983; Bergeron 

and Bourget 1986). The time when the disturbance occurs may also influence the rate 

and direction of succession (Hawkins 1981; Underwood and Chapman 1998; Airoldi 

2000), because the availability of propagules varies over time, and environmental 

conditions are also temporally variable. However, the differences due to the size of 

the patches and the period of training may become less evident with the progress of 

succession (Sousa 1985; Benedetti-Cecchi and Cinelli 1994). 

It has been shown that populations having suffered a disturbance of low intensity can 

recover more quickly to conditions prior to disturbance rather than populations that 
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have experienced a greater intensity of disturbance (e.g. Sousa 1980; Kennelly 1987; 

Airoldi 1998). Few studies have analyzed the effect of grazers of the potential 

recovery of a severely disturbed habitats, testing their ability in changing the 

recovery trajectories of local assemblages, given the fact that experimental studies 

that have attempted to quantify the potential for recovery by systems severely 

degraded environment are scarce in the subtidal. A manipulative study conducted to 

evaluate whether the establishment of an MPA may favour the recovery patterns of 

an environment disturbed by fishing date (Bevilacqua et al. 2006) has shown that, 

within a protected location, the benthic populations show a more rapid recovery after 

the simulated disturbance than in not protected locations. Thus, even if the processes 

acting on a large scale like larval external input can be fundamental in the 

recolonization of disturbed patches, it is likely that their results appear strongly 

influenced by local factors (Hixon and Brostoff 1996; Coleman 2002; Micheli et al. 

2005) and that protection may exerts its action mainly on the dynamics of recovery 

by interfering with the processes at small scale like competitive interactions or the 

grazing of herbivores.  

 

The relationship between power and wealth, however, is scale dependent: at a global 

scale, wealth increases steadily with energy (Curie 1991; Hall et al. 2000), while at a 

regional scale (hundreds of kilometres) there seems to be a "bell-shape" relation 

between diversity and productivity, with the greatest diversity at intermediate levels 

of productivity (Grime 1973; Rosenzweig and Abramsky 1993; Hall 2000). Locally 

(from a few meters to kilometers), many (but not all) of the observations and 

experimental work indicate that an increase in productivity through the addition of 

specific nutrients, reduce diversity (DiTommaso and Aarsen 1989; Schindler 1990; 

Hall 1999). Mechanistic hypothesis that may explain patterns of diversity in regional 

and local resource is the heterogeneity hypothesis (RHH, Resource Heterogeneity 

Hypothesis) (Tilman 1987) When the environment is uniformly depleted, in spite of 

the availability of resources, cannot support many species and the productivity is 

very low. When the average quality of the habitat increases, it is assumed that the 

spatial variability and diversity of resources also increase, and hence the productivity 

and diversity. After a certain point, however, the opposite applies and there is a 

reduction in the heterogeneity of resources and hence diversity. This reduction 
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occurs because those species that are more competitive under these conditions, are 

favoured when anywhere there are good conditions (Hall 2000). 

 

4.3. Top-down and bottom-up control 
 

The interplay between herbivores, autotrophs, and nutrients has received in the last 

years an increasing attention (McQueen et al. 1989; Power 1996; Ceccherelli and 

Cinelli 1997; Proulx and Mazunder 1998; Peterson et al. 2002; Jara et al. 2006; 

Canning-Clode et al. 2008). The biomass and composition of plant communities is 

affected both by the supply of resources and by consumption from herbivores. It is 

broadly accepted that these two factors are not mutually exclusive and that a strict 

separation of communities in top-down and bottom-up controlled entities is 

unrealistic (Hillebrand 2002). Many experimental studies confirm that both top-down 

and bottom-up controls can interact since the early stages of recolonization in 

determining the structure of macroalgal assemblages (Posey 1995; Lotze et al. 2001) 

and communities (Menge et al. 1992; Worm et al. 2000a; Hillebrand 2002). As 

consumers influence the availability of nutrients (Porter, 1976; Sterner, 1986), top-

down processes may also act on those bottom-up. For example, marine invertebrates 

remove inorganic nitrogen, especially in the form of ammonia; it has been observed 

that, in some cases, there is a direct link between nitrogen excretion of herbivores 

and absorption by algae, thus grazers affecting communities both from top to bottom 

than from bottom to up (Bracken and Stachowicz 2007). While there are clear 

positive effects by consumers on availability of nutrients in marine ecosystems 

(through the excretion of nitrogen), little is known about the negative effects that 

nutrients cause on bottom-up processes. One possibility would involve the selective 

consumption of plant tissue, such as the apical areas or small leaves, which are the 

parts easier to attack (Pavia et al. 1999; Taylor et al. 2002) but also those who are 

more responsible for the absorption of nutrients and the photosynthetic process 

(Wallentinus 1984, Hein et al. 1995; Stewart and Carpenter 2003), it is therefore 

evident that the arrangements are changed significantly for growth, health status and 

therefore reduced nutrient absorption capacity of the plant. However, it is difficult to 

determine precisely which of the two types of control prevails over the other.  
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Surely the biomass of a species in a community depends on the reproduction and 

survival of individuals, which depend on the availability of resources and on the 

predation pressure,  

Enrichment exert its effect across the food chain as a typical bottom-up control, 

influencing abundances of specific trophic level not controlled by top down 

processes and is now acknowledged that the absolute diversity of a system will 

depend on the nutrient and energy flow through the system itself (Paine 1966).The 

productivity of a system is regarded as an important factor that regulates the acts and 

diversity (Worm et al. 2002; Cornwell and Grubb 2003; Jara et al. 2006) as a result, 

productivity has a major influence on biodiversity. It controls the rate of competitive 

exclusion and recovery after a disturbance (Abrams 1995). The increase in 

productivity leads to an increase in the rate of growth of all species, but coupled with 

increased competitive exclusion leads to a reduction in the specific diversity and 

heterogeneity of limiting resources (Abrams 1995). There are many ways in which 

disturbance and productivity interact altering biodiversity, and although the disorder 

itself may exert strong effects on specific diversity (Mackey and Curie 2001) is well 

known that the relationship between disturbance and diversity can be positive or 

negative and how, however, depends on the productivity of the system (Kondoh 

2001). The productivity and diversity are often linked unimodal, for which the peak 

of diversity is observed at intermediate levels of productivity (Rosenzweig and 

Abramsky 1993; Abrams 1995; Chase and Leibold  2002; Kassen et al. 2004; Jara et 

al. 2006). These observations were developed mathematically by Kondoh (2001) 

through a model of spatial competition. According to this model, the availability of 

nutrients of a system should affect how the community of a given system are 

influenced by a certain frequency noise since the report disturbance-diversity 

(Connell 1978). Kondoh suggests that in communities where the classic unimodal 

pattern of diversity along a gradient of a specific disorder is evident, the peak of this 

pattern should be shifted to a higher frequency of disturbance in the event of an 

increase in the availability of nutrients. This is because creating a disturbance of a 

non-selective, for example creating bare areas randomly in benthic populations, 

should favor above the colonists, discriminate to top competitors and reduce 

competitive exclusion. Instead, high productivity increases the rate of colonization, 

and supports lower colonizers and even top competitors, increasing the risk of 
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competitive exclusion. High frequency of disturbance is therefore necessary to 

maintain maximum diversity in increased levels of productivity (Kondoh 2001).  

Wilson and Tilman (2002) reported a decrease in specific richness with increasing 

concentration of nutrients in all the regimes of disturbance, while quite similar results 

were obtained for the populations of plankton from Beisner (2001). Hillebrand 

(2003), analyzing the community of brackish environments, described specific 

richness decreasing with increasing intensity of grazing and a slight increase in the 

number of species with increasing productivity, but not a real model unimodal in 

periphyton. Although the experiments conducted by Sugden et al. (2008) to test the 

hypothesis of Kondoh (interactive effects of the disorder and the availability of 

nutrients) has reached the opposite results to those expected. It appears that at levels 

of maximum productivity, the stability of a community is achieved at frequencies of 

disturbance or very high or very low. Finally Kassen et al. (2004) observed a peak in 

diversity in bacteria to a disturbance that moves towards an intermediate disturbance 

increasing with increased productivity, as expected from the Kondoh model. The fact 

that patterns of diversity along a gradient of disturbance depends on the level of 

nutrients only in oligotrophic areas suggests that the natural state of productivity of a 

system can be an important factor influencing the applicability of the model Kondoh. 

 

4.4. Interaction between grazing and enrichment 
 

A general pattern has been described by different authors about how the availability 

of nutrients and grazing pressure interact altering natural ecosystems in both 

temperate and tropical environments (Proulx and Mazunder, 1998, Russell and 

Connell 2005, Guerry 2008). Worm and Lotze (2006) have defined these two 

processes as the key variables that explain many of the models and processes of 

subtidal rocky systems subject to anthropogenic influences of nutrient enrichment, in 

particular the availability of macronutrients (nitrogen and phosphorus), determines 

the potential productivity of primary producers in aquatic ecosystems stimulating the 

growth of microalgae and diatoms especially chlorophyta (Duarte 1995; Becker 

1996; Valiela et al. 2001; Posey et al. 2002; Cloern 2001; Owens 2003; Worm and 

Lotze 2006, Kraufvelin 2007). The competition for nutrients determines the structure 

of algal communities (Tilman 1977; Fong et al. 1993; Korpinen et al. 2007), with 

potential effects on higher trophic levels (bottom-up control, Menge 1992). 
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Furthermore responses of algae influence the community of consumers, because the 

increase in nutrients may be associated with an increase of benthic species, which are 

consumed by grazers and benthic detritivores that in some cases show an increase in 

reproductive potential (Bridges and Heppell 1996; Owens 2003). 

According to the theory of Grime (Grime 1977), algae can be classified into three 

primary strategies depending on their skills: 

- competitors, which occupy habitats subject to low stress disorder and weak; 

- stress-tolerant, which are able to grow under different stress conditions; 

- opportunistic, which occupy areas heavily disturbed. 

The "competitive species" are replaced by "stress-tolerant species" at intermediate 

levels of pollution and "opportunistic species" are replacing them with high levels of 

pollution (Munda, 1974; Murray and Littler, 1978; Tewari and Joshi, 1988 ; Diez et 

al. 1999). This substitution induces a simplification of structural complexity of the 

communities due to a reduction or loss of species and a decrease in wealth 

structuring specific (Borowitzka, 1972; Belsher, 1974, 1979; Gorostiaga and Diez 

1996; Middelboe and Sand-Jensen 2000; Arévalo et al. 2007). 

It means that eutrophication can shift the competitive balance and opportunistic algae 

can become competitively dominant in the presence of high concentrations of 

nutrients (Lotze et al. 2000; Russell and Connell 2007), so that many species can 

monopolize abundant resources, leading to a decline in biodiversity. The increased 

supply of nutrients promotes, firstly, the appearance of phytoplankton and algae, 

blooming yearly, and replacing the algae forming perennial canopy. This leads to the 

disruption of habitat and biodiversity loss, and these changes in diversity also lead to 

reduce important ecosystem functions, such as 'carbon deposits' and 'reserves of 

nitrogen' (Worm et al. 2000 and 2002) The activity of grazers may counteract this 

effect in some systems (Neckles et al. 1993; Hillebrand et al. 2000; Hillebrand 2003, 

Roll et al. 2005) through the consumption of plants and algae that have a high 

content of nitrogen (Neckles et al. 1993; Williams and Ruckelshaus 1993; Karez et 

al. 2000; Lotze et al. 2000; Silliman and Zieman 2001; Roll et al. 2005). Thus, 

consumers can control the specific composition and abundance of lower trophic 

levels (the top-down control shown above). In this way, the species richness of 

communities can be a function of dynamic balance between availability of resources 

and reduction in population due to a disturbance as it may be the variation of the 

intensity of predation (Huston 1979, 1994; Proulx and Mazumder 1998). Proulx 
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(1998), in experiments conducted in lagoons, has shown that nutrients and predation 

strongly interact influencing algal diversity. It has been observed that the richness in 

species probably decreases at high rates of grazing in nutrient-poor ecosystems 

because the limited availability of resources doesn’t allow the re-growth of species 

subject to predation, in contrast with enriched environments. Of course this effect 

must be demonstrated in different ecological contexts. Some results also show a 

decrease between 30% and 60% in the abundance of perennial algae due to 

eutrophication, and this confirms the fact that the perennial macroalgae and their 

associated communities are extensively decreased in regions like the Baltic Sea and 

the Adriatic Sea, where they were replacement by species of algae, which blooms 

occur yearly (Munda 1993). This type of algae, however, does not perform the same 

functions and biogeochemical habitats such as perennial algae and their high biomass 

often has a strong negative effect on coastal ecosystems and their inhabitants, 

including humans (Valiela et al. 1997). Numerous experiments have linked the 

increase in the frequency of algal bloom nutrient loading due to the high annual 

coastal eutrophication (Fong et al. 1993; Hauxwell et al. 1998; Lotze et al. 2000). It 

was also widely noted that grazer (e.g. isopods, amphipods) may reduce or even 

eliminate the algal bloom through their selective power that acts on early life stages 

of algae, such as propagules and recruits (Lotze and Worm 2000; Lotze et al. 2000). 

The way in which the state of a system, if oligotrophic and eutrophic, influences the 

food preferences of herbivores is not well known (Watson and Norton 1985). Studies 

have shown that the nature of the food and the nutritional status of herbivores may 

determine the behaviour and food preferences for themselves (Watson and Norton 

1985; Norton et al. 1990; Bamsted et al. 1999). It has been observed that when 

there’s a choice between foods with different nutritional values, herbivores prefer to 

consume food with high value (Watson and Norton 1985; Arrontes 1990; Boyer et al. 

2004; Goecker et al. 2005; Loney et al. 2006). Instead, when the food is scarce, 

herbivores tend to increase quantities to compensate the low nutritional value (Berner 

et al. 2005; Fink and Von Elert 2006; Huberty and Denno 2006). It is likely to 

happen that although individual organisms may consume small amounts of highly 

nutritious food, the populations of herbivores that have access to low concentrations 

of nutrients from oligotrophic environments, should preferably consume large 

quantities of food in contrast with those population living in areas with high 

concentration of nutrients (eutrophic environments). Despite individual herbivores 
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may show a preference for algae 'enriched' (Necklnes et al. 1993; Hillebrand et al. 

2000; Hillebrand 2003; Roll et al. 2005), we must still determine whether the 

populations of herbivores can control algal growth associated with the increase of 

nutrient loading (Lotze et al. 2001; Lotze and Worm 2002; Worm and Lotze 2006) 

providing interactive effect that respond to a multiple stressor approach. It is possible 

that herbivores are not always able to counteract the effect of nutrient if there is no 

response from the population (Worm and Lotze 2006), or if the nutrients exceed the 

limit value of concentration (Hauxwell et al. 1998; Lotze and Worm 2002). This 

could mean that while the nutrients have a very significant effect in oligotrophic 

coastal areas (Russell et al. 2005), some compensatory response by grazers may 

reduce the effect of the high concentration of nutrients for short periods. 
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Aim  
 

Apulia is featured by a dramatic extension of barrens (Fanelli et al. 1994, Fig a) and, 

at the same time, of a general depletion of important fish stocks (Guidetti et al. 

2005). The high density of sea urchins, preventing the recolonization of degraded 

rocky habitats, represents one of the most important drivers influencing pattern of 

distribution of assemblages of rocky substrates (Fraschetti et al. 2001; Guidetti 

2003). 

 

Fig a Map of the date mussel fishery impact along the Salento peninsula coast. For more details 

see Fanelli et al. 1994. 

 

The Marine Protected Area of Porto Cesareo has been established in 1997. 

Notwithstanding the presence of two no-take no-man zones (the so-called A zone), 

the rocky substrate is still featured by an extensive barren caused by the date mussel 

fishery carried out in this area of Salento since decades. This area thus represents a 

natural experimental laboratory for the analyses of hypotheses about disturbed 

assemblages. Also, the oligotrophic conditions of the water column (Monitoring 
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Report Regione Puglia 2006) ensure the effectiveness of the experimental treatment 

represented by nutrient enrichment. Finally, the presence of a continuous monitoring 

linked to the presence of A Zone guarantees the protection of the experimental area 

from potential sources of vandalism. 

The aim of this experimental study is to evaluate the combined effect of high 

concentrations of inorganic nutrients and high grazing pressure on the recovery 

pattern of subtidal rocky shores originally disturbed by the date mussel Lithophaga 

lithophaga fishery. Our question is how the two processes compare and combine in 

influencing trajectories of recovery of disturbed rocky substrates. We hypothesized a 

synergism between the two processes through the control operated by grazers on the 

opportunistic taxa facilitated by the experimental manipulated enriched conditions.  

In the experiment we removed the sea urchins Paracentrotus lividus and Arbacia 

lixula, the most important herbivores present in this area, able to prevent the 

establishment and recruitment of propagules of any type of benthic organism and 

triggering a trophic cascade leading to the complete desertification of the substrate. 

The concentration of nutrients in the water column was experimentally increased 

using a special type of fertilizer (OSMOCOTE-PRO Controller Release Fertilizer 18-

7-10, Scotts) largely used in the literature to recreate enriched conditions in the water 

column. 

This is the first study on the effects of the two processes in the rocky subtidal in the 

Mediterranean Sea. It also represents one of the first attempts for the analysis of the 

interaction between processes operating at different spatial scales in the subtidal: 

grazing, acting primarily at small-scale, and nutrient enrichment, which is a process 

operating at large scale. The experiments using nutrient enrichment, even though 

difficult to put into practice, are an excellent approach to test ecological theories 

concerning the effects of nutrient availability on the composition of coastal 

assemblages and their development in time (Ceccherelli and Cinelli 1997; Worm et 

al. 2000; Bokn et al. 2003; Korpinen et al. 2007). These experiments can be used to 

predict the effects of coastal eutrophication, combining the advantages deriving by 

simulating real situations and allowing for an adequate replication, and problems 

(low accuracy in the quantification of enrichment in the context of experiments 

conducted at small spatial scale) (Worm et al. 2000). 

We expect that significant differences between the treated areas in different response 

biological variables (percentage cover, number of taxa) will be observed. More 
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specifically, we can depict different scenarios on the base of the different 

combination of experimental treatments: in the plots where grazing pressure is 

removed, an initial growth of encrusting corallines and turf-forming algae will be 

possibly favoured. In the plots where grazing is removed and the availability of 

nutrients is experimentally increased, we expect an initial recovery phase featured by 

the settlement of opportunistic species typical of eutrophic environments 

(filamentous algae and turf-forming) able to monopolize the substrate, at low 

diversity. Finally, in areas where the two treatments enrichment and grazing are 

combined, we expect a faster growth of algal populations, together with a reduction 

of opportunistic species due to the presence of unmanipulated grazers. Grazers could, 

therefore, facilitate the subsequent settlement of species typical of macroalgal 

assemblages of subtidal rocky substrates, with composition and abundances strongly 

controlled by grazing pressure.  

We anticipate that this study can provide important insights in pattern of recovery of 

disturbed assemblages crucial for the management of coastal marine habitats affected 

by multiple stressors, in absence of present strategies useful for implementing the 

restoration of coastal degraded habitats. 
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Materials and methods 

1. The site 
 
The experiment was carried out for 12 months, 

starting in June 2007, at 6m depth, inside the no take 

zone of the Marine Protected Area of Porto Cesareo 

(SE Italy Fig 1.1). This area is a rocky-sand 

peninsula gently sloping from the surface to 4 – 6 m 

depth with a calcareous rocky plateau, extending for 

30-60 meters until a vertical slop of about 5 meters. 

At this depth, rocky substrates turn into sandy 

substrates. 

The MPA (40 ° 14 'N, 17 ° 54' E) (Fig 1.2) was established through the Ministry of 

Environment decree in the 1997. The 32 km of coast of the MPA falls in the 

municipalities of Porto Cesareo and Nardo, both in the province of Lecce. This MPA 

is on the Ionian Sea and it is featured by an heterogeneous coast including both rocky 

and sandy habitats. 

 

Fig 1.2 Chart of the Marine Protected Area of Porto Cesareo 

 Ministry of 
Environment 

 

Marine Protected Area 

PORTO CESAREO 

Zone A 
 
Zone B 
 
Zone C 

Fig 5.1 The South East of Italy 

where is located the study site . 
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The MPA covers an area of 16.654 hectares and is divided into 3 zones with different 

degree of protection: 

Zone A – No take no man zone: it includes two areas, both extending up to 500 m 

from the coast. The first is located in front of the “Strea” Peninsula and the second is 

the stretch of coast going from Torre S. Isidoro to “Casa Giorgella”; 

Zone B – The buffer zone is also made up of two areas, one in the western boundary 

of the MPA and the other one delimiting one of the A zones; 

Zone C – it includes the remaining area of the MPA. 

The study area covers about 1000 m along the coast and it falls within one of two A 

zones, in front of a peninsula known as "La Strea" (Fig 1.3) 

 

Fig 1.3 Study site: the rocky plateau included in the yellow rectangle.  

 

2. The experiment 

2.1. Preliminary survey and experimental setup 
 

We assessed the morpho-bathymetric features of the study area, the biological 

information about the algal community structure, sea urchins density and the trophic 

status in terms of nutrients and chlorophyll concentration. Sea urchin density was 
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estimated at the beginning, in the middle and at the end of the experiment counting 

individuals within 15 replicates of 1m2, randomly allocated in the study site.  

Plots were enriched by a slow-release fertilizer (Osmocote-pro 18N:9P:10K, Scotts 

Company), contained in small mesh bags fixed on the rocky substrates (Fig 2.1.1).  

Fig 2.1.1 The mesh bag with the fertilizer inside used to simulate the enrichment directly on the 

substrate  

 

Properties of this fertilizer have been already tested in other experimental studies. It 

has particular dissolution features so that nitrogen and phosphorus levels can be 

maintained well above natural ambient concentrations during the entire period of 

experiment (Worm et al. 2000; Heck et al. 2000; Tracker et al. 2001; Littler et al. 

2006). The concentration of nutrients and photosynthetic pigments in the water was  

measured collecting replicated samples in each plot.  

Sampling was carried out in 25m2 

plots chosen randomly along 1 km of 

the rocky plateau, separated by 

approximately 20 m.   

Spatial distribution of 12 

experimental plots was decided 

through a specific tool associated 

with the GIS software package 

(Arcgis 9.1 ref). The random 

selection was done out of 25 

geographical positions with similar 

features (Fig 2.1.2). 

The presence of grazers was 

manipulated removing by hand all 
Fig 2.1.2 The 12 points randomly choose where 

plots were been placed 
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sea urchins at the beginning of the experiment and every time was necessary through 

a twice-weekly monitoring activity. To better control the potential invasibility of the 

open plots to sea urchins, the invertebrates were also removed from a buffer zone 

around each plot of about 10m2. Four conditions were simulated: grazing × no 

enrichment (for a total of 4 plots: 2 control plots without experimental treatments and 

two plots to test potential artefacts due to the presence of mash bags), enrichment × 

no grazing, grazing × enrichment and no grazing × no enrichment. 

2.2. Benthic percent cover estimation 
 

Each time, 10 randomly photographic 

replicates of 16×23cm were sampled, 

for a total of 720 replicate units (Fig 

2.2.1). All the slides were analysed in 

lab imposing a virtual grid of 24 

equally sized squares (Fig 2.2.2) to 

help the quantification of taxa. 

Abundances of sessile benthic species 

were estimated by visual percentage 

cover estimation (Meese and Tomich 

1992; Dethier et al. 1993): within each of the 24 squares defined by the grid, which 

has been superimposed on the sample unit, the abundance of each taxon is evaluated 

by assigning it a percentage value between 0% and 4% : nil value in the event of total 

absence of the taxon in question into one of the 24 squares in question, 1% where the 

taxon is present in 1/4 of the surface of the square, 2% if the covering layer affects 

1/2 of surface of the square, 3% in case of presence of the taxon in 3/4 of the surface 

and, finally, 4% of the area where the coverage of the square by the taxon is total. In 

case of organisms that occur less than 1/4 of the surface of the square was still 

assigned a coverage rate of 1. 

Fig 2.2.1 Photographic sampling on one of the 

area with no treatments 
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Figura 2.2.2 Photographic equipment and the 24 equally sized squares grid used to estimate the 

covere of benthic organisms and the percentage of bared rock. 

 

Summing the estimation in each of 24 squares for each taxon, we obtained the total 

coverage of each taxon for each separate sampling unit  

Motile animals (e.g. gastropods, ophiuroids and amphipods) were not counted. 

When the identification at the species level was not possible, taxa were identified to 

the genus, or family level, and in some cases in morphological group. In a second 

time all taxa have been also grouped for functional characteristics according to 

Steneck and Dethier (1994) reviewed by MARBEF Team of the BIOFUSE project 

(MARBEF network, 2006). 

2.3. Nutrient enrichment  
 

2.3.1. Water sampling 
 
Water samples were collected every three month in order to estimate photosynthetic 

pigments distribution and monitor the concentration of nutrients in each plot. 

Chemical analyses were conducted in the laboratory of Ecology of the University of 

Salento to measure the concentration in water of phosphate (Deniges 1920), nitrite 

(Bendschneider and Robinson 1952), nitrate (Morris e Riley 1963), ammonium 

(Aminot and Chassepied 1983). 

A Niskin bottle was used for water samples,  allowing collecting a volume of about 5 

litres at specific depths.  
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2.3.2. Analytical methods 
  

The analytical methods used to measure the concentrations of nutrients (particularly 

phosphates, nitrites, nitrates and ammonium) and the phytoplankton are based on the 

analytical protocols proposed by the Istituto Centrale per la Ricerca Scientifica e 

Tecnologica Applicata al Mare (ICRAM) and by the Institute of Water Research 

(IRS). 

Phosphates 

The analysis model is based on the formation of a blue phosphomolybdic complex 

whose concentration is determined by spectrophotometer (Deniges, 1920). Given the 

remarkably low concentrations of phosphate and the relative sensitivity of the 

analytical methods, at least two determinations for each sample to be analyzed 

should be made. Once the procedure followed for sample preparation is done on a 

spectrophotometric assay to measure the absorbance at 882 nm of the cuvettes in 

which it was spilled the solution. Then, we proceed to calculate the concentration of 

phosphate following the next report: 

[PO4] = (ABS - bl - blc, i) · f 

where 

[PO4] = concentration of phosphate (expressed in µmol / L) 

ABS = absorbance of the sample 

bl = blank reagent 

blc, i = i-th white cell used 

f = colorimetric factor 

Nitrite 

The method is based on a series of reactions that lead to the formation of a diazo 

compound which is determined by colorimetry. This procedure is specific for nitrites 

and has no change in efficiency in relation to the ionic strength of the solution and 

has been applied to the analysis of seawater from Bendschneider and Robinson 

(1952). After performing the analytical procedure for the preparation of test samples, 

the spectrophotometric assay has been performed for measuring the absorbance at 

543 nm of the solutions inside the cells. Then, the concentration was calculated 

according to the report: 

[NO 2 
-] = (ABS - bl - blc, i) · f 



Materials and methods 

 48 

where 

[NO 2 
--] = concentration of nitrite (expressed in µmol / L) 

ABS = absorbance of the sample 

bl = blank reagent 

blc, i = i-th white cell used 

f = factor colorimetric 

 

Nitrates 

The method used for the analysis of nitrate is based on their reduction in 

heterogeneous phase, nitrite and its subsequent determination of total nitrite using a 

colorimetric method. The method was introduced by Morris and Riley (1963), but 

later was deepened by Nydhal (1976), Grasshoff (1983). The main reactions in 

alkaline environment, are 

NO3
-+ H2O + 2e-→ NO2

-+ 2 OH - 

NO2
-+ 5 H2O + 6e-→ NH3 + 7 OH- 

Once the solutions is prepared, we proceed to analyze the spectrophotometric assay, 

using the same technique above descrbed for nitrates, but taking into account the 

following relationship for calculating the concentration of nitrites: 

                              

 [NO3
-] = (ABS - bl - bl c, i - [NO2

-] / f2) · f1 

where 

[NO3
-] = concentration of nitrate (expressed in µmol / L) 

[NO2
-] = concentration of nitrite in the sample (obtained independently and 

expressed in µmol / L) 

ABS = absorbance of the sample 

bl = blank reagent 

blc, i = i-th white cell used 

f1 = factor colorimetric nitrate 

f2 = factor for nitrite colorimetric 

Ammonia 

The proposed method is based on a series of reactions catalyzed photo-chemically, 

leading to the formation of blue indophenol. This methodology was first used by 

Berthelot (1859). Even here, after having prepared the solutions for analysis by the 
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appropriate analytical procedure, we proceed to determine the concentration of 

ammonia through the spectrophotometric assay, measuring the absorbance of the 

samples at 640 nm. The formula to calculate the concentration of reference is the 

following: 

                                             [NH4
+] = (ABS - bl - blc, i) f 

where 

[NH4
+] = concentration of ammonia (expressed in µmol / L) 

ABS = absorbance of the sample 

bl = blank reagent 

bl c, i = i-th white cell used 

f = factor colorimetric 

 

Chlorophyll 

”Chlorophyll a” is the most common photosynthetic pigment, since widespread 

among plants. This pigment is present in all algal groups, while other chlorophylls 

(b, c and d) are specific of some groups. The cellular content of chlorophyll in algal 

cells varies between 0.3 and 2.0% of dry weight, depending on the physiological 

state of cells or their adaptation to particular conditions of light radiation. When the 

algal cells die and are decomposed, the chlorophyll is degraded and forms other 

molecules called feo-pigments. Often the relationship between chlorophyll and these 

pigments provides valuable information on the state of health of a population of 

phytoplankton. 

The analytical model used to determine the concentration of chlorophyll a is based 

on the fluorimetric method based on the measurement of fluorescence acetone extract 

of pigments before and after acidification with hydrochloric acid. In this way, is 

possible to measure photosynthetically active fraction (chlorophyll a) and inactive 

(feo-pigments) of pigments present in samples. The primary method used was the 

Holm-Hansen and Riemann (1978) which offers significant advantages over the 

spectrophotometric methods because it is more rapid, precise and sensitive. 
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2.4. Statistical analyses 
 
 

2.4.1. Univariate analyses 
 
The experimental design included four factors: Time (T, nine levels, fixed), nutrient 

Enrichment (E, two levels, fixed, crossed with Time), Grazing (G, two levels, fixed, 

crossed with Time and Enrichment) and Plot (P two levels, random, nested in the 

three factors) with ten replicate units for combination of factors. 

The analysis of variance (ANOVA) was conducted on the number of taxa and the 

total cover, to test differences between treatments in time. The ANOVA was also 

carried on the percentage cover of the functional groups. Prior to analyses, the 

assumption of homogeneity of variances was checked using Cochran’s C-test and 

data were appropriately transformed, if required. The analyses were performed using 

GMAV v5 software (University of Sydney, Australia). 

 

2.4.2. Multivariate analyses 
 

The experimental design was the same described for the univariate analyses. There 

were 46 variables (taxa) included in multivariate analyses. In order to test the effects 

of treatments on assemblage structure, a distance-based permutational multivariate 

analyses of variance (PERMANOVA, Anderson 2001a; McArdle and Anderson 

2001) was performed on the two full data set. The tests were conducted with 4999 

random permutations of appropriate units (Anderson 2001b; Anderson and ter Braak 

2003) on Bray-Curtis dissimilarities (Bray and Curtis, 1957) of untransformed data. 

The same analysis was run on functional groups. In this case there were 9 variables 

included in the multivariate analyses. The PRIMER v6 and PERMANOVA + 

software (Plymouth Marine Laboratory, Plymouth, UK) was used.  

Terms significant in the full model, Enrichment × Grazing on the whole dataset and 

Time × Enrichment × Grazing on the functional groups, were examined individually 

using appropriate pairwise comparisons. Non-metric Multi-Dimensional Scaling 

ordination (nMDS) (Kruskal and Wish 1978) of the interaction terms Enrichment× 

Grazing and Time×Enrichment×Grazing in time 1, 2, 4, 5, 7 and 8 were visualized. 

SIMPER analysis (Clarke 1993) was used to identify the taxa/functional groups 

mostly contributing to differences highlighted by the pair wise tests. For each 
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comparison, taxa and functional groups that cumulatively contributed for more than 

10% of dissimilarities were shown. 
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Results 
 

1. Pattern of recolonization 
 

1.1. Trophic condition 
 

Concentration of nutrients differed between enriched and non enriched area 

constantly in time. Mean nitrogen compounds concentrations are the following: 

NH4
+, 2.16 ±0,8 µm/l in enriched plots vs 0,46 ± 0,4 µm/l in not enriched plots; NO2, 

0,09 ±0,03 µm/l in enriched plots and 0,08 +0,03 µm/l in not enriched plots; NO3
-, 

3,25 ±0,5 µm/l and 2,24 ±1,5 µm/l; the total N 5,49 ±1,02 µm/l and 2,80 ±1,03 µm/l. 

Conversely, as far as phosphorous compounds, the concentration of PO4
3- and of the 

total P didn’t show relevant differences (mean concentration 0,18 + 0,06 µm/l for 

PO4
3- in enriched plots vs 0,19 + 0,05). Also chlorophyll a concentration didn’t show 

differences between treatments across time. Concentration values ranged between a 

minimum of 0,14 µg/l (September 2007 in control areas) and a maximum of 0,27 

µg/l (January 2008, both in control area and in enriched ones).  

 

1.2. Assemblage structure 
 

A total of 46 taxa were recognised, 26 of them at species level (Appendix 1), 21 

algae and 25 invertebrates. High values of cover of encrusting red algae (ECR), 

typical of barren assemblages were found at all sampling dates and in all plots. In the 

first sampling period (Time 1 and 2, so after one and two month from the beginning 

of the experiment), however, the peryphyton of microalgae and unicellular algae, and 

subsequently of dark filamentous algae (DFA) contributes with mean percentage 

cover of sometimes exceeding the 50% of the plots. Among the invertebrates, 

Porifera, including the dominant species Cliona viridis showed an high cover, 

followed by the clam Gastrochaena dubia, the madrepores Balanophyllia europea 

and Caryophylla smithi and tunicates belonging to the family of Didemnidae. 

A total of 17 functional groups were obtained from the original matrix (Appendix 2) 

Functional groupings of algae are based on anatomical and morphological 

characteristics (Steneck and Dethier 1994) that often corresponds to ecological 
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characteristics: “encrusting calcified algae” are those with prostrate thallus; “sub turf 

algae” are small then 5 cm, primary space holders forming limited vertical height turf 

on substrate, and could be ephemeral (in this case were called “sub turf ephemeral 

algae”), or with a calcified thallus (“sub turf calcified algae”); “turf algae”: algae 

forming more then 5 cm high turf on the substrate, characterized by a more or less or 

non calcified thallus (“turf non calcified algae”). Invertebrates were grouped as 

“boring”, “massive”, “encrusting”, “small”, “unitary” suspension\filter feeders, and 

“colonial predators”(see for details appendix).  

 

1.2.1. Univariate analyses 
 

The analysis of variance (ANOVA) carried out on the number of taxa and on the 

cover within the plot in order to test the effects of treatments in time shows a 

significant interaction for the term Plot(T × E × G) (F36, 648=5.35, P=0.006; F36, 648= 

2.59, P=0.007). This is a very common outcome possibly reflecting processes 

operating at small spatial scale (centimeters – meters). Significant differences were 

found also for the term T × E × G (F8,36=2.3, P=0.0422; F8,36=4.93, P=0.0002 ), 

suggesting that differences among treatments are not consistent in time. In other 

words, both the number of taxa and the cover by algae and invertebrates varies 

among different treatments and these differences vary not consistently in time. 

Conversely, for the number of functional groups, there is an effect of grazing 

changing with nutrient enrichment, consistently in time (E × G, F1,36= 4.5, P= 

0.0008). These patterns are graphically represented in Fig 1.2.1a.  
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Fig.1.2.1a Mean of number of taxa and percentage cover in each combination of treatments in 

time. Black rectangle = Enrichment and Grazing, Grey rectangle = Enrichment no Grazing, 

White rectangle = no Enrichment no Grazing, White rectangle with black spot = controls. 

 
As we can see in the representation above, the number of taxa in control plots (white 

rectangle with black spots), where grazing pressure and nutrient availability are not 

modified, didn’t change persisting at low value. Percentage of cover of the rocky 

surface are conversely high, but it is mostly due to encrusting algae and boring 

invertebrates, tipical of barren community.  

 

1.2.2. Multivariate analyses  
 

PERMANOVA (Table 1.2.2a) conducted to assess potential differences in the 

structure of assemblages subjected to different treatments, indicates significant 

differences between plots, P (T × F × G). As already stressed, this is possibly due to 

the large variability caused by small scale processes (from competition to substratum 

heterogeneity).  

The interaction of the two factors E × G was found significant, suggesting that the 

effect of nutrient enrichment changes in presence or absence of grazers. The 

estimation of the components of variance showed that the effect of grazing has an 

overwhelming importance in determining the differences observed. The a posteriori 

pair wise comparisons on the interaction term E × G (Tab 1.2.2b) revealed that the 
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factor enrichment strongly changes on the basis of the presence of grazers. The 

results were graphical represented in the nMDS (Fig 1.2.2a) of plot centroids.   

 
Tab 1.2.2a PERMANOVA based on the Bray-Curtis dissimilarities on not trasformed 

abundance data from 46 variables. Each test was based on 4999 permutations of appropriate 

units. The term used for the denominator mean square is given in the column MSdenom. The 

appropriate permutable units are indicated by the denominator mean square in each case and 

are shown in the final column (see Anderson and ter Braak 2003 for details). 

 

Source df SS MS F P MSdenom 

Time = T 8 3.94E+05 49194 8.7049 0.0002 P (T x E x G) 

Enrichment = E 1 12098 12098 2.1408  0.0788 P (T x E x G) 

Grazing = G 1 1.94E+05 1.94E+05 34.366 0.0002 P (T x E x G) 

T x E 8 90267 11283 1.9966 0.0094 P (T x E x G) 

T x G 8 1.24E+05 15466 2.7367 0.0002 P (T x E x G) 

E x G 1 17470 17470 3.0914 0.022 P (T x E x G) 

T x E x G 8 46972 5871.5 1.039 0.4212 P (T x E x G) 

Plot (T x E x G) = P 36 2.03E+05 5651.3 6.4317  0.0002 RES 

RES 648 5.69E+05 878.66    

TOT 719 1.65E+06     

 
 

Tab 1.2.2b Pair wise comparisons conducted for the term E x G for pairs of levels of factor E 

and than for factor G.  

 

 t P 

Within level '+G' of factor 'Grazing' 3,5341 0,0002 

Within level '+E' of factor 'Enrichment' 2,5441 0,0032 

 

 

Fig 1.2.2a Non-metric multidimensional scaling ordinations (nMDS plots) on the basis of the 

Bray-Curtis dissimilarity measure of centroids of each plot. 

Black triangles = enriched and grazed plots, grey triangles = enriched no grazed plots, circle = 

no enriched no grazed plots, star = control areas so no enriched, grazed plots. 
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The SIMPER test (Tab 1.2.2c) revealed that turf forming algae are the principle 

responsible of dissimilarity between plots enriched without the effect of grazing and 

plots where grazers were not manipulated.  

 

Tab 1.2.2c Summary of  SIMPER analysis on taxa contributing to percentage dissimilarities 

between each treatments 

 Treatments comparisons 

 +E+G  +E-G  -E+G 

Taxa +E-G -E+G -E-G   -E+G -E-G  -E-G 

Turf forming algae 27.94 25.1 29.9  26.54 29.8  29.3 

Cliona viridis 12.95 17 13.9  13.25 14  13.8 

ECR (Encrusting Calcified 
Rhodophytes) 

 
14.3   10.94   10.7 

 

PERMANOVA conducted on functional groups (Tab 1.2.2d), put in evidence 

significant differences between treatments in time (F8,36=1.92, P<0,05). A posteriori 

test on the term Time × Enrichment × Grazing (Tab 1.2.2e) revealed that differences 

after one, four and twelve months depend on the factor Enrichment, while after two, 

six and ten by the factor Grazing as shown in the nMDS of plot centroids. In 

particular at the end of the 2007 (nMDS c,d) the recolonization in enriched plots, 

where grazing pressure has been removed is evident. Similar pattern were observed 

in spring of 2008 (nMDS e). After one year of experiment (nMDS f) difference 

become again evident between plots grazed and non grazed.   

 

Tab 1.2.2d PERMANOVA based on the Bray-Curtis dissimilarities (no transformation) of the 

multivariate data of all functional groups identified 

 

Source df SS MS F P MSdenom 

Time = T 8 2.90E+05 36254 9.7459 0.0002 A (T x E x G) 

Enrichment = E 1 21118 21118 5.6769 0.0042 A (T x E x G) 

Grazing = G 1 1.92E+05 1.92E+05 51.55 0.0002 A (T x E x G) 

T x E 8 54287 6785.9   1.8242 0.0236 A (T x E x G) 

T x G 8 1.09E+05 13669 3.6745 0.0002 A (T x E x G) 

E x G 1 10105 10105 2.7163 0.0488 A (T x E x G) 

T x E x G 8 57031 7128.8 1.9164 0.0192 A (T x E x G) 

Area (T x E x G) = A 36 1.34E+05 3720 4.1692 0.0002 RES 

RES 648 5.78E+05 892.25    

TOT 719 1.45E+06     
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Tab 1.2.2e Summary of the a posteriori test on the PERMANOVA output. Here only the 

significant test P (p<0,01) are reported (Monte Carlo –MC- asymptotic P values were used given 

the small number of unique permutations). See values of time 1, 2, 4, 5, 7, 8 in the following 

nMDS. 

 
Pair wise comparisons for the term 'TxExG’ 

For pairs of levels of factor 'Enrichment' For pairs of levels of factor 'Grazing' 

 t P(MC)  t P(MC) 

Time 1. +G 3.6952 0.018 Time 1. - E 3.807 0.0189 

   Time 2. + E 3.1485 0.0226 

   Time 2. - E 2.6113 0.0278 

Time 4. + G 5.3635 0.0014 Time 4. - E 8.9327 0.0004 

   Time 5. + E 4.2659 0.002 

   Time 5. - E 2.4621 0.0465 

   Time 7. + E 3.6692 0.0034 

   Time 7. - E 2.8999 0.0116 

Time 8. -G 2.5867 0.026 Time 8. + E 9.2454 0.0006 

   Time 8. - E 4.1731 0.0118 

 
 

 

 

 

 
 

Fig 1.2.2b Non-metric multidimensional scaling ordinations (nMDS plots) on the basis of the 

Bray-Curtis dissimilarity measure of centroids of each plot. a = Time 1, b= Time 2, c = Time 4, 

d= Time 5, e = Time 7, f = Time 8. Black triangles = enriched and grazed areas, grey triangles = 

enriched no grazed areas, circle = no enriched no grazed areas, star = control areas, grazed 

areas. 

f - June  2008 

d - December 2007  c - October 2007 

e -  April 2008 

a - July 2007 b - August 2007  
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The principal groups responsible of major changes revealed by the dissimilarity 

percentage in the SIMPER analysis (Tab 1.2.2f), are compared across treatments in 

Fig. 1.2.2 c. The figure reports results from sampling times that the analyses revealed 

informative in showing recolonization pattern of the benthic assemblages. For the 

graphical representation of cover, also the percentage of the variable bare rock (BR) 

was considered. 

Tab 1.2.2f Summary of SIMPER analysis on taxa contributing to percentage dissimilarities 

between each treatments. STEA = Sub Turf Ephemeral Algae, BSFF = Boring Suspension/Filter 

Feeders, ECA = Encrusting Calcified Algae, MA = Mucillagenous Algae, TnCA = Turf non 

Calcified Algae, TCA = Turf Calcified Algae 

TIME 1 

 +E+G -E+G 

Functional group -E+G -E-G -E-G 

STEA 59.88 47.58 57.77 

BSFF 20.7 21.93 18.71 

ECA 17.06 20.33 17.39 

 

TIME 2 

 +E+G +E-G -E+G   

Functional group +E-G -E+G -E-G -E+G -E-G -E-G 

STEA 45.35 45.74 39.68 45.28 38.97 39.68 

BSFF 18.03 28.74 18.16 18.04 26.01 17.77 

MA 17.55  24.44 17.28 26.8 24.31 

ECA 15.05 23.05 13.58 16.43  15.15 

 

TIME 4 

 +E+G -E+G   

Functional group -E+G -E-G -E-G 

STEA 68.95 58.31 79.17 

BSFF 16.1 17.55 11.45 

ECA  10.59  

 

TIME 5 

 +E+G +E-G 

Functional group +E-G -E+G  -E+G -E+G -E-G 

STEA 62.71 36.19 68.01 59.15 46.11 

BSFF 16.55 42.69 19.45 19.33 22.61 

ECA 7.25 18.9   10.7 

TnCA 6.82     

 

TIME 7 

 +E+G +E-G -E+G  

Functional group +E-G -E+G -E-G -E+G -E-G -E-G 

ECA 23.69 50.81 30.2 15.52 19.11 19.24 

BSFF 19.5 45.02 29.63 19.49 25.18 31.59 

TnCA 18.93   21.62 16.59 10.91 

STEA 18.54  15.89 21.15 16.13 19.31 

TCA 14.61    15.67  
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TIME 8 

 +E+G +E-G -E+G  

Functional group +E-G -E+G -E-G -E+G -E-G -E-G 

STEA 54.38  60.3 53.64 34.83 60.88 

ECA 19.44 47.6 19.19 14.73  14.45 

TCA 11.56   11.53 18.15  

BSFF 10.11 47.35 9.8 15.72 28.05 13.92 

STA   4.64 

 

 
 

Fig 1.2.4. Mean coverage of principle functional group across treatment and time. Green 

rectangle= STEA, Brown rectangle = ECA, Yellows rectangle  = TCA, Pink rectangle = TnCA, 

White rectangle = Bared rock. 
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One month after the beginning of the experiment, in plots with nutrient enrichment 

and without grazing pressure, ephemeral algae (STEA Sub Turf Ephemeral Algae) 

covered almost completely the total rocky surface, reducing the percentage of bare 

rock. This pattern persists for four months, when grazers drastically reduce the 

coverage of turf forming species, where nutrients availability was not modified.  

During the spring of the 2008 cover of turf is reduced to very low values. Turf 

calcified algae (TCA like Padina pavonica) and turf non calcified algae (TnCA) like 

Dyctiota dichotoma and Laurencia spp. become dominant. These are species 

typically characterizing initial colonization patterns of macroalgal community of 

rocky habitats. 
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Discussions and conclusions 
 
In the marine realm, besides the lack of reliable historical records about what pristine 

systems may have looked like (Bulleri et al. 2007), assessment and interpretation of 

ecological impacts is compromised by the tendency of current scientific and 

management practices to consider the effects of individual threats in isolation. 

Attempts to address the increasing diversity and intensity of anthropogenic stressors 

should first recognize that human activities are acting at multiple temporal and 

spatial scales, making it particularly difficult to quantify past historical changes and 

present human effects and to predict future changes in biodiversity (McLeod et al. 

2005). 

Effects of multiple stressors can lead to the loss of resilience and an increased risk of 

regime shifts, which are often long lasting and difficult to reverse (Hughes 1994; 

Hughes et al. 2003; Hughes et al. 2005; Casini et al. 2009). Regime shifts are also 

currently difficult to predict (de Young et al. 2008), but implications in highly 

impacted ecosystems are clear: they result in homogenization of communities and 

ecosystems due to reductions in foodweb complexity, diversity within functional 

groups and biogenic habitat structure, as well as decreases in the size of organisms. 

Localized human perturbations combined with new threats such as climate change, 

invasive species and ocean acidification all contribute to generating new regimes of 

disturbances that are expected to greatly affect the stability and productivity of 

marine coastal ecosystems.  

Despite the occurrence of the date mussel fisheries in the Mediterranean and its huge 

and significant impact on subtidal communities (Fraschetti et al. 2001; Guidetti et al. 

2003; Guidetti and Boero 2004; Guidetti et al. 2004), knowledge about patterns of 

recovery of disturbed assemblages affected by this impact is still scarce. Date mussel 

fishery is not the only source of disturbance in Apulia. Very few experimental 

studies on marine communities had tried to understand how multiple stressors 

operating at different spatial scales affect the recovery of disturbed assemblages 

(Hughes and Connell 1999; Gardner 2005; Crain et al. 2008). Natural coastal 

systems are constantly affected by different source of disturbance so preserving the 

resilience of ecosystems should be an essential component of all conservation 

strategies, since disturbances most of times cannot be prevented (Knowlton 2004). 

One of the most important challenges of experimental ecology is to take into account 
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the complexity of the phenomena involved in marine environment and try to quantify 

the cumulative effects of the interaction of these processes, including human threats. 

Worm and Lotze (2006) tried to assess the interactive effects of eutrophication and 

grazing, considering these two processes as crucial in explaining community 

dynamics and recovery patterns of the rocky subtidal subject to anthropogenic 

pressures. Grazers are important in controlling algal bloom, but they cannot always 

definitively counter the effects of eutrophication. McClanahan et al. (2003), as other 

authors, conducted experiments to quantify which were the driving factors in coral 

reefs responsible of a shift from assemblages at high diversity to assemblages at low 

diversity and dominated by algae. They concluded that responsible of the shift is the 

interaction between the intake of nutrients and the grazing respondible of the control 

of algal communities and the structure and function of corals. 

In the Marine research Station of Solbergstrand, Bokn et al. (2002) examined the 

response of rocky shore ecosystems to increased nutrient availability in eight land-

based mesocosms. The growth rate of the periphyton and fast-growing macroalgae 

communities was stimulated by nutrient enrichment, while the response was less 

evident among perennial fucoids. Their results showed that the total system 

metabolism tended to increase slightly, but not significantly, with increased nutrient 

loading. 

Jara et al. (2006) tried to assess the interactive effects of disturbance and nutrient 

enrichment at two sites on the coast of Brazil with widly different trophic condition 

(1 oligotrophic and 1 eutrophic). Their results revealed site-specific diversity-driving 

processes in the absence of disturbance. Nutrient enrichment increased total species 

richness and algal species richness in particular, but only at the oligotrophic site. 

Such interactive effects of disturbance and productivity on diversity confirm the 

general predictions of the Intermediate Disturbance Hipotesis Models (Sousa 1979). 

This study indicates that interactive effects of ‘bottom-up’ and ‘top-down’ processes 

may explain more of the variation in community diversity than the separate models 

of disturbance–diversity and productivity–diversity relationships. 

Onother important factorial field experiment was conducted by Korpinen et al 

(2007). They manipulated nutrient levels and herbivory at two sublittoral depths and 

measured macroalgal colonization and the following young assemblage during the 

growing season. At the community level, grazing reduced algal colonization, though 

the effect varied with depth and its interaction with nutrient availability varied in 



Discussions and conclusions 
 

 64 

time. In shallow water, for example, the total density of macroalgae increased in 

response to nutrient enrichment, but the ability of grazers to reduce macroalgal 

density also increased with the nutrient enrichment, and thus, the community could 

not escape from the top-down control. Their conclusions support the concept that 

temporal and spatial variability in both top-down and bottom-up control and in their 

interaction, especially along the depth gradient, may be crucially important for 

increasing diversity and for the successional dynamic in a rocky sublittoral 

environment. Guerry (2008) used rocky intertidal macroalgal communities to 

examine the effects of limpet grazing and nutrient enrichment on algal diversity 

throughout two years of succession revealing that grazing effects varied in time. 

During the first year, grazing effects were context-dependent with limpets resulting 

in lower species richness, especially at the highest level of limpet density. However, 

at the highest level of limpet density, high enrichment counteracted the negative 

effect of limpets such that diversity was similar to that in treatments with lower 

limpet densities. In the second year, grazing generally decreased richness values, 

regardless of enrichment.  

Also at temperate latitudes, sea urchins grazing can be considered a small-scale 

process crucial in shaping rocky assemblages. It can directly influence colonization 

patterns of many algal species. Specifically in Southern Apulia, grazing is considered 

the major responsible to maintain barrens of rocky substrates impacted by the 

destructive date mussel fishery (Boero et al. 1996; Fanelli et al. 1994; Guidetti et al. 

2004). In our experiment, we have quantified the separate and combine effect of 

grazing and nutrient enrichment in shaping recovery trajectories of the hard substrate 

damaged by the date mussel fishery. To our knowledge this was the first experiment 

trying to quantify the relative importance of the two factors in the subtidal on 

experimental plots of this size. 

The no take zone of the Marine Protected Area of Porto Cesareo, chosen as study 

site, represents an ideal experimental context, where barren extension cover the 80% 

of the protected location. Notwithstanding the present level of enforcement, the 

severely impacted rocky plateau still does not show signs of recovery of the benthic 

assemblages. This condition supported our decision to develop the experiment in this 

location, quantifying the recovery trajectories of already disturbed assemblages.  

Enhanced nutrients availability regulates primary productivity and species 

composition in aquatic ecosystems (Worm et al. 2000) favour phytoplankton and 
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annual bloom forming algae. In many cases, nutrients supply is spatially and 

temporally variable, but occurs on large scale when derives from land run-off and 

wind-induced mixing and upwelling phenomena. Primary producers have evolved 

different strategies to exploit heterogeneity in nutrient supply. Microalgae and 

filamentous macroalgae have a relatively high surface area to volume ratio that 

results in rapid nutrient uptake and fast growth (Hein et al. 1995), but low nutrient 

storage capacity (2 to 8 days for filamentous algae). Perennial, canopy-forming 

macroalgae have thick, corticated thalli, and low surface area to volume ratios. They 

have slower nutrient uptake and growth rates, but higher nutrient storage capacities 

compared with phytoplankton and filamentous algae (weeks to several months , 

Pedersen and Borum 1996).  

Our results suggest that grazing and nutrient enrichment could interact on 

biodiversity recovery and that oligotrophic conditions can be particularly critical in 

case of habitat destruction and fragmentation, as in our case. 

Under non-enriched conditions and in presence of initially disturbed assemblages, 

herbivores exert a crucial role on biodiversity patterns, strongly limiting the potential 

of recovery of benthic assemblages. In such disturbed systems, recovery fails 

because of the presence of grazers. These results are partially strengthened with those 

already obtained from previous works that studied the effect of natural disturbance 

(Sala and Graham 2002; Guidetti et al. 2003).  

Nutrient enrichment enhances the resilience of the system with the substantial 

disappearance of the barren. However, assemblages were still mostly characterized 

by algal turf when combined with grazing activity. Recolonization by macroalgae 

occurred only when grazing activity is removed. In particular, in those plots where 

grazing was removed and nutrients were enhanced, there was a gradual increase over 

time of the number of taxa, which implies a change in the structural diversity of the 

benthic assemblages. In contrast, where only the pressure of grazing was eliminated, 

the number of taxa generally did not exceed the maximum value obtained addicting 

nutrients and removing sea urchins. If we consider results of percentage cover, in 

some cases the maximum value (100%) had been reached, but, for example after one 

month from the beginning of the experiment, this value was determined by a low 

diversity assemblage constituted by unicellular algae and seaweed mucilaginous, 

often opportunistic species able to maximize the use of resources in the environment.  
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Results shows that differences between the assemblages under different driver effects 

strictly reflect the functional role of some algal species. The use of functional groups 

across different taxa that coexist in the same habitat surely provides the possibility to 

better understand and quantify community dynamics.  

These results are supported by the functional composition of the assemblages 

observed. After one month from the beginning of the experiment, in the enriched 

plots, assemblages were characterized by ephemeral algae called STEA. This is a 

fairly common result, occurring during the first step of recolonization of a disturbed 

substrate, followed by a successive colonization and by an increase of structural and 

functional complexity. In presence of grazers, colonization processes do not go 

further the presence of algal turf. Recolonization by macroalgae (such as 

Anadyomene stellata and Dyctiotales) occurred only when grazing activity is 

removed. Under these conditions, after ten months from the beginning of the 

experiment,  the cover of turf is reduced to very low values, while turf calcified algae 

(TCA like Padina pavonica) and turf non calcified algae (TnCA) like Dyctiota 

dichotoma and Laurencia spp, become apparent revealing first sign of recolonization 

patterns. In these plots where grazing was removed and nutrients were enhanced, 

there was a gradual increase over time of the number of taxa, which implies a change 

in structural diversity of benthic assemblages. By contrast, where the pressure of 

grazing was eliminated, the increase in the number of taxa was less apparent. If we 

consider the percentage cover at plot scale, the 100% had been occasionally reached. 

However, after one month from the beginning of the experiment, this value was 

reached only by low diversity assemblages constituted by unicellular algae and 

mucilaginous seaweed, mostly opportunistic taxa maximizing resources in the 

environment. 

These results are supported by the functional composition of the assemblages. In the 

enriched plots, after one month from the beginning of the experiments, assemblages 

are represented by ephemeral algae called STEA. This is a fairly common result 

during the first steps of recolonization of a disturbed substrate, followed by a 

successive colonization and by an increase in the structural and functional 

complexity.  

Our results stress that one year could be enough to see evident signs of restorations in 

a disturbed assemblage. When recolonization is completely dependent on propagules 

arriving from outside the patch, recovery is expected to be generally slower than in 
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situation where vegetative regeneration plays a substantive role in regeneration 

(Connell and Slatyer 1977; Sousa 2001). 

Our results support the theory that, locally (from a few meters to kilometres), an 

increase in productivity through the addition of nutrients reduces the specific 

diversity (DiTommaso and Aarsen, 1989; Schindler 1990), according to the 

resources heterogeneity hypotesis (RHH Tilman, 1987; Rosenzweig and Abramsky, 

1993; Gough et al. 2000). When the average quality of habitat increases, it should 

increase the spatial variability and the diversity of resources, and hence the 

productivity and the diversity. After a certain level, however, there is a reduction of 

the heterogeneity of resources and therefore of diversity, with the increase of 

competitive species that are favoured under these conditions (Hall et al. 2000). 

Recolonization processes are crucial in allowing the recovery of a strongly disturbed 

habitat, highly simplified, with low levels of primary and secondary productivity and 

low diversity of fish and benthic species. 

 

At the beginning of the experiment, we expected that the control exerted by grazers 

in enriched conditions on the opportunistic species favoured by more favourable 

trophic conditions, would have allowed the successive establishment of macroalgal 

communities, increasing local diversity. This response could have been interpreted as 

a synergistic effect of interactive drivers (Crain et al. 2008). Our results instead, 

suggest that nutrient enrichment and sea urchins grazing act as antagonist stressors in 

influencing pattern of recolonization of disturbed habitats. Other studies showed that 

stressor pairs can have additive-cumulative effects, but almost as many had 

antagonistic or synergistic cumulative effects. Antagonistic stressors, in particular, 

create management challenges, as all or most stressors would need to be eliminated 

to see substantial recovery, except in those cases where the antagonism is driven by a 

dominant stressor (Folt et al. 1999), so that mitigation of that stressor alone would 

substantially improve the state of species or communities. Synergisms, in contrast, 

may respond quite favourably to removal of a single stressor as long as the system 

has not passed a threshold into an alternative state.  

In conclusion, our study confirm that ocean management can no longer focus on 

single-sector issues that address individual stressors (Halpern et al. 2007), but must 

incorporate cumulative stressor effects (Crain 2008) and that restoration of our 

system can be a difficult task. 
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Field experiments have the potential to analyze causes and effects of multiple drivers 

at ecosystems (Binkley and Vitousek 1991; Worm et al. 2000a; Morris and Keough 

2003; McClanan et al. 2003; Russell and Connell 2006). Our experimental study is 

likely to provide useful indications to formulate methodology to promote systems 

resilience and system recovery of assemblages both in oligotrophic and eutrophic 

conditions, supporting the natural resource management and the implementation of 

new conservation strategies of marine environment. 

Our experimental study is likely to provide useful indications to promote systems 

resilience and system recovery of assemblages under different trophic conditions, 

supporting the management of natural resources and the implementation of new 

conservation strategies of marine environment. 
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Appendix 

 

Appendix A : List of taxa identified 

 
Algae Articulated Corallinaceae - AC 

 
Acetabularia acetabulum (L.) Silva 

 Amphiroa rigida J.V. Lamouroux 

 Anadyomene stellata (Wulfen) C. Agardh 

 Dark Filamentous Algae - DFA 

 Dictyotales 

                 Dictyota dichotoma (Hudson) J.V. Lamouroux 

 Dudresnaya verticillata (Withering) Le Jolis 

 Encrousting Coralline Rodophytes - ECR 

 Red filamentous Algae 

 Green Filamentous Algae - GFA 

 Halimeda tuna (Ellis & Solander) J.V. Lamouroux 

 Jania rubens (L.) J.V. Lamuroux 

 Laurencia complex 

 Moucillagenous algae - MC 

 Padina pavonica (L.) Thivy 

 Peyssonnelia squamaria (S.G. Gmelin) Decaisne 

 Soft Branched Algae - SBA 

 Thin Tubular Sheet-like - TTS 

 TURF forming algae 

 Valonia macrophysa Kützing 

 Wrangelia penicillata (C. Agardh) C. Agardh 

Polichaeta Serpulidae 

Bryozoa Erect Bryozoans - EC 

 Thin Ramified Bryozoans - TRB 

Cnidaria Actinidae 

 Balanophyllia europaea (Risso) 

 Caryophillia smithi Stokes & Broderip 

 Cladocora caespitosa (L.) 

 Hydrozoa 

Mollusca Gastrochaena dubiae (Pennant) 

 Lithophaga lithophaga (L.) 
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 Vermetidae 

Porifera Aplysina aerophoba (Schmidt) 

 Cliona caelata Grant 

 Cliona viridis (Schmidt) 

 Clionidae 

 Chondrilla nucula (Schmidt) 

 Chondrosia reniformis Nardo 

 Crambe crambe (Schmidt) 

 Hemimycale columella (Bowerbank) 

 Ircinia faetida (Schmidt) 

 Massive Dark Sponges - MDS 

 Phorbas tenacior (Topsent) 

Ascidiacea 
Ascidia mentula Müller 

 Didemnidae 

 Diplosoma listerianum (Milne-Edwards) 

 

 

Appendix b List of functional group identified 

 
Functional group Description Taxa  

STCA Sub Turf Calcified Algae: small algae (ca 5 cm), primary 
space holders forming limited vertical height turf on 
substrate, all characterized by a calcification of the thallus 

AC 

  Amphiroa rigida 

  Halimeda tuna 

STA Sub Turf Algae: small algae (ca 5 cm), primary space 
holders forming limited vertical height turf on substrate, no 
calcification 

Acetabularia acetabulum 

  Anadyomene stellata 

  SBA 

  TTS 

  Valonia aegagrophila 

STEA Sub Turf Ephemaeral Algae: small algae (ca 5 cm), 
primary space holders forming limited vertical height turf 
on substrate, no calcification, often epiphytes and/or 
ephemeral 

DF A  

  GFA 

  Red filamentous algae 

  Stipocaulacae 

  TURF forming algae 

TCA Turf Calcified Algae: algae forming >5 cm turf on the 
substrate, characterized by a more or less calcified thallus 

Padina pavonica 
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TnCA Turf non Calcified Algae: algae forming >5 cm turf on the 
substrate, no calcification 

Dictyotales 

  Laurencia complex 

  Wranghelia sp 

ECA Encrusting Calcified Algae: algae characterized by 
encrusting or prostrate thallus, mostly represented by 
corallines 

ECR 

  Peyssonnelia sp. 

MA  Mucillagenous algae Mucillagenous algae 

BSFF Boring Suspension/Filter Feeders: boring invertebrates, 
living within the rocky substrate, solitary (bivalves) or 
colonial (sponges), feeding on particulated or dissoved 
organic matter 

Cliona caelata 

  Cliona viridis 

  Clionidae 

 
 

Gastrochena dubiae 

  Lithophaga lithophaga 

CP Colonial Predators: predator invertebrates, colonial, all 
cnidarians, feeding on plankton or small vagile 
invertebrates 

Cladocora caespitosa 

  Idroidi 

ESFF Encrusting Suspension/Filter Feeders: invertebrates 
forming flat encrusting colonies 

Crambe crambe 

  Didemnidae 

  Diplosoma sp 

  EB 

  Hemimicale columella 

  Ircinia faetida 

  Phorbas tenacior 

  TRB 

MSFF Massive Suspension/Filter Feeders: invertebrates forming 
large and massive  colonies, all large sponges 

Aplisina sp 

  Chondrilla nucula 

  Chondrosia reniformis 

  MDS  

SSFF Small Suspension/Filter Feeders: small invertebrates, 
colonial or unitary forms 

Serpulidae 

SSP Small Solitary Predator: all actinians, small size Attinia 

  Balanophyllia europea 

  Caryophillia smithi 

USFF Unitary Suspension/Filter Feeders: solitary invertebrates, 
encrusting or massive forms, mostly ascidians 

Ascidia mentula 

  Vermetidae 

 
 


