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Abstract. Balanced groups ranked set samples method (BGRSS) is suggested
for estimating the population mean with samples of size m=3k where

(k=1,2,...) . The BGRSS sample mean is considered as an estimator of the

population mean. It is found that the BGRSS produces unbiased estimators
with smaller variance than the commonly used simple random sampling (SRS)
for symmetric distributions considered in this study. For asymmetric
distributions that we considered, the BGRSS estimators have a small bias. A
real data set is used to illustrate the BGRSS method.

Keywords. Simple random sampling; ranked set sampling; balanced groups
ranked set sampling.

1. Introduction

The RSS suggested by Mclintyre [5] for estimating mean pasture yields was found to have
greater efficiency than SRS. He also suggested that this method is particularly suitable where
the experimental or sampling units in a study can be more easily ranked than quantified. To
obtain a sample of size m using RSS, randomly select m simple random samples each of
size m from the target population and rank the units within each sample with respect to a
variable of interest. The ith smallest rank united of the ith sample (i=1,2,...,m) is drawn

and measured. This method is repeated n times if needed to obtain a sample of size mn out

* Corresponding author. Email: alomari_amer@yahoo.com; Tel: +962777906433.

© 2008 University of Salento - SIBA http://siba2.unile.it/ese



A.AJemain, A. Al-Omari, K. Ibrahim - EJASA 1(2008) 1-15

of m*n units. Takahasi and Wakimoto [11] proposed the same method with the mathematical
theory of ranked set sampling. Dell and Clutter [2] showed that the mean of the RSS is an
unbiased estimator of the population mean, whether there are errors in ranking or not.
Samawi et al. [11] investigated the extreme ranked set samples (ERSS) for estimating a
population mean. Muttlak [8] suggested using median ranked set sampling (MRSS) to
estimate the population mean. Muttlak [6, 7] suggested quartile ranked set sampling (QRSS)
and percentile ranked set sampling (PRSS) for estimating the population mean and showed
that PRSS and QRSS produced unbiased estimators of the population mean when the
underlying distribution is symmetric. Jemain and Al-Omari [4] suggested double quartile
ranked set sampling (DQRSS) for estimating the population mean and showed that the mean
based on DQRSS is an unbiased estimator and more efficient than those based on SRS, RSS
and QRSS if the underlying distribution is symmetric. Details about RSS can be found in
several works (see Al-Saleh and Al-Omari [1], Jemain and Al-Omari [3] and Ozturk and
Deshpande [9]).This paper is presented as follows: in Section 2, we describe the BGRSS and
illustrate two cases as examples. In Section 3, we derive the BGRSS estimators for the
population mean for two cases when the sample size is odd or even. In addition, we study the
properties of these estimators. In Section 4, results based on the uniform, normal and logistic
distributions are provided. Simulation study using BGRSS for several distributions is
presented in Section 5. This is followed by a real data set to illustrate the BGRSS, as given in
Section 6. Finally, we summarize our results in Section 7.

2. Descriptions of BGRSS

The balanced groups ranked set sampling (BGRSS) can be described as follows:

Step 1: Randomly select m=3k (k =1,2,...) sets each of size m from the target population,
and rank the units within each set with respect to the variable of interest.

Step 2:Allocate the 3k selected sets randomly into three groups, each of size k sets.

Step 3: For each group in step (2), select for measurement the lowest ranked unit from each
set in the first group, and the median unit from each set in the second group, and the largest
ranked unit from each set in the third group.

By this way we have a measured sample of size m = 3k units in one cycle. The Steps 1-3 can
be repeated n times to increase the sample size to 3kn out of 9k’n units.

The BGRSS method differs from the usual RSS and ERSS methods. In the usual RSS we
identify and measure the ith smallest ranked unit of the ith sample (i =1,2,....m). In the

case when m is odd, for ERSS we select the smallest ranked unit from the first mT—l sets
and the largest ranked unit from the other mT—l sets. In the case when m is even we select
the smallest ranked unit from the first % sets and the largest ranked unit from the other %
sets. But in the BGRSS method, the measured units consist of % minima, % medians and

m .
E maxima.

Indeed, the BGRSS method is easy to be applied since we only need to identify and measure
the lowest rank units of the first k sets, and the medians of the second k sets, and the largest
rank units from the last k sets. Here, k is any positive integer. However, for practical
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purposes, k should be small in order to have a small sample size, so that the ranking is easy
and errors in ranking is reduced. Let us consider the following example to illustrate BGRSS
for estimating the population mean.

Example
Case 1: Let k =1, so m=3. Then we may have 3 sets of SRS each of size 3, as follows:

{Xll’ X12’ XlS}’ {X21’ X22’ X23}’ {X31’ X32’ XSS}'

After ranking the units with respect to a variable of interest allocate them into three groups
where each contains one set of size three units as shown below:
First group,

A= {X 113 Xa@ayr Xyag) },

Second group,
A= {X 213)r Koea)r Xaas) },

Third group,
A= {X 313 Kaea)r Xaas) }

Now, select the smallest rank unit form the first group, the median from the second group,
and the largest rank unit from the third group as:

Xiazy = min(A), Xopz = median(A,), Xaaa = max(A;).

The final set {X, 5, X505, Xsag | i the BGRSS of size 3. These units are used for estimating
the mean u of the variable of interest as:

X1(1:3) + X2(2:3) +X

ﬁ _ 3(33)
BGRSSO — .
3

It is of interest to note that if k =1, the BGRSSO is the same as the usual RSS method in the
case of estimating the population mean.

Case 2: If k =2, then m=6. So, we have six SRS sets each of size six. We first rank the unit
within each set with respect to a variable of interest, and then allocate them into 3 groups
where each contains two sets each of size six. After ranking and applying the BGRSS
method, the sets appear as shown below:

A= {(X1(1:6) )’ Xz Kiaey Kiaeyr Xise)s X1(6:6)}
Firstgroupy A, = {(X 2(1:6) ), Xaee)s Ko@syr Koweyr Xoseyr X aee)
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As = {X 3(1:6) Xs(z:e) J (X 3(36) )’ (X3(4:6) )’ X3(5:6)’ X3(6:6)}
SecondgrOUp A = X4(1:6)1 X4(2:6)1 X4(3:6) h X4(4:6) ’X4(5:6)’ X4(6:6)

As = {X 5(1:6) ! X 5(2:6) ? X5(3:6) , X 5(4:6) 7 X 5(5:6) ! (X 5(6:6) )}
As

ThirdgrOUp =X 6(1:6) X 6(2:6) 1 X 6(3:6) * X 6(4:6) ? X 6(5:6) ! X 6(6:6)

. 1 1 .
Finally, the set {Xl(l'G)! X2(1:6)1E(X3(3:6) + X3ue) )1E(X4(3:6) + X )1 Xsee) Xe(e:e)} Is a BGRSS

of size 6, which can be used for estimating the population mean as:

N

1 1 1
Hpgrsse = g [ X1(1:6) +X 26) T E (X 336 T X 3(4:6) )"’ E (X a@e) T X 4(4:6) )"’ X 56:6) T X 6(6:6) ]

In the following section, we shall give some notations and introduce an estimator of the
population mean using BGRSS.

3. Estimation of the population mean using BGRSS

Let X, X,,..., X, be a random sample with probability density function f(x), with mean u,

and variance o. Let X, Xpp e Ximi Xogs Xggveees Xomieers X gy X ugrees Xy D€ independent

random variables all with the same cumulative distrlbutlon function F(x). If m is odd, let

Xiam be the lowest rank unit of the ith sample (i =1,2,...,k), and X (mﬂ ] be the median of
2

the ith sample (i=k+1,k+2,..,2k), and let X
sample (i =2k +1,2k +2,...,3k) . Note that, the measured units, Xy, Xyqm) e Xggm) are
iid, Xk 1(m2+1 ]X
mutually independent but not identically distributed and will be denoted as the measured
BGRSSO. The BGRSSO estimator of the population mean can be defined as:

be the largest rank unit of the ith

i(m:m)

ma oy are iid and X, 5 s Xggmm are iid. However, all units are
ZK(T:m]

i=k+1 i=2k+1

:aBGRSSO [le(lm) + z X (m+1 ]+ z Xl(m m)]’ (l)

with variance

S () z[ - ]}

i=k+1

n 1
Var (fgersso )= e + Z Var (Xi(m:m)) . (2)

i=2k+1
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In the case of even sample size, let X;,, be the lowest rank unit of the ith sample

. 1
i=12,..,k), and E[X.[ + X

'%;m]
(i=k+1,k+2,..,2k), and let X, be the largest rank unit of the ith sample
(i=2k+1,2k+2,...,3k) . Note that, Xiemy » Koy 1+ Xiecam) are iid,

.(M ]] be the median of the ith sample
|T:m

1 1 1 )
E[Xkﬂ(;n:m] * Xk+1(m;2:m]]’ E[Xkﬁ(rg:m] * Xk+2(m;2:m]] B E[XZK(r;:m] * sz(m;rzzm]] are ”d
and Xy umms Xakszmm) oo Xaxmm are iid. However, all measured units are mutually

independent and not identically distributed and will be denoted as the measured BGRSSE.
The BGRSSE estimator of the population mean is defined as:

Z%[(HJD

R l 3k
Hegrsse — 3_k + z Xi(m:m) ) (3)

i=2k+1

with variance

> var(X, )
Va{xi(z:ﬂ]”""{Xi(w]

1 2k
1{+=>[+2Cov X ., X |

9? 4.5 (%;m], i(mTJrZ:m (4)

Var(laBGRSSE ) =

3k
+ z Var(Xi(m:m))

i=2k+1

d
If the underlying distribution is symmetric about u, then X, =—Xq i,zm, SO that

E(X iy )= ~E(X (i) @nd Var(X g )= Var(X iz ) for all i, (i=1,2,..,m), (see David

and Nagaraja 2003). Based on these results and since the measured k units in each group are
iid, we have:
E(laBGRSSO) = 0’ E(laBGRSSE ) = 0’ (5)
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and Equations (3) and (4) will be respectively as

Var(fggrsso ) = gik{ZVar(X(lm) )+ Var[x [ mﬂm]n (6)

and

Var(:aBGRSSE ) = gik +%COV[X(m,m]’ X(m+2,m]} . (7

The properties of 5.5 are:
1. If the underlying distribution is symmetric about the population mean u , then

) [gerss 1S @n unbiased estimator of the population mean .

b) Var(laBGRSS ) < Var(:aSRS) :
2. If the underlying distribution is asymmetric about x , then the mean square error of fig.qq
is less than the variance of g, for some distributions considered in this study, specially
with small sample size.

In the following section we will illustrate the BGRSS method for estimating the population
mean of the uniform, normal and logistic distributions.

4. Results for Some Selected Distributions

The efficiency of fi5.qss With respect to i, for estimating the population mean is defined
as:

. . Var(figs )
ff , = TSRS/
€ (:uBGRSS Hsrs ) Var(:aBGRSS ) (8)

The SRS estimator of the population mean from a sample of size m has the variance given
by

2
Var(figs ) = %. ©)
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4.1 Uniform distribution

If X,,X,,..,X, constitute a random sample from standard uniform distribution, then we

have two cases.
First: When m is odd, the minimum X, has beta distribution with parameters (1,m) . So

that

m

Fim (X) = By [F(X)] (10)

with mean and variance, respectively, are

1 m
=am )= g 2 VarlXm )= o (1)
The median X(mﬂl ] has beta distribution with parameters [mTHmTH] so that
2
F m+1, (X) = Bm+1.m+1 [F (X)]’ (12)
(T-m] 22

and the mean and variance, respectively, are

_1 _ 1
E[X[m;l:m]}—zand Var[x[mf:m]]_ 2 (13)

Finally, the maximum X, has beta distribution with parameters (m,1) . Therefore

I:(m:m)(x) = Bm:m [F (X)]’ (14)
-_m - m
E(X(m:m) ) i and Var(X(m:m)) (m +1)2 (m " 2). (15)

From (11), (13) and (15), we have E(fgpsso)= % Hence, ﬁBGRSSO IS an unbiased estimator

with variance given by

- m®+10m+1
Var = . 16
Uisorso)= omim 17 (m +2) (16)
From (8), (9) and (16), the efficiency of i ggpeo With respect to fig.. is given by
. . m+1)(m+2
eff (1 Hpgrssor Hsrs ) = %ém_'_l) (17)
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A.AJemain, A. Al-Omari, K. Ibrahim - EJASA 1(2008) 1-15

For example, if m=3, we have eff(ﬁSRS,ﬁBGRSSO):j—g:Z. Note that when, m=3, the

efficiency value is equal to that obtained using the usual RSS method. For m=9 , we have

- - 29700
eff Jiggs )= == = 6.395.
(:uBGRSSO :uSRS) 4644
Second: If mis even, then X(m | has beta distribution with parameters [g m+2]. So that
?m
F X) =B, |F(X)}
(2]( ) ;ﬂ;m[ )] (18)
and
m m
El X, = andVar| X, | |=——. (19)
[ [zzm]] 2(m+1) [ [zzm]] 4(m+1)?
Also, X (mz ] has beta distribution with parameters [m 2 %) Therefore,
2"
F X)=B F(x)}
Thus,
E| X = M2 ondvar| X SP L (21)
(™Zn) | 2(m+1) (MZn) | 4(m+1)?

The variance of the median given by

1 _ m
Var{E[X (2] + X [mzzm]n = dmi2fm il (22)

Based on Equations (19), (21) and (22), it can be shown that

Var(figgese ) = ——Mt9 (23)
PEET 12(m+1) (m+2)
From (8), (9) and (23) the efficiency of fiy.qsse With respect to i, Can be given by
. . m+1)°(m+2
eff (:uBGRSSE 1 Hsrs ) = % (24)
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For example, if m =6, eff ({es, fparsse ) = % = 4.356.

Now we will compare the fi,..s eStimators with ji... based on the same number of
measured units. For uniform (0,1), we know that

N 1
Var = 2
(:uRSS) 6m(m+l) (25)
From (16) and (25), the efficiency of figpsso With respect to fi. is given by
- - Var( 2(m+1fm+2
eff (#BGRSSO’ Hgss ) = (IuRSS ) = ( )( ) (26)

Var(flgensso) ~ M>+10m+1

2(m+1)m+2)
m? +10m+1
Hacrsse With respect to 1. IS given by

It is clear that >1. For even sample size, from (23) and (25) the efficiency of

Var(ji,) _ 2m+3Ym+2)
Var(ﬁBGRSSE ) m(m + 9)

eff (:aBGRSSE + Hgss ) = (27)

2(m+1)m+2)
m(m+9)

BGRSS is more efficient than RSS in estimating the mean of the standard uniform
distribution.

It is easy to show that >1. From Equations (26) and (27) it is obvious that

4.2 Normal distribution

Let X,, X,,..., X, constitute a random sample from normal population with mean 0 and
variance 1. Let us define the error function Erf(z) to be the integral of the Gaussian

distribution as given by Erf (z) = Ie’tzdt. The random variable X ., has the cdf
0

2
N

l 9
Fruey (X) = 1+53(—1+ Erf {%D ,

with mean E(X )= —1.48501 and variance Var(X ., )= 0.357353. Also, the median X g
has cdf

© 2008 University of Salento - SIBA http://siba2.unile.it/ese 9
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2
X X
128 —-325Erf| — |+ 345Erf| —
[ﬁ} [ﬁ}
5 3 4
1 X X X
F.o(X)=—|1+Erf| — —175Erf| — | +35Erf| ——= ,
o0 () 256[ LED 75

with mean E(X(sig)): 0 and Var(X(sig)): 0.166101. The maximum X 4, has the cdf

Fig(X) = 5%(“ Erf {%D ,

with mean E(X 4 )=1.48501 and Var(X 4 )= 0.357353.

It is clear that E(flpereso)=0 and the variance Var(fiyqqeso )= 0.0326225. By Equation (9)
the SRS estimator of normal mean from a sample of size 9 has the variance
Var(fig )= 0.11111 . Therefore the efficiency of BGRSSO with respect to SRS is given by

n n 0.11111
eff (:uBGRSSO’ Hsrs ) ierees——

= = 3.406.
0.0326225

4.3 Logistic distribution

If X,,X,,..., Xy constitute a random sample from logistic distribution with parameters 0 and
1, then the random variable X .o has the cdf

1Y
F(xg)(x) = 1_(1—1+exj \

with mean E(X(lg)): —2.71786 and Var(X(w)):l.76245 . Also, the median X4, has the
cdf given by

Fag () = (1:3 7 126+ 0* (84 + e*(36 + e*(0.+ %)),

mean E(X(sig)): 0, Var(X(sig)): 0.442646 , and the maximum X 4, has
1
F(9:9) (x) = AL
(l+e )
with mean E(X 4 )=2.71786 and Var(X g )=1.76245 .

It is clear that E(fggreso)=0 and variance Var(iigqrsso ) = 0.146946 . From Equation (9), the
SRS estimator of logistic mean from a sample of size 9 has the variance

© 2008 University of Salento - SIBA http://siba2.unile.it/ese
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Var(fig ) = 0.36554 . Therefore, from (8) we have

A n 0.36554
eff , =YY" = 92.487
(:uBGRSSO :uSRS) 0146946

We can see that the BGRSS method is more efficient than the SRS for estimating the mean
of the uniform distribution, normal distribution and logistic distribution based on the same
number of measured units.

5. Simulation study

In this section, we compare the efficiency of the proposed estimators of the population mean
using BGRSS method relative to SRS method. Three symmetric distributions, namely,
uniform, normal and logistic, and also three asymmetric distributions, exponential, beta and
gamma are considered. We compare the average of 70,000 sample estimates using
k=1,2,...,7 corresponding to the sample sizes m=3,6,...,21 respectively. If the distribution

is symmetric the efficiency of the BGRSS relative to SRS can be obtained using Equation
(8). But if the distribution is asymmetric the efficiency is defined as:

Var(l[tSRS )

ff (Hacrss + Hsrs ) = ’
e (:uBGRSS luSRS) MSE(ﬁBGRss)

(28)

where the MSE(fgeess) IS the mean square error of the figerss » and

MSE(fgarsso ) = Var (fparsso )+ (E(fsgrsso )~ ) - Results of the efficiency and bias values
are given in Table 1. Based on Table 1, we may conclude the following:

(1) Gain in efficiency is obtained by using BGRSS compared to SRS for estimating
the population mean for different values of m if the underlying distribution is
symmetric about its mean. For example, for m =9, the efficiency of the BGRSS
is 6.420 for estimating the population mean of a uniform distribution U (0,1).

(2) When comparing the efficiencies obtained for the symmetric distributions
considered in this study, the BGRSS is most efficient for estimating the mean of
the uniform distribution.

(3) For asymmetric distributions considered in this study, the BGRSS mean estimator
has a small bias. For example, if the distribution is B(7,4) with sample size

m =9, the efficiency of BGRSS is 3.684 with bias 0.006.

6. Example for real data set

In this section, a collection of a real data set is used to illustrate the BGRSS for estimating the
population mean. These data consists of height (H), and the weight (W) of 348 students.

Table 2 contains the summary statistics of the data. We will show how to use the RSS and
BGRSS to estimate the mean of the students height based on their weight. It is known that the
coefficient of skewness should be close to zero for symmetrically distributed data. But since
the coefficient of skewness of the weight and height are 1.1954 and 0.0289, respectively, so
that these data are asymmetrically distributed.

© 2008 University of Salento - SIBA http://siba2.unile.it/ese 11
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To illustrate the RSS and BGRSS methods, we first fix the values of height (H) and do the
ranking based on the values of the weight (W) . Let k=2, then m=6. For estimating the
mean of height consider the following steps:

Step 1: Randomly select 6 independent simple random samples each of size 6 ordered pairs

W,H) as:

Set 1:{(47, 159),(35, 146),(60, 145),(37, 144),(61, 173),(34, 139)}

Set 2:{(33, 146), (36, 137), (52, 170), (48, 160), (73, 162), (62, 165)}
Set 3:{(54, 160), (56, 165), (39, 151), (37, 155), (55, 147), (46, 160)}
Set 4:{(40, 148), (68, 164), (51, 156), (36, 149), (60, 160), (95, 162)}
Set 5:{(40, 154), (54, 156), (33, 141), (34, 141), (37, 142), (41, 158)}
Set 6:{(50, 158), (56, 166), (87, 155), (37, 144), (40, 138), (49, 163)}.

Step 2: For each set in Step 1, rank the pairs within each set based on their weight (in bold)
from the lowest to highest as shown below:

Set 1: (34,139),(35,146),(37,144),(47,159),(60,145),(61,173)}
Set 2: (33,146),(36,137),(48,160),(52,170),(62,165),(73,162)}
Set 3: (37,155),(39,151),(46,160),(54,160),(55,147),(56,165)}
Set 4: (36,149),(40,148),(51,156),(60,160),(68,164),(95,162)}
Set 5: (33,141),(34,141),(37,142),(40,154),(41,158),(54,156)}
Set 6: (37,144),(40,138),(49,163),(50,158),(56,166),(87,155)}

Step 3: Now, we will consider the SRS, RSS and BGRSS as:
1. Under SRS, we have 6 estimates of the mean. Let /1, g be the mean of the ith set

(1=1,2,...,6). So we have:

i srsy =151, fiyy spsp =156.66 , [y sps3 =156.33 , [y spsq =156.5, 1y spss =148.66
i srse =154,

2. Under RSS method, from the ith set, select and measure the height corresponding to the
i th ordered weight values. The six RSS height are: 139,137,160,160,158 and 155. Hence, the
RSS estimator of the mean is given by:

~ 139+137+160+160+158+155 _ 909 _
Hy rss = = =151.5
' 6 6

3. Under BGRSS, the lowest ranked units are measured from the first two sets, the median is
measured from the third and fourth sets and largest ranked units are measured from the last
two sets. Thus, height values considered are: 139, 146, 157.5, 158, 156, 155. The mean height
can be estimated using BGRSS as:

" 139+146+157.5+158+156+155 _ 911.5
Hy Borss = 6 = 6 =151.92.

Table 3 provide the means, variances and the efficiencies based on 50,000 simulated values

© 2008 University of Salento - SIBA http://siba2.unile.it/ese 12
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of f1,, s @NA 1y, gorss - From Table 3, the estimated mean is found to be close to the real

value of the population mean. Also, we can see that the BGRSS method is more efficient than
the SRS for estimating the population mean of the height.

7. Summary

A gain in efficiency is obtained using BGRSS for estimating the population mean. It is found
that BGRSS is more appropriate for estimating the population mean of symmetric
distributions than asymmetric distributions considered in this study. Thus, it is recommended
to use BGRSS for estimating the population mean of symmetric distribution, also for
estimating the mean of symmetric distributions when the sample size is small since the bias is
very negligible.
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Appendix: Tables

Table 1 - The efficiency values for estimating the population mean using BGRSS with respect to
SRS with m= 3,6,...,21.

Distribution m=3 m=6 m=9 m=12 m=15 m=18 m=21
Uniform Eff 2000 4.265 6.420 9.439 11.567 14.977 17.155
0,1)

Normal (0,1)  Eff 1917 2883 3515 3.984 4.343 4.655 4.925

Logistic Eff  1.841 2281 2524 2661 2785 2812  2.823
(0.1)

Exponential Eff 1638 1484 0972  0.597 0.387 0.265 0.194

(1)
Bias 0.000 0135 0229 0309 0369 0424  0.470

Beta (7,4) Eff 1.994 3.087 3.684  3.957 3.843 3.550 3.143
Bias 0.000 0.004 0.006 0.008 0.010 0.011 0.012

Gamma Eff 1759 1926 1456 0935 0636 0451  0.332
(2.1)

Bias 0.000 0.140 0.241  0.328 0.394 0.451 0.501

Table 2 - Summary statistics of 348 students data.

Mean Variance Skewness
Weight (W) in kg 50.3017 275.7560 1.1954
Height (H) incm 152.3250 131.0560 0.0289

Correlation coefficient 0.6775

Table 3 - Summary results of estimating the population mean of the height of 348 students using
BGRSS method with m= 3,6,...,18.

Size SRS BGRSS Efficiency
m Mean MSE Mean MSE
3 152.353 43.4037 152.359 31.3387 1.38496
6 152.332 21.4179 151.623 10.1066 2.11918
9 152.328 14.1717 151.278 6.59716 2.14815
12 152.323 10.6051 151.048 5.23777 2.02473
15 152.313 6.94952 150.702 4.57425 1.51924
18 152.339 5.82804 150.586 4.56858 1.27563

© 2008 University of Salento - SIBA http://siba2.unile.it/ese 14



Some variations of ranked set sampling

References

Al-Saleh M. F. and Al-Omari A. I. Multistage ranked set sampling. Journal of Statistical
Planning and Inference. 2002;102:273--286.

Dell T. R., and Clutter J. L. Ranked set sampling theory with order statistics background.
Biometrika. 1972;28:545--555.

Jemain A. A., and Al-Omari, A. I. Double percentile ranked set samples for estimating the
population mean. Advances and Applications in Statistics. 2006a;6(3):261--276.

Jemain A. A. and Al-Omari A. |. Double quartile ranked set samples. Pakistan Journal of
Statistics. 2006b;22(3):217--228.

Mclintyre G. A. A method for unbiased selective sampling using ranked sets. Australian
Journal of Agricultural Research. 1952;3:385--390.

Muttlak H. A. Investigating the use of quartile ranked set samples for estimating the
population mean. Journal of Applied Mathematics and Computation. 2003a;146:437--
443.

Muttlak H. A. Modified ranked set sampling methods. Pakistan Journal of Statistics.
2003b;19(3):315--323.

Muttlak H. A. Median ranked set sampling, Journal of Applied Statistical Sciences.
1997;6(4):577--586.

Ozturk O. and Deshpande J.V. Ranked Set Sample nonparametric quantile confidence
intervals. Journal of Statistical Planning and Inference. 2006;136:570--577.

Samawi H, Abu-Dayyeh W and Ahmed S. Extreme ranked set sampling, The Biometrical
Journal. 1996;30:577--586.

Takahasi K., and Wakimoto K. (1968). On the unbiased estimates of the population mean
based on the sample stratified by means of ordering. Annals of the Institute of Statistical
Mathematics. 1968;20:1--31.

© 2008 University of Salento - SIBA http://siba2.unile.it/ese 15



