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Abstract 
 
A short review of some recent findings in the field of automatic voice disorders detection and classification is 
provided in this article. The matter is getting more and more interest due to appealing non-invasiveness of the 
methods as well as the good achievable performances. An increasing role is played by Artificial Neural Networks 
(ANN), especially Deep ones, despite the need for large amounts of data for such networks, that are not always 
available for the task in question. The research in this field is directed in other directions too, including the inves-
tigation of new features and the capability to process running speech other than sustained sounds. 
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1. Introduction 
 
The analysis of abnormal voice patterns or 
voice disorders plays an important role in diag-
nosing/treating several diseases and reducing 
the impact on the individual’s communication 
skills. Voice disturbances include alterations in 
the quality, pitch, or amplitude, among other 
characteristics, that diverge from voices of simi-
lar age, gender, and social groups. Voice pa-
thology detection and classification can be ac-
complished by means of automatic and a non-
invasive method, by capturing patient’s voice 
samples by a microphone, a smartphone, or any 
voice recorder, then submitting such samples to 
digital systems running specific software. Even 
though the terms detection and classification 
are used interchangeably very often, they actual-
ly refer to different tasks. Voice disorder detec-
tion refers to determining whether the given 
voice sample was produced by a person having 
a voice disorder or not; voice disorder classifi-
cation task involves the ability to infer the type 
of disorder. 
In this paper, some of the most recent studies 
in the field of automatic detection and classifi-
cation of voice disorders are outlined. The 
found researches cover the use of sustained 
vowel as well as running speech, the investiga-

tion of novel features as well as novel classifica-
tion methods to improve the accuracy of the 
outcome. Artificial Neural Networks (ANN) 
are more and more employed but traditional 
Machine Learning classifiers such as Support 
Vector Machines (SVM) still have their own 
advantages. 
The remaining sections of the paper are orga-
nized as follows. The Section 2 reviews the 
most popular databases used to “learn” patho-
logical and normal speech characteristics. Sec-
tions 3 and 4 respectively present some repre-
sentative recent research papers on automatic 
voice disorders detection (including mobile 
apps solutions) and classification. Section 5 fo-
cuses on speech impairments by central nerv-
ous system disorders, while Section 6 present 
some articles about Specific language impair-
ment (SLI), also known as development dys-
phasia. Section 7 present our conclusions. 
 
2. Databases 
 
2.1. Massachusetts Eye and Ear Infirmary (MEEI) 
database 
 
The SVD database is publicly available via the 
Internet, (Barry and Putzer 2020) contains not 
only voice samples but also electroglottographic 
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(EGG) signals. The signals contain the infor-
mation of the glottis movement during voice 
phonation. The materials include vowels /a/, 
/i/, /u / pronounced at different pitch (low, 
normal and high) for 1-3 s., the sentence "Gu-
ten Morgen, wie geht es Ihnen?’’ (Hello, how 
are you?), and EGG. The files have averages of 
around 1 and 3 s for sustained vowels and voice 
samples were sampled at 50 kHz with 16 bits of 
resolution. 
      
2.3. Arabic voice pathology database (AVPD) 
 
The AVPD (Mesallam et al. 2017) was recently 
developed at King Saud University, Riyadh. The 
database contains samples of sustained vowels, 
words, and paragraphs. All the speakers were 
native to Arabic language. Dysphonic patients 
suffering from five different types of organic 
voice disorders (cysts, nodules, polyps, paralysis 
and sulcus) were included in the database. The 
database contains repeated vowels, a running 
speech, Arabic digits and some common words. 
All subjects, including patients and normal per-
sons, were recorded after clinical evaluation. 
 
2.4. VOice ICar fEDerico II (VOICED) 
 
The freely available VOICED database (Cesari 
et al. 2018) has been realized by the “Institute 
of High-Performance Computing and Net-
working of the National Research Council of 
Italy (IC-AR-CNR)” and the Hospital Universi-
ty of Naples “Federico II”. It consists of 208 
healthy and pathological voices collected during 
a clinical study performed following the guide-
lines of the medical SIFEL (Società Italiana di 
Foniatria e Logopedia) protocol and the SPIR-
IT (Standard Protocol Items: Recommenda-
tions for Interventional Trials) 2013 Statement. 
For each subject, the database contains a re-
cording of the vowel /a/ of five seconds in 
length, lifestyle information, the medical diag-
nosis, and the results of two specific medical 
questionnaires. 
 
2.5. The Cantonese perceptual evaluation of voice 
(CanPEV) database 
 
The CanPEV database (Law et al. 2010) was 
developed by the Division of Speech Therapy, 
the Chinese University of Hong Kong 

(CUHK). It consists of speech recordings from 
232 native Cantonese speakers with either nor-
mal or pathological voices. The speech was 
recorded with a close-talking microphone in a 
quiet room at 44,100 Hz sampling rate. Each 
subject was required to produce repetitions of 
sustained vowels /a/, /i/ and /u/ (each one 
about 3 to 5 seconds long), 30–90 seconds of 
read speech, spontaneous speech from few sec-
onds to few minutes. 
 
2.6. The HUPA Database 
 
This database was recorded at the Príncipe de 
Asturias hospital in Alcalá de Henares, Madrid, 
Spain (Moro-Velázquez et al. 2015; Arias-
Londoño et al. 2011). The dataset contains sus-
tained phonations of the vowel /a/ by 439 
adult Spanish speakers (239 healthy and 200 
pathological). Originally, the data was recorded 
with a sampling frequency of 50 kHz and later 
downsampled to 25 kHz. Pathological voices 
contain a wide variety of organic pathologies 
such as nodules, polyps, oedemas and carcino-
mas. More details of the database can be found 
also in Godino-Llorente et al. (2008). 
 
2.7. The Advanced Voice Function Assessment Data-
base (AVFAD) 
 
The AVFAD database (Jesus et al. 2017) con-
tains 363 healthy voices (253 females and 110 
males) and 346 abnormal voices (247 females 
and 99 males). All clinical conditions were reg-
istered according to the Classification Manual 
of Voice Disorders-I (Verdolini, Rosen, and 
Branski 2006). Participants were audio-
recorded, producing the following vocal tasks: 
sustaining vowels /a, i, u/; reading of six 
CAPE-V sentences; reading a phonetically bal-
anced text; spontaneous speech (Behlau 2003). 
 

2.8. The Voice disordered and Healthy Adults 

Speech Database 

 
The recordings for this database (Tulics et al. 
2019) were collected at the Outpatients’ De-
partment of the Head and Neck Surgery De-
partment of the National Institute of Oncology, 
Budapest, Hungary, during consultations. The 
most common recordings are from patients 
with functional dysphonia and recurrent pare-
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sis. Samples from healthy people were recorded 
as well, these are used as comparison. All the 
participants had to read out loud the same eight 
sentence long text, titled ‘The North Wind and 
the Sun’. This folk tale is frequently used in 
phoniatrics as a demonstration of continuous 
speech. The text was read in its Hungarian 
translation. The database contains a total of 450 
recordings, 257 from patients with voice disor-
ders (156 females and 101 males) and 193 peo-
ple with a healthy voice (108 females and 85 
males). 
 

2.9. The LANNA children speech corpus 
 
This database by the Laboratory of Artificial 
Neural Network Applications (Grill and 
Tučková 2016) contains speech samples of 
children suffering from SLI and healthy con-
trols, i.e. normally developing children with no 
language or speech disorders diagnosed. The 
patients’ group consists of 54 Czech children 
diagnosed with SLI in the 4 to 13 age group. 
Their speech was recorded in private speech 
and language therapist’s office and doctor’s of-
fice in Motol University Hospital. No infor-
mation on the severity of the disorder is pro-
vided. The other (controls) group consists of 44 
healthy Czech children in the 4 to 10 age group. 
The utterances from them were collected in 
school-rooms. The healthy controls subset 
comprises 1658 samples, while the SLI children 
subset comprises 2103 samples. All the record-
ings contain background noise as they were reg-
istered in situations simulating environment 
natural to the children to ensure their natural 
behaviour. The corpus consists of seven types 
of utterances: vowels, consonants, one-, two-, 
three-, and four-syllable words, and difficult 
words. 
 

2.10. Parkinson's UI Machine Learning data-

base 

 
Acoustic data in this database (Little et al. 2009) 
consists of 195 sustained vocal phonations of 
31 male and female subjects, of which 23 were 
diagnosed with Parkinson's disease. The age of 
the patients varies between 46 and 85 years (av-
erage of 65.8, standard deviation of 9.8). For 
each patient, averages of six phonations were 
recorded, with a length ranging from 1 to 36 s. 

 

3. Some representative recent research pa-

pers on automatic voice disorders detection 

 
AL-Dhief et al. (2020) presented a voice pa-
thology detection system using Online Sequen-
tial Extreme Learning Machine (OSELM) to 
classify the voice signal into healthy or patho-
logical, based on Mel-Frequency Cepstral Coef-
ficients (MFCCs) as input feature. OSELM 
combines the advantage of good generalization 
performance at extremely fast learning speed of 
ELM (feedforward neural networks, “invented” 
in 2006 by G. Huang, 2006) with the capability 
to handle data samples obtained within packets 
over time (Abbas, Albadr, and Tiun 2017), in-
stead of all at once. The voice samples for the 
vowel /a/ were collected equally from Saar-
brücken voice database (SVD). The obtained 
results show that the maximum accuracy, sensi-
tivity and specificity are 85%, 87% and 87%, 
respectively, showing that the proposed ap-
proach can differentiate healthy and pathologi-
cal voices effectively.  
While most approaches rely on feature extrac-
tion of the analysed signal with features subse-
quently fed into a classifier, Georgopoulos, 
2020, investigated the direct use a time-
frequency distribution (namely, the Wigner-
Ville Distribution) of the voice signal and a 
deep learning classification method to automat-
ically classify voice signals as normal or patho-
logical. The time-frequency distribution is used 
as an image representation of the signal. The 
classification method is based on transfer learn-
ing of GoogleNet (Wu et al. 2018)) a well-
trained Convolutional Neural Network (CNN) 
on large-scale natural images (unrelated to this 
problem) available in ImageNet. Voice data 
came from KAY Elemetrics (now Pentax Med-
ical) database, developed by the MEEI Voice 
and Speech Lab. The samples used for analysis 
here is sustained phonation of vowel /a/. 
Achieved accuracy ranged from 69% to 74%. 
Kadiri and Alku (2020), presented a systematic 
analysis of glottal source features in normal and 
pathological voice and investigated their effec-
tiveness in voice pathology detection. Voice pa-
thology detection experiments were carried out 
using the HUPA and the SVD databases. The 
glottal source features were derived from three 
signals: from the glottal flows estimated with 
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the quasi-closed phase (QCP) glottal inverse fil-
tering method (Airaksinen et al., 2014), from 
the approximate source signals computed with 
the zero frequency filtering (ZFF) method (Sri, 
Murty, and Yegnanarayana 2008) and directly 
from acoustic voice signals. The QCP method 
is based on the principles of closed phase (CP) 
analysis which estimates the vocal tract model 
from few speech samples located in the CP of 
the glottal cycle using linear prediction (LP) 
analysis. In contrast to the CP method, QCP 
takes advantage of all the speech samples of the 
analysis frame in computing the vocal tract 
model. ZFF is based on the fact that the effect 
of an impulse-like excitation (that occurs at the 
instant of glottal closure) is present throughout 
the spectrum including the zero frequency, 
while the vocal tract characteristics are mostly 
reflected in resonances at much higher frequen-
cies. In this method, the acoustic speech signal 
is passed through a cascade of two zero fre-
quency resonators and the resulting signal is 
equivalent to integration of the signal four 
times. Hence, the output grows or decays as a 
polynomial function of time. The trend is re-
moved by subtracting the local mean computed 
over the average pitch period at each sample 
and the resulting output signal is referred as the 
zero-frequency filtered (ZFF) signal.  
Analysis of features revealed that glottal source 
features help in discriminating normal voice 
from pathological voice. A Support Vector Ma-
chine (SVM) with a radial basis function (RBF) 
kernel has been used as classifier. The studied 
glottal source features provide better discrimi-
nation compared to spectral features such as 
MFCCs and perceptual linear prediction (PLPs) 
features. Further, the combination of the exist-
ing spectral features with the glottal source fea-
tures resulted in improved detection perfor-
mance, indicating the complementary nature of 
features. The best achieved accuracy was about 
78%. 
Oliveira et al. (2020), investigated the feasibility 
of combining sustained vowels for computer-
based pathological voice characterization. The 
Authors conducted experiments on samples of 
sustained vowels /a/, /i/ and /u/ from SVD 
and AVFAD datasets, exploring the wavelet 
decomposition levels in the range of 4 to 18, 
revealing that wavelet coefficients extracted 
from the combination of vowels improved sig-

nal description and, hence, identification of 
subtle features of pathological voices, using 
Random Forest classifier (Breiman 2001). They 
also showed that the Haar wavelet-based fea-
tures (Shia and Jayasree 2017) extracted from 
combined vowels achieved accurate voice clas-
sification with fewer decomposition levels. This 
approach enabled accuracy improvements of at 
least 15.61 and 2.61% for SVD and AVFAD 
datasets, respectively, regardless of the biologi-
cal gender, achieving a final accuracy ranging 
from 78% to 83%. 
Tulics et al. (2019) investigated two types of in-
put vectors (acoustic features and Automatic 
Speech Recognition -ASR- posterior probabili-
ties) with a SVM- and DNN-based classifiers, 
using read text materials from Hungarian-
speaking patients suffering from multiple types 
of diseases from the Voice disordered and 
Healthy Adults Speech Database. They found 
that using acoustic parameters instead of the 
use phone-specific posteriors as input features 
increases the accuracy for the detection and 
classification of disordered voices. The most 
important parameters, as suggested by the em-
ployed Forward Feature Selection (FFS) algo-
rithm, were the mean of MFCCs, the range of 
SPI on voiced plosives and affricates, the 
standard deviation of HNR, the range of IMF 
on nasals, the mean and standard deviation of 
jitter, the standard deviation of MFCCs, the 
mean of SPI on voiced plosives and affricates, 
the range of SPI on the vowel [E] and the 
standard deviation of SPI on voiced plosives 
and affricates. Also, the DNN approach out-
performed the SVM classifier. Later, the same 
Authors (Tulics et al. 2020) examined the com-
bination of the two input vectors can contrib-
ute to improve classification accuracy. They 
concluded that it is not worthwhile to calculate 
ASR phone posteriors, as it has no significant 
impact on classification outcome, but it can 
greatly complicate and slow down a diagnosis 
support system that models the cognitive deci-
sion-making process of an expert. ASR phone 
posterior derived features are less effective in 
the automatic classification of healthy and dys-
phonic voices, than using the acoustic feature 
set directly. Adding ASR phone posterior de-
rived features to the acoustic features does not 
significantly improve the automatic classifica-
tion accuracy of healthy and dysphonic voices. 
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They explained this finding by the fact that 
ASR acoustic models are trained with the objec-
tive of being robust to variation, which is likely 
to shade the differences between dysphonic and 
non-dysphonic voices. If the training corpora 
used to train the ASR models were controlled 
and labelled w.r.t. dysphonia, phone posteriors 
could become useful for detecting dysphonia, 
however, as ASR training relies on very large 
datasets (ideally several hundred, rather thou-
sands of hours of speech), this requirement is 
quasi hard to fulfil in practice. 
 
3.1. Mobile apps for automatic detection of voice disor-
ders. 
 
Ilapakurti et al. (2019), aiming at developing 
mobile diagnostic voice disorder app, investi-
gated Mel-Scale Spectrogram and MFCCs as 
input features for several NN architectures: a 5-
layer plain network, 5-layer CNN and a Recur-
rent Neural Network (RNN). Voice samples 
were obtained from a voice clinic in a tertiary 
teaching hospital (Far Eastern Memorial Hospi-
tal, FEMH), which included 50 normal voice 
samples and 150 samples of com-mon voice 
disorders, including vocal nodules, polyps, and 
cysts (collectively referred to Phono trauma); 
glottis neoplasm; unilateral vocal paralysis. 
Voice samples of a 3-second sustained vowel 
sound /a:/ were recorded at a comfortable level 
of loudness. The best model was a 5-layer CNN 
trained with MFCC and Mel-Spectrogram. It 
had a Sensitivity: 96% & Specificity: 18% on 
the test data. 
Verde et al. (2019) propose a machine learning 
(ML)-based mobile voice disorder detection 
system. A trained model was directly embedded 
in a mobile application, allowing the user to 
evaluate the health of his/her own voice any-
where and at any time, without the necessity of 
trans-mitting user data to or storing user data 
on any server. This constitutes, at the time of 
writing, a significant innovation on account of 
the fact that most of the existing studies in lit-
erature limit the use of the mobile device to the 
tasks of acquiring the useful signal, transmitting 
it to an external server to be analysed and visu-
alizing and communicating the results obtained 
to the users (Alhussein and Muhammad 2018; 
Muhammad et al. 2018). Unfortunately, the 
transmission of these patient data can be sub-

ject to a security attacks on security or privacy 
violations. The proposed mobile system, in-
stead, has no need to transmit any data, so lim-
iting the probability of any security attack. 
 
 
4. Automatic classification of voice disorders 
 
Liu et al. (2019) investigated phone posterior 
probabilities from a large-vocabulary ASR sys-
tem trained with normal speech (Cantonese) to 
classify spoken utterances of 80 subjects ex-
tracted from the CanPEV database, which were 
already rated and divided into several catego-
ries: normal+mild, moderate, and severe. In 
addition to the proposed ASR voice features, 
the effectiveness of a set of conventional voice 
features that can be extracted from the utter-
ance without using acoustical model has been 
investigated. The Authors adopted a minimalis-
tic acoustic parameter set for voice analysis, 
known as eGeMAPS, which is implemented 
with the OpenSMILE toolkit (Eyben et al. 
2016). Given the sequence of posterior vectors, 
the Authors proposed to use it to compute four 
types of feature parameters (a total of 18-
dimension features), which are used to locate 
and quantify irregular posterior variations at 
specific speech sounds: PPV (Phone Posterior 
Variation), GOP (Goodness of Pronunciation), 
GOPV (GOP Variation) and BFR (Blurred 
Frame Ratio). By combining the contributions 
from the ASR voice features and conventional 
voice features, a subject-level prediction accura-
cy of over 80% on three severity classes has 
been achieved. Subjects with mild disorder and 
those with severe disorder could be perfectly 
distinguished by the proposed method. 
(Miliaresi, Poutos, and Pikrakis 2021) addressed 
the task to classify functional dysphonia, pho-
notrauma, laryngeal neoplasm and vocal paraly-
sis and showed that it is possible to treat MFCC 
derived features and data from medical records 
as two different input sources to a single neural 
network architecture consisting of two sub-
networks. The first one, a CNN is used to treat 
the acoustic signal as an image, that captures 
spectral shape by operating on MFFC derived 
features and simple filterbank outputs. The 
second (feed-forward) network analyses an en-
hanced input vector, consisting of the demo-
graphic parameters and mid-term signal fea-



 Automatic detection of Voice Disorders: recent literature advancements 

26 

tures. The outputs of the aforementioned sub-
networks are concatenated and fed to a dense 
layers with 1024 nodes, with each node’s output 
being processed by a Rectified Linear Unit 
(ReLu) activation function. Finally, a softmax 
output layer of four units is used to produce 
posterior probability estimations of the four 
classes of the problem under study. 

5. Speech impairments by central nervous sys-

tem disorders. 
 
Lauraitis et al. (2020) adopted Bidirectional 
Long Short-Term Memory (BiLSTM) neural 
network and Wavelet Scattering Transform 
with Support Vector Machine (WST-SVM) 
classifier for detecting speech impairments of 
patients at the early stage of central nervous 
system disorders (CNSD). The study includes 
339 voice samples collected from 15 subjects: 7 
patients with early stage CNSD (3 Huntington, 
1 Parkinson, 1 cerebral palsy, 1 post stroke, 1 
early dementia), other 8 subjects were healthy. 
Speech data is collected using voice recorder 
from Neural Impairment Test Suite (NITS) 
mobile app. Features are extracted from pitch 
contours, Mel-frequency cepstral coefficients 
(MFCC), Gammatone cepstral coefficients 
(GTCC), Gabor (analytic Morlet) wavelet and 
auditory spectrograms. 94.50% (BiLSTM) and 
96.3% (WST-SVM) accuracy is achieved for 
solving healthy vs. impaired classification prob-
lem. The developed method can be applied for 
automated CNSD patient health state monitor-
ing and clinical decision support systems as well 
as a part of Internet of Medical Things (IoMT). 
 
5.1. Parkinons’ desease (PD) 
 
Kodrasi and Bourlard (2020), proposed to use 
the spectro-temporal sparsity characterization 
as a robust feature for dysarthric speech detec-
tion, based on the motivation that since dys-
arthric speech of patients suffering from PD is 
breathy, semi-whispery, and is characterized by 
abnormal pauses and imprecise articulation, it 
can be expected that its spectro-temporal spar-
sity differs from the spectro-temporal sparsity 
of healthy speech. The Authors first provided a 
numerical analysis of the suitability of different 
non-parametric and parametric measures (i.e., 
l1-norm, kurtosis, Shannon entropy, Gini index, 

shape parameter of a Chi distribution, and 
shape parameter of a Weibull distribution) for 
sparsity characterization. It is shown that kurto-
sis, the Gini index, and the parametric sparsity 
measures are advantageous sparsity measures, 
whereas the l1-norm and entropy measures fail 
to robustly characterize the temporal sparsity of 
signals with a different number of time frames. 
Second, they proposed to characterize the spec-
tral sparsity of an utterance by initially time-
aligning it to the same utterance uttered by a 
(arbitrarily selected) reference speaker using dy-
namic time warping. Experimental results on a 
Spanish database of healthy and dysarthric 
speech showed that estimating the spectro-
temporal sparsity using the Gini index or the 
parametric sparsity measures and using it as a 
feature in a support vector machine results in a 
high classification accuracy of 83.3%. 
Asmae et al. (2020), used ANN and K-Nearest 
Neighbours (KNN) algorithms, in the purpose 
of distinguishing between PD patient and 
healthy individual. Voice data in the Parkinson's 
UI Machine Learning has been used. Standard 
features derived from fundamental frequency, 
jitter and shimmer, have been used, as well as 
non-standard features such as Correlation Di-
mension (Kantz and Schreiber 2003), Recur-
rence Period Density Entropy and Detrended 
Fluctuation Analysis (Dixit 1988): 22 features in 
total. The ANN has two hidden layers and the 
Levenberg-Marquardt (LM) has been used as 
training optimization algorithm (Hagan and 
Menhaj 1994). Experimental results have 
showed that the ANN classifier achieved higher 
average performance than the KNN classifier 
in term of accuracy. The established system can 
distinguish healthy people from an acceptable 
range of people with PD with an accuracy rate 
of 96.7% by using ANN, and 79.3% by using 
KNN when the number of neighbours taken 
was k=1, by using the cosine distance. 
 

6. Specific language impairment (SLI) 
 
Several very recent researches regarded Specific 
language impairment (SLI), also known as de-
velopment dysphasia. 
Kotarba and Kotarba (2020), proposed an effi-
cient approach to automatic detection of SLI 
based on log-power spectrograms of speech 
samples. The utterances from the LANNA 
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children speech corpus were used to calculate 
the normalized log-power spectrograms. Deep 
neural network algorithm based on ResNet ar-
chitecture (He et al. 2016) was used to perform 
the classification task. The accuracy rate of 
proposed SLI detection method exceeds 99% 
in the speaker independent scenario. 
Reddy, Alku, and Rao (2020), proposed a 
method for SLI detection in children that utiliz-
es time- and frequency-domain glottal parame-
ters, which are extracted from the voice source 
signal obtained using quasi-closed phase (QCP). 
In addition, 12 MFCCs and openSMILE based 
acoustic features are also extracted from speech 
utterances, including min (or max) value and its 
relative position, standard deviation, range, me-
dian, skewness, kurtosis, 2 linear regression co-
efficients, and quadratic error of the following 
features: root mean square (RMS) energy, zero 
crossing rate, pitch and voicing probability. 
SVMs with RBF kernel and feed-forward neural 
network (FFNN), are trained separately for the 
MFCCs, openSMILE and glottal features. A 
leave-fourteen-speakers-out cross-validation 
strategy is used for evaluating the classifiers. 
The experiments are conducted using the 
LANNA corpus. Experimental results show 
that the glottal parameters contain significant 
discriminative information required for identi-
fying children with SLI. Furthermore, the com-
plementary nature of glottal parameters is in-
vestigated by independently combining these 
features with the MFCCs and openSMILE 
acoustic features. The overall results indicate 
that the glottal features when used in combina-
tion with MFCCs feature set provides the best 
performance with the FFNN classifier in the 
speaker-independent scenario (98.82%). 
Sharma and Singh (2020) used sustained phona-
tion of vowel /a/ uttered by children, from the 
LANNA database, to detect and classify control 
(healthy) and experimental (SLI) group using 
linear predictive coding (LPC) feature set. LPC 
order was set to 8, and a set of 408 features was 
build using 17 statistical function applied to the 
8 coefficients, their delta and delta-delta (“del-
ta” refers to the difference between two con-
secutive feature frames). A standard non-
parametric Mann-Whitney non-parametric U-
test was applied to filter the significant features 
for 95% level of confidence. The top-20 and 
top-10 features were then selected by compu-

ting the Spearman’s rank correlation coeffi-
cients. Naïve-Bayes (NB) and SVM were em-
ployed for machine learning task. The best ac-
curacies were obtained from NB classifiers i.e. 
97.9% (for top-20 LPC features) and 97.8% 
(for top-10 LPC features) with 5-fold cross-
validation protocol. 
 

7. Conclusions 
 
From this unexhaustive review of the most re-
cent attempts to improve automatic voice dis-
orders detection and classification, it is clear 
that the role of ANN is going to increase in the 
near future. More and more complex networks 
are investigated such as Online Sequential Ex-
treme Learning Machine (OSELM) and Goog-
leNet and transfer learning is applied to face the 
availability of limited amount of data compared 
to the amount that would be required to train 
from scratch the most complex networks. 
Accuracy achievable with ANN can be higher 
than 90%, with peaks close to 99% in some 
specific tasks. 
One of the most promising approach is to em-
bed the capability to detect voice disorders in 
mobile devices as software app, allowing a 
portable and usable solution to monitor the 
quality of voice in real time. 
An intense research activity is also devoted to 
find and select new features to augment or re-
place the classical one to improve the recogni-
tion accuracy, including a trend to use directly 
spectrographic or time-frequency representa-
tions of voice samples as images to feed ANN 
good at image-recognition. 
Finally, running speech is increasingly consid-
ered instead of sustained vowels to take into 
account more realistic speech scenarios. 
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