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Abstract 
 
Autophagy is a cellular catabolic process in which cytoplasmic material is delivered to lysosomes for degradation. 
The autophagy process is regulated by highly conserved autophagy-related genes (ATGs) via different signalling 
pathways. Among the various biological functions of autophagy, the link between autophagy and cancer has been 
extensively studied, demonstrating its dual role, of tumor suppressor or promoter in cancer development. Hepa-
tocellular carcinoma (HCC) is one of the most lethal cancers that affects most of the world’s population and it is 
caused by different etiological factors: HBV and HCV viral infections, heavy alcohol consumption, NAFLD 
(non-alcoholic fatty liver disease), aflatoxin B1 contaminated food. In recent years, the involvement of autophagy 
in both prevention and promotion of liver cancer has been increasingly studied. Here, we summarize molecular 
mechanisms and physiological function of liver autophagy, its dual role and its therapeutic potential in HCC. 
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1. Introduction 
 

The word Autophagy derives from the 
Greek roots “auto”(self) and “phagy” (eating) 
and was described for the first time by Cristian 
De Duve in the 1963 (Ravikumar, Sarkar et al. 
2010). 
Autophagy is a cellular catabolic process in 
which cytoplasmic material is delivered to the 
lysosome for degradation. 
Intracellular components must be recycled to 
maintain energy and to ensure quality control of 
proteins and organelles, thus allowing cells to 
control homeostasis (Klionsky and Emr 2000, 
Klionsky 2007). Several types of factors includ-
ing low ATP levels, nutrient and growth factor 
deficiency, hypoxic conditions, endoplasmic re-
ticulum (ER) stress, pathogen entry or anti-
cancer drugs may further upregulated autopha-
gy (Yang and Klionsky 2010). In light of the 
multiple ways by which autophagy participates 
in the control of cell homeostasis, it is no sur-
prise to observe alterations of this process con-
cerning the pathogenesis of different diseases, 
such as neural degeneration, inflammatory 

bowel disease, aging and cancer (Chen and 
Karantza 2011). The latter scenario has been 
extensively studied (Kondo, Kanzawa et al. 
2005, Jin and White 2007, Mathew, Karantza-
Wadsworth et al. 2007, Eskelinen 2011, 
Rubinsztein, Codogno et al. 2012, Wu, Coffelt 
et al. 2012), demonstrating the dual role of au-
tophagy in cancer development. Autophagy can 
act as tumour suppressor by i) inhibition of in-
flammation, ii) prevention of 
p62/SQSTM1(sequestosome 1) accumulation 
and iii) promotion of genomic stability. On the 
other hand, autophagy can promote cancer cell 
survival, protecting cancer cells from different 
cellular stress responses, including starvation, 
oxidative stress and DNA damage(White and 
DiPaola 2009).  
 Hepatocellular carcinoma (HCC) is one 
of the most common primary liver malignancy 
and a leading cause of cancer-related death 
worldwide (Liu, Liao et al. 2017). Currently, 
surgical resection is recommended for very ear-
ly stage and early stage of HCC, following 
chemo/radiotherapy. However, these ap-
proaches are limited and not curative. HCC re-
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currence and metastasis are observed after sur-
gery (He, Lei et al. 2012, Ma, Wang et al. 2015, 
Sheng, Qin et al. 2018). Therefore, the under-
standing of precise contributions of deregulated 
molecular and cellular alterations it is essential 
to delineate the mechanism of tumorigenesis. 
The most prominent aetiological factors associ-
ated with HCC development are: i)chronic hep-
atitis B (HBV) and C (HCV) viral infections; ii) 
chronic alcohol consumption and iii) aflatoxin 
B1 contaminated food (Liu, Liao et al. 2017). 
Besides, non-alcoholic and alcoholic fatty liver 
disease both contribute to the development of 
HCC.  
Based on different studies autophagy appears to 
have a significant role in hepatocellular carcino-
genesis. This suggestion is supported by the ob-
servations that autophagy is either involved in 
HCC promotion or prevention. This means 
that the overall functional effect on cancer pa-
thology is likely to be dependent on multiple 
factors that may also influence dynamically the 
proposed autophagy-cancer model (Shintani 
and Klionsky 2004, White and DiPaola 2009, 
White 2015). Autophagy allows carcinoma cells 
to survive in the tumor microenvironment un-
der stress condition including chemotherapies. 
On the other hand, it suppresses tumor initia-
tion in healthy liver by ensuring the normal 
function of cells. Unfortunately, the exact 
mechanisms of autophagy regulation, in he-
tapocarcinogenesis, are not fully understood 
until now. 
In this review, we present a brief overview of 
molecular mechanisms and physiological func-
tions of autophagy. Moreover, we highlight re-
cent data that describe the dual role of autoph-
agy in HCC. Therapeutic approaches aimed at 
modulating autophagy are also discussed.  
 
 
2. Mechanism and physiological role of autophagy 
 

Autophagy process consists of three 
main steps: initiation, elongation, maturation and fu-
sion of a double-membrane vesicle called phago-
some. These steps are regulated by a series of 
highly conserved autophagy related genes 
(ATGs) via different signalling pathways (Yang 
and Klionsky 2009). The process starts with the 
formation of a double membrane vesicle 
known as auto-phagosome that engulfed cytoplas-

mic molecules. The membrane sources for au-
to-phagosome formation are ER, mitochondria 
and plasma membrane. The initiation of the au-
to-phagosome is under the control of two mac-
romolecular complexes: mTOR-Atg13-ULK1 
complex that initiates the generation of the two 
isolated membranes which extend to form 
phagophore, and PI3K complex (composed of 
Beclin1, Vps34, p150, Ambra1, UVRAG) that 
instead recruits the subsequent ATG proteins 
onto phagophore membrane(Liu, Liao et al. 
2017).  
The second step is characterized by the elonga-
tion of the auto-phagosome. This process in-
volves two ubiquitin like conjugation systems, 
Atg5-Atg12 conjugation and LC3 phosphatidyl-
ethanolamine (PE) conjugation.  
In the maturation step, auto-phagosomes that 
in mammalian are formed randomly in the cy-
toplasm, move bidirectionally along microtu-
bules, preferentially towards the microtubule 
organization center (MTOC), where the lyso-
some are enriched. Auto-phagosome first fuse 
with endosomes and then with lysosome where 
the sequestered contents undergo degradation. 
The fusion machinery is recruited on the auto-
phagosomes thanks to UVRAG and Beclin1 
interacting proteins (Parzych and Klionsky 
2014). In this way, the degradation products of 
cytoplasm portions will be cycled for energy 
generating and substrate supplying (Glick, 
Barth et al. 2010). 

In the last years, considerable data have 
been accumulated about the physiological role 
of autophagy in the liver e.g. clearing misfolded 
proteins, regulation of nutrient and energy me-
tabolism in hepatocytes, selective organelle deg-
radation, and lipid and alcohol metabolism. Au-
tophagy alterations may likely have a significant 
functional impact on all these processes. 
 
2.1. Autophagy in clearing misfolded proteins  
 
Autophagy together with the ubiquitin pro-
teasome systems is involved in the control of 
intracellular protein homeostasis (Marfany, 
Farràs et al. 2008, Knævelsrud and Simonsen 
2010). Piece of evidence from Atg7 gene defi-
cient mice showed accumulation of polyubiqui-
tinated proteins and deformed mitochondria, as 
well as an increasing number of peroxisomes 
and lipid droplets in hepatocytes (Komatsu, 



                     Sara Sergio, Daniele Vergara, Michele Maffia 

9 

Waguri et al. 2005). Furthermore, Atg7 deficient 
mice developed hepatomegaly and hepatic fail-
ure, thus suggesting the important role of au-
tophagy in liver metabolism (Komatsu, Waguri 
et al. 2005). 
Similar effects were also observed after the loss 
of Vps34, a gene that is essential in the auto-
phagosome formation (Jaber, Dou et al. 2012). 
Recent studies have provided evidence that au-
tophagy may play a fundamental role in the 
degradation of alpha-1-antitrypsin (ATZ) that 
causes protein misfolding, pulmonary emphy-
sema, chronic liver inflammation and HCC 
(Kamimoto, Shoji et al. 2006, Perlmutter 2006). 
Until now, remains unclear how autophagy rec-
ognizes and removes the misfolded proteins, 
even though a recent study suggests the in-
volvement of the UPR (unfolding protein re-
sponse) pathway (Ding and Yin 2008). 
 
2.2. Autophagy in organelle degradation 
 
Autophagy is involved in organelle sequestra-
tion and turnover in hepatocytes. During au-
tophagy process, the degradation rate of mito-
chondria, endoplasmic reticulum, membranes, 
ribosomes and Golgi apparatus is different 
from each other, thus indicating a specificity 
and selectivity of the autophagy process in vari-
ous cellular constituents. Indeed, the two terms 
“mitophagy” and “ERphagy” were coined to 
imply the two selective processes in removing 
the mitochondria and ER. The exact molecular 
mechanism for mitophagy in liver cells remains 
to be further clarified, but it is clear that au-
tophagy disruption causes mitochondrial dys-
function with a consequent increase in the reac-
tive oxygen species (ROS) generation and DNA 
damage (Kim, Rodriguez-Enriquez et al. 2007). 
The first evidence of ERphagy was established 
with the observation that extra smooth ER 
membranes could be degraded by autophagic 
vesicles selectively (Kanai, Watanabe et al. 
1993). 
 
2.3. Autophagy and nutrient stress 
 
The most important and efficient inducer of au-
tophagy is nutrient stress. In animal liver, star-
vation causes the largest proportion of protein 
loss (Addis, Poo et al. 1936), that determines a 
transient increase in the aminoacid levels in the 

liver tissue and blood after 24h in wild type 
mice but not in Atg7 deficient mice. Aminoac-
ids supplied during autophagy can be used for 
energy providing by means the tricarboxylic ac-
id cycle (TCA) thus contributing to the meta-
bolic requirements of cells. This data highlights 
the important role of autophagy in protein deg-
radation in the liver. Similarly, the glucose level 
in the blood was stable after 24h of starvation 
in wild type mice, while Atg7 deficient mice 
displayed hypoglycaemia (Ezaki, Matsumoto et 
al. 2011). Under starvation, free fatty acids in 
the liver can be esterified into triglycerides in 
lipid droplets which will be selectively degraded 
by autophagy to supply energy production 

through -oxidation (Singh, Kaushik et al. 
2009, Kaushik, Rodriguez-Navarro et al. 2011). 
The suppression of autophagy in Atg7 deficient 
mice shows accumulation of triglycerides and 
cholesterols in lipid droplets, thus indicating an 
important role in lipolysis blocking (Singh, 
Kaushik et al. 2009).  
  
2.4. Autophagy and energy metabolism  
 
It is well established that autophagy process is 
ATP dependent and depletion of ATP will im-
pair autophagy. Under energy-low conditions 
including starvation, the energy sensor AMP-
activated protein kinase (AMPK) acts as a met-
abolic checkpoint in inhibiting cellular growth 
and promoting autophagy (Hardie 2011). 
AMPK can activate autophagy by at least two 
mechanisms: through the activation of ULK1, 
and through the inhibition of the suppressive 
effect of mTORC1 (Mihaylova and Shaw 2011). 
Furthermore, it has been demonstrated that 
AICAR an analogue of AMP (adenosine 
monophosphate), suppressed autophagic se-
questration of lactose dehydrogenase in hepato-
cytes, thus indicating the energy level is critical 
for autophagy regulation in the liver (Samari 
and Seglen 1998). 
 
 
3. Implication of Autophagy in Hepatocarcinogenesis 
 
The neoplastic evolution of HCC proceeds 
through a multi-step histological process that is 
less well defined with respect to other cancer 
types. Various risk factors are involved in the 
HCC onset including: 
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 chronic hepatitis B and C viral infec-
tions; 

 heavy alcohol consumption; 

 ingestion of aflatoxin B1; 

 NAFLD (non-alcoholic fatty liver dis-
ease); 

 diabetes; 

 obesity; 

 genetic disorders such as hemochroma-
tosis. 

These different HCC-inducing aetiologies pro-
voke continuous round of hepatocyte damage 
and regeneration, thus causing chronic liver dis-
ease.  
The first step towards HCC is the formation of 
hyperplastic nodules of regenerating hepatocytes 
that have normal cytological features. Then 
these lesions can progress to pre-malignant dys-
plastic nodules, which have abnormal cytological 
features including clear cell changes and nuclear 
crowding. Pre-malignant dysplastic nodules may 
evolve to HCC that is able to invade the sur-
rounding fibrous stroma and vessels and occa-
sionally has metastatic potential. 
The molecular analysis of human HCC has 
shown many genetic and epigenetic alterations 
that result in the deregulation of key oncogenes 
and tumor suppressor genes including: TP53, 

-catenin, Erb, hepatocyte growth factor recep-
tor (MET) and its ligand hepatocyte growth fac-
tor (HGF), p16, E-cadherin and cytochrome c 
oxidase subunit II (COX2). As a result, HCC 
arises from a unique combination of somatic 
genetic alterations in various signalling path-
ways that cooperate to promote oncogenesis. 
Recently, an increasing number of reports have 
highlighted the interaction of autophagy with 
these pathways and its dual role in the carcino-
genesis, inhibiting the initiation process, while 
promoting tumor growth, metastasis and thera-
peutic resistance during tumor progression 
(Fig.1).  
 
3.1 Protective effect of Autophagy in Hepatocellular car-
cinoma initiation 
 
Several lines of evidence suggest that autophagy 
protects against tumor initiation by maintaining 
intracellular homeostasis. Atg genes play a criti-
cal role in the induction of autophagy. The de-
letion of Beclin1, Atg5 and Atg7 were found to 

be associated with spontaneous tumorigenesis 
(Qu, Yu et al. 2003, Komatsu , Waguri  et al. 
2005, Takamura, Komatsu et al. 2011). The first 
link between autophagy and cancer develop-
ment was established with the finding that Be-
clin1 inhibits tumorigenesis (Liang, Jackson et 
al. 2000, Takamura, Komatsu et al. 2011). In 
fact, it has been shown that the frequency of 
spontaneous malignancies increases in Beclin1 +/- 
mutant, where this mutation accelerate the de-
velopment of HBV induced pre-malignant inju-
ry, together with increased cell proliferation and 
reduced autophagy in vivo (Qu, Yu et al. 2003). 
Also, a mouse model with Atg5 deletion 
demonstrated the development of liver adeno-
mas, suggesting a tumor suppressive function 
of autophagy (Takamura, Komatsu et al. 2011). 
Furthermore, hepatic tumor cells showed swol-
len mitochondrial, oxidative stress and genomic 
damage responses. Similarly, Atg7 -/- deficient 
mice displayed the same phenotype with the 
development of liver tumors (Takamura, 
Komatsu et al. 2011). 
The deletion of Atg5, Atg7 and Beclin1 leads to 
accumulation of p62 resulting in the develop-
ment of hepatocellular carcinoma (Ichimura, 
Kumanomidou et al. 2008). P62 is an autophag-
ic substrate that is used in measuring autophag-
ic activity. Its knockdown inhibits growth and 
proliferation. Moreover, autophagy deficiency 
increases damaged mitochondria accumulation, 
oxidative stress and deficiency in DNA repair 
which lead to chronic tissue damage and ge-
nome mutations in HPCs (hepatic progenitor 
cells), two key factors of oncogenesis.  
Autophagy has been suggested to prevent can-
cer progression by suppression of inflamma-
tion. This was first observed in autophagic defi-
cient mice showing elevated levels of inflam-
mosome associated IL-1β and IL-18 cytokine 
production compared to wild type control 
(Saitoh, Fujita et al. 2008).  Autophagy suppres-
sion was also associated with high levels of 
CXCL17 that promotes cell proliferation and 
migration. Its silencing induces autophagy 
thanks to the nuclear translocation of liver ki-
nase B1 (LKB1) that phosphorylates and acti-
vates AMPK, resulting in the reduction of tu-
mor volume and proliferation (Wang, Li et al. 
2019). 
Moreover, the protective effect of autophagy 
involved enhanced degradation of yes associat-
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ed protein 1 (YAP), the major nuclear effector 
of the Hippo pathway that controls liver 
growth and YAP overexpression (Perra, 
Kowalik et al. 2014, Lee, Noon et al. 2018). 
YAP has been identified as an autophagy sub-
strate and as an essential downstream mediator 
of tissue remodelling, progenitor cell activation 
and hepatocarcinogenesis in autophagy defi-
cient liver. Indeed, mice with Atg7 deficiency 
displayed increased YAP protein levels and 
overexpression of YAP target genes that drives 
hepatocyte proliferation leading to gross hepa-
tomegaly. The deletion of YAP in Atg7-/-animal 
model reduces HCC incidence. Therefore, au-
tophagy, by controlling the degradation of 
YAP, acts as a gatekeeper of hepatic differentia-
tion, growth regulation and carcinogenesis(Lee, 
Noon et al. 2018). 
Autophagy has also been shown to contribute 
to the anti-proliferative activity of interferon 
gamma (INF-γ) that exerts anti-viral and anti-
proliferative effects in cancer cells. Its inhibito-
ry effects are abolished when autophagy is in-
hibited (Li, Du et al. 2012). 
Autophagy can also be modulated by mi-
croRNA (miRNA). HCC multiple miRNAs that 
target autophagic genes can influence tumor 
growth.(Zhu, Wu et al. 2009, Frankel, Wen et 
al. 2011, Chang, Yan et al. 2012). For instance, 
miR-7 is a short non-coding molecule with a 
well-known tumor suppressive role in different 
cancer types. In HCC, miR-7 levels are signifi-
cantly downregulated compared to normal 
samples. A forced increase of miR-7, causes an 
increase in autophagic activity by targeting the 
mTOR pathway. Overall, this leads to a de-
crease in cancer cell proliferation (Wang, Wang 
et al. 2017). 
miR-85 is an essential component in liver tu-
mor development, acting as tumor suppressor. 
In HCC cell line HepG2, miR-85 upregulates 
autophagy activity with a functional effect on 
cell cycle arrest(Zhou, Liu et al. 2017). 
LncRNA PTEN1 (long non-coding RNA-
PTEN1), a pseudogene of the tumor suppres-
sor gene PTEN, induces autophagy as a pro-
death response to suppress hepatocellular car-
cinoma (Chen, Tseng et al. 2015). LncRNA 
PTEN1 prevents the interaction of different 
miRNA with PTEN that in this way can inhibit 
the activation of PI3K/AKT pathway, thus in-

ducing pro-death autophagy, resulting in the 
HCC cells death (Tay, Kats et al. 2011). 
All these lines of evidence elucidate that au-
tophagy mediates anti-tumor effects and partic-
ipates in various signalling pathways directly or 
indirectly to prevent the onset and progression 
of hepatocellular carcinoma.  
 
3.2 Autophagy as a pro-cancer mechanism in liver can-
cer 
 
To date, important insights associate the activa-
tion of autophagy with several stress responses 
including starvation, growth factor deprivation, 
hypoxia, damaging stimuli and therapeutic 
agents. The overall functional effect in cancer 
cells, including HCC, is the activation of a pro-
survival mechanism(Chen, Tseng et al. 2015). 
For example, basal autophagy is elevated in hy-
poxic regions of some tumor types, where plays 
an essential role in tumor cell survival. In fact, 
tumor neovascularization may not result in a 
homogenous vessels network, especially in the 
fast-growing tumor, where there are some re-
gions within cancer cells depend on autophagy 
for their survival, due to the limited nutrients 
and oxygen (Degenhardt, Mathew et al. 2006). 
In hepatocyte and HCC, hypoxia induced au-
tophagy through the stabilization of the tran-
scriptional factor HIF (hypoxia inducible fac-
tor) that controls oxygen homoeostasis. In hy-
poxic conditions, the upregulation of HIFα in-
duced autophagy by inhibiting the interaction 
between BCL-2 and Beclin1. This is due to the 
upregulation of Bcl-2/adenovirus E1B 19-kDa 
interacting protein 3 like (BNIP3) protein that 
by interacting with BCL-2 inhibits BCL-
2/Beclin1 binding (Bellot, Garcia-Medina et al. 
2009). Furthermore, hypoxia upregulates early 
growth response gene 1(Egr-1), a zinc finger 
nuclear protein that functions as a transcrip-
tional regulator, that promotes migration in 
HCC cell lines (Sijtsema 1977). The first out-
come of the hypoxic stress, is the extensive 
production of reactive oxygen species (ROS) 
that oxidize cellular components including 
DNA, lipids and proteins (Bjelland and Seeberg 
2003, Scherz-Shouval and Elazar 2007). Tu-
mors activate different mechanisms to eliminate 
intracellular ROS, like the upregulation of anti-
oxidant protein NRF2 (Jain, Lamark et al. 
2010). NRF2 is a cytoplasmic protein, that is 
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upregulated during autophagy, and translocates 
into the nucleus to regulate the transcription of 
different redox-balance proteins. Another way 
to control the excessive ROS production is by 
the removal of damaged organelles. Non-
functional mitochondria represent the main 
source of ROS and the induction of mitophagy 
helps cell in the removing of these damage or-
ganelles, to maintain cell functions and bioen-
ergetics(Lemasters 2005). 
The analysis of 156 HCC patients has reported 
the presence of elevated levels of LC3-II (a key 
autophagic marker) and correlated this overex-
pression with clinical features including vascular 
invasion and lymph nodes metastasis. Moreo-
ver, the overexpression of LC3-II was also as-
sociated with an overall survival rate inferior of 
5 years, thus suggesting autophagy involvement 
in the development and poor prognosis of 
HCC (Wu, Jia et al. 2014). Indeed, in HCC pa-
tients with advanced liver cancer, increased au-
tophagy correlates with low survival rate 
(Lazova, Camp et al. 2012, Wu, Jia et al. 2014). 
In HCC, miR-375 that is known to inhibit au-
tophagy through the downregulation of ATG7, 
resulted to be under-expressed. Under hypoxic 
conditions, miR-375 suppressed the conversion 
of LC3-I in LC3-II thus blocking the autophagy 
flux, mitophagy in HCC cells and the elimina-
tion of damaged mitochondria to impaired via-
bility of HCC cells. 
These data suggested that autophagy promotes 
the survival of HCC cells under hypoxic condi-
tion in patients with a confirmed diagnosis of 
HCC. 
In addition, autophagy is known to promote 
liver cancer development by inhibiting the ex-
pression of tumor suppressor (e.g. p53, p16, 
p21, and p27). As well, .it has been reported 
that the hypoxia induced autophagy contributes 
to the chemoresistence of HCC cells. Thus, 
blocking autophagy may be an ideal target for 
HCC. Some works have demonstrated the in-
creased anti-cancer efficacy of Sorafenib (the 
only FDA approved therapy for HCC) when 
autophagy key genes like BECN-1 and ATG5 
are inhibited. This data suggest that autophagy 
inhibitors may have a synergistic anti-tumor ef-
fect with chemotherapy (Yuan, Li et al. 2014). 

Taken together, all these data support 
the idea that the pro- tumoral role of autophagy 
in hepatocarcinoma depend on the stages of the 

tumor development and that the inhibition of 
autophagy may be an anti-tumor mechanism in 
established HCC. 
 
4. Potential therapy targeting of autophagy in hepatocel-
lular carcinoma 
 
The potential therapeutic value of targeting au-
tophagy in hepatocellular carcinoma arises from 
the consideration that autophagy is an accom-
plice of cancer cell survival under stress condi-
tions. For this reason, autophagy inhibitors may 
enhance the sensitivity of cells to hypoxia and 
metabolic stress. 
Several studies have demonstrated, in mouse 
model, that autophagy inhibition could enhance 
cell death by promoting the activation of tumor 
suppressor pathway. Autophagy inhibitors like 
3-metyladednine (3-MA), which blocks the fu-
sion between auto-phagosome and lysosome, 
can increase the effect of a meloxicam, a COX-
2 selective drug, that has an anti-tumor effect in 
different tumors (Zhong, Dong et al. 2015). 
Similarly, Sorafenib, the earliest approved ther-
apeutic drug for HCC patients with advanced 
stage of liver tumor, demonstrated an enhanced 
anti-tumor efficacy when autophagy is inhibited 
by Chloroquine (CQ), bafilomycin A1, or by a 
siRNA against Beclin1 or Atg5. Sorafenif acts by 
targeting the RAF/MEK/ERK pathway, lead-
ing to the inhibition of tumor growth and neo-
angiogenesis (Wilhelm, Carter et al. 2004). 
However, it has been shown that Sorafenib is 
also able to induce autophagy both in vitro and 
in vivo, thus promoting survival of hepatocellu-
lar carcinoma, through an ERK/MAPK inde-
pendent pathway (Shimizu, Takehara et al. 
2012). 
These different data suggest that the balance of 
the autophagy mechanism can be a way to 
overcome cellular resistance towards some 
antineoplastic treatments. 
However, the physiological functions of au-
tophagy are very important for normal cells and 
tissues. For this reason, an important question 
that remains open is whether a systemic au-
tophagy defect affects only cancer growth or 
also normal tissue. Thus, several challenges will 
have to be addressed before testing autophagy 
modulating-approaches in clinical trials (Levine 
and Kroemer 2019). Firstly, it is necessary a 
better characterization of autophagy related 



                     Sara Sergio, Daniele Vergara, Michele Maffia 

13 

pathways in liver diseases; in particular, it 
should be consider that ATG genes can be in-
volved in non-canonical autophagy pathway 
and that the manipulation of autophagy can in-
terfere with other interconnected pathways. 
Secondly, it is very important to discover au-
tophagy biomarkers to follow in vivo, for the 
development of autophagy-targeted strategies. 
Thirdly, it is necessary to define a therapeutic 
time-window for chronic liver diseases, since 
type and level of autophagy changes during the 
progression of the disease. Finally, we need the 
development of strategies that target a specific 
type of cells in the liver, considering the im-
portant role of autophagy in all organs. 
Therefore, all these aspects represent a great 
hotspot and a breakthrough point for reducing 
HCC risk and improving therapeutic efficacy. 
 
5. Conclusions and future perspectives 
 
Since the identification of the first ATG genes 
in yeast in 1990, significant efforts have been 
made in the understanding of molecular mech-
anisms driving autophagy. One of the emerging 
fields is the involvement of autophagy in cancer 
development. Among different kinds of cancer, 
HCC appears to be relevant to autophagy. In 
HCC, autophagy seems to play a dual role: it 
acts as tumor suppressor in the initial step of 
the disease, while promotes tumor development 
once HCC is well established. Therefore, dif-
ferent approaches are needed to modulate au-
tophagy for liver cancer prevention and thera-
py. Although the high potential for autophagy 
modulation as a therapeutic method for HCC, 
the clinical application of these autophagy 
modulators remains unclear.  
To summarize, future studies on the various 
functions of autophagy according to tumor 
stage, differentiation, and environmental and 
genetic factors are needed for the development 
of new treatment options for HCC patients. 
 
Funding 
This research was funded by Prin Project (MI-
UR), cod.2017J92TM5_004, “Enhancement of 
autophagy for therapy of liver diseases”, Na-
tional coordinator Prof. Nicola Brunetti Pierri. 
Operative Unit responsible, Prof. Michele Maf-
fia. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The role of autophagy in Hepatocellular carcinoma 

14 

  

Figure 1: Dual role of autophagy in the initiation and development of hepatocellular carcinoma. 
Hepatic autophagy is activated by various factors (HBV and HCV viral infections, heavy alcohol consumption, aflatoxin B1 contaminated 
food) that can cause hepatic injury after which there is necrosis followed by hepatocyte proliferation. Continuous cycles of this destruc-
tive–regenerative process promotes a chronic liver disease condition that culminates in liver cirrhosis. Subsequently, there is the formation 
of hyperplastic nodules, followed by dysplastic nodules and ultimately hepatocellular carcinoma (HCC) development.  
By limiting inflammation, P62 accumulation, oxidative stress response and consequently inhibiting genomic instability, autophagy can 
serve as a tumor suppressor in the initiation stage of hepatocarcinogenesis. On the other hand, autophagy acts as a pro-survival mecha-
nism to protect liver cancer cells against cell death induced by hypoxia, oxidative stress, starvation, DNA damage and therapeutic stress, 
thus promote liver cancer development 
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