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Abstract. Balanced groups ranked set samples method (BGRSS) is suggested 

for estimating the population mean with samples of size km 3=  where 

1,2,...)=(k  . The BGRSS sample mean is considered as an estimator of the 

population mean. It is found that the BGRSS produces unbiased estimators 

with smaller variance than the commonly used simple random sampling (SRS) 

for symmetric distributions considered in this study. For asymmetric 

distributions that we considered, the BGRSS estimators have a small bias. A 

real data set is used to illustrate the BGRSS method.  

 

Keywords. Simple random sampling; ranked set sampling; balanced groups 

ranked set sampling. 

 
1. Introduction 
 
The RSS suggested by McIntyre [5] for estimating mean pasture yields was found to have 
greater efficiency than SRS. He also suggested that this method is particularly suitable where 
the experimental or sampling units in a study can be more easily ranked than quantified. To 
obtain a sample of size m  using RSS, randomly select m  simple random samples each of 
size m  from the target population and rank the units within each sample with respect to a 
variable of interest. The i th smallest rank united of the i th sample )1,2,...,=( mi  is drawn 
and measured. This method is repeated n  times if needed to obtain a sample of size mn  out 
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of nm2  units. Takahasi and Wakimoto [11] proposed the same method with the mathematical 
theory of ranked set sampling. Dell and Clutter [2] showed that the mean of the RSS is an 
unbiased estimator of the population mean, whether there are errors in ranking or not. 
Samawi et al. [11] investigated the extreme ranked set samples (ERSS) for estimating a 
population mean. Muttlak [8] suggested using median ranked set sampling (MRSS) to 
estimate the population mean. Muttlak [6, 7] suggested quartile ranked set sampling (QRSS) 
and percentile ranked set sampling (PRSS) for estimating the population mean and showed 
that PRSS and QRSS produced unbiased estimators of the population mean when the 
underlying distribution is symmetric. Jemain and Al-Omari [4] suggested double quartile 
ranked set sampling (DQRSS) for estimating the population mean and showed that the mean 
based on DQRSS is an unbiased estimator and more efficient than those based on SRS, RSS 
and QRSS if the underlying distribution is symmetric. Details about RSS can be found in 
several works (see Al-Saleh and Al-Omari [1], Jemain and Al-Omari [3] and Ozturk and 
Deshpande [9]).This paper is presented as follows: in Section 2, we describe the BGRSS and 
illustrate two cases as examples. In Section 3, we derive the BGRSS estimators for the 
population mean for two cases when the sample size is odd or even. In addition, we study the 
properties of these estimators. In Section 4, results based on the uniform, normal and logistic 
distributions are provided. Simulation study using BGRSS for several distributions is 
presented in Section 5. This is followed by a real data set to illustrate the BGRSS, as given in 
Section 6. Finally, we summarize our results in Section 7.  
 
2. Descriptions of BGRSS  
 
The balanced groups ranked set sampling (BGRSS) can be described as follows:   
Step 1: Randomly select km 3=  1,2,...)=(k  sets each of size m  from the target population, 
and rank the units within each set with respect to the variable of interest.  
Step 2:Allocate the k3  selected sets randomly into three groups, each of size k  sets.  
Step 3: For each group in step (2), select for measurement the lowest ranked unit from each 
set in the first group, and the median unit from each set in the second group, and the largest 
ranked unit from each set in the third group.  
By this way we have a measured sample of size km 3=  units in one cycle. The Steps 1-3 can 
be repeated n  times to increase the sample size to kn3  out of nk 29  units. 
The BGRSS method differs from the usual RSS and ERSS methods. In the usual RSS we 
identify and measure the i th smallest ranked unit of the i th sample )1,2,...,=( mi . In the 

case when m  is odd, for ERSS we select the smallest ranked unit from the first 
2

1m  sets 

and the largest ranked unit from the other 
2

1m  sets. In the case when m  is even we select 

the smallest ranked unit from the first 
2
m  sets and the largest ranked unit from the other 

2
m  

sets. But in the BGRSS method, the measured units consist of 
3
m  minima, 

3
m  medians and 

3
m  maxima. 

Indeed, the BGRSS method is easy to be applied since we only need to identify and measure 
the lowest rank units of the first k  sets, and the medians of the second k  sets, and the largest 
rank units from the last k  sets. Here, k  is any positive integer. However, for practical 
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purposes, k  should be small in order to have a small sample size, so that the ranking is easy 
and errors in ranking is reduced. Let us consider the following example to illustrate BGRSS 
for estimating the population mean. 
 
 
Example 
Case 1: Let 1=k , so 3=m . Then we may have 3 sets of SRS each of size 3, as follows: 

 
     .,,,,,,,, 333231232221131211 XXXXXXXXX  

 
After ranking the units with respect to a variable of interest allocate them into three groups 
where each contains one set of size three units as shown below: 
First group,  

 ,,,= 3):1(33):1(23):1(11 XXXA  
 
Second group,  

 ,,,= 3):2(33):2(23):2(12 XXXA  
 
Third group,  

 .,,= 3):3(33):3(23):3(13 XXXA  
 
Now, select the smallest rank unit form the first group, the median from the second group, 
and the largest rank unit from the third group as:  
 

 )(= 13):1(1 AminX , )(= 23):2(2 AmedianX , ).(= 33):3(3 AmaxX   
 
The final set  3):3(33):2(23):1(1 ,, XXX  is the BGRSS of size 3. These units are used for estimating 
the mean   of the variable of interest as:  
 

.
3

=ˆ 3):3(33):2(23):1(1 XXX
BGRSSO


  

 
It is of interest to note that if 1=k , the BGRSSO is the same as the usual RSS method in the 
case of estimating the population mean. 
Case 2: If 2=k , then 6=m . So, we have six SRS sets each of size six. We first rank the unit 
within each set with respect to a variable of interest, and then allocate them into 3 groups 
where each contains two sets each of size six. After ranking and applying the BGRSS 
method, the sets appear as shown below:  
 

  
  









6):2(66):2(56):2(46):2(36):2(26):2(12

6):1(66):1(56):1(46):1(36):1(26):1(11

,,,,,=
,,,,,=

Firstgroup XXXXXXA
XXXXXXA
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    
    









6):4(66):4(56):4(46):4(36):4(26):4(14

6):3(66):3(56):3(46):3(36):3(26):3(13

,,,,,=
,,,,,=

pSecondgrou XXXXXXA
XXXXXXA

 

 
  
  









6):6(66):6(56):6(46):6(36):6(26):6(16

6):5(66):5(56):5(46):5(36):5(26):5(15

,,,,,=
,,,,,=

Thirdgroup XXXXXXA
XXXXXXA

 

Finally, the set    






  6):6(66):5(66):4(46):4(36):3(46):3(36):2(16):1(1 ,,

2
1,

2
1,, XXXXXXXX  is a BGRSS 

of size 6, which can be used for estimating the population mean as:  
 

    





  6):6(66):5(66):4(46):4(36):3(46):3(36):2(16):1(1 2

1
2
1

6
1=ˆ XXXXXXXXBGRSSE  

 
In the following section, we shall give some notations and introduce an estimator of the 
population mean using BGRSS.  
 
3. Estimation of the population mean using BGRSS 
 
Let mXXX ,...,, 21  be a random sample with probability density function )(xf , with mean  , 
and variance 2 . Let mmmmmm XXXXXXXXX ,...,,;...;,...,,;,...,, 212222111211  be independent 
random variables all with the same cumulative distribution function )(xF . If m  is odd, let 

):(1miX  be the lowest rank unit of the i th sample )1,2,...,=( ki , and 






  mmi

X
:

2
1  be the median of 

the i th sample )2,...,21,=( kkki  , and let ):( mmiX  be the largest rank unit of the i th 
sample )2,...,31,22=( kkki  . Note that, the measured units, ):(1):2(1):1(1 ,...,, mkmm XXX  are 
iid, 







 







 

 mmkmmk
XX

:
2

12:
2

11
,...,  are iid and ):(3):1(2 ,..., mmkmmk XX   are iid. However, all units are 

mutually independent but not identically distributed and will be denoted as the measured 
BGRSSO. The BGRSSO estimator of the population mean can be defined as:  
 

,
3
1=ˆ ):(

3

12=:
2

1

2

1=
):(1

1= 









 







 


mmi

k

kimmi

k

ki
mi

k

i
BGRSSO XXX

k
  (1) 

 
with variance  

 

 

  .Var

VarVar

9
1=ˆVar ):(

3

12=

:
2

1

2

1=
):(1

1=

2





















































 



mmi

k

ki

mmi

k

ki
mi

k

i

BGRSSO X

XX

k
  (2) 
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In the case of even sample size, let ):(1miX  be the lowest rank unit of the i th sample 

)1,2,...,=( ki , and 

















 







 mmimmi

XX
:

2
2:

22
1  be the median of the i th sample 

)2,...,21,=( kkki  , and let ):( mmiX  be the largest rank unit of the i th sample 
)2,...,31,22=( kkki  . Note that, ):1(1 mX , ):2(1 mX ,..., ):(1mkX  are iid, 



















 







 mmkmmk

XX
:

2
21:

2
12

1 , 

















 







 mmkmmk

XX
:

2
22:

2
22

1 ,..., 

















 







 mmkmmk

XX
:

2
22:

2
22

1  are iid 

and ):1(2 mmkX  , ):2(2 mmkX   ,..., ):(3 mmkX  are iid. However, all measured units are mutually 
independent and not identically distributed and will be denoted as the measured BGRSSE. 
The BGRSSE estimator of the population mean is defined as:  
 

,

2
1

3
1=ˆ ):(

3

12=

:
2

2:
2

2

1=
):(1

1=































































 











mmi

k

ki

mmimmi

k

ki
mi

k

i

BGRSSE X

XXX

k
  (3) 

 
with variance  
 

 

 

 

.

Var

,Cov2

VarVar

4
1

Var

9
1=ˆVar

):(

3

12=

:
2

2:
2

:
2

2:
2

2

1=

):(1
1=

2



























































































































 















 











mmi

k

ki

mmimmi

mmimmi

k

ki

mi

k

i

BGRSSE

X

XX

XX

X

k
  (4) 

 

If the underlying distribution is symmetric about  , then ):1():( = mim

d

mi XX  , so that 
   ):1():( = mimmi XEXE   and    ):1():( Var=Var mimmi XX   for all i ,  ,1,2,...,= mi  (see David 

and Nagaraja 2003). Based on these results and since the measured k  units in each group are 
iid, we have:  

    0,=ˆ0,=ˆ BGRSSEBGRSSO EE   (5) 
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and Equations (3) and (4) will be respectively as  
 

    ,VarVar2
9
1=ˆVar

:
2

1):(1 































  mmmBGRSSO XX

k
  (6) 

 
and 
 

 

 

.,Cov
2
1

Var
2
12Var

9
1=ˆVar

:
2

2:
2

:
2

):(1



























































 

















mmmm

mmm

BGRSSE XX

XX

k
  (7) 

 
The properties of BGRSS̂  are: 
1. If the underlying distribution is symmetric about the population mean  , then  

a) BGRSS̂  is an unbiased estimator of the population mean  .  
b)    SRSBGRSS  ˆVar<ˆVar .  

2. If the underlying distribution is asymmetric about  , then the mean square error of BGRSS̂  
is less than the variance of SRS̂  for some distributions considered in this study, specially 
with small sample size.  
 
In the following section we will illustrate the BGRSS method for estimating the population 
mean of the uniform, normal and logistic distributions.  
 
4. Results for Some Selected Distributions 
 
The efficiency of BGRSS̂  with respect to SRS̂  for estimating the population mean is defined 
as: 
 

   
  .ˆVar

ˆVar=ˆ,ˆ
BGRSS

SRS
SRSBGRSSeff


  (8) 

 
The SRS  estimator of the population mean from a sample of size m  has the variance given 
by  
 

  .=ˆVar
2

mSRS


  (9) 

 
 
 
 



Some variations of ranked set sampling 
 

© 2008 University of Salento - SIBA http://siba2.unile.it/ese                                                                                                   7 

4.1  Uniform distribution 
 
If mXXX ,...,, 21  constitute a random sample from standard uniform distribution, then we 
have two cases. 
First: When m  is odd, the minimum ):(1mX  has beta distribution with parameters  m1,  . So 
that  
 

   ,)(=)( :1:1 xFBxF mm  (10) 
 
with mean and variance, respectively, are  
 

   
   

.
21

=Varand
1

1= 2):(1):(1  mm
mX

m
XE mm  (11) 

 

The median 






  mmX

:
2

1  has beta distribution with parameters 





 

2
1,

2
1 mm , so that 

 
 ,)(=)(

2
1:

2
1

:
2

1 xFBxF mm
mm 






   (12) 

 
and the mean and variance, respectively, are 
 

  .24
1=Varand

2
1=

:
2

1:
2

1 


























 







  m

XXE
mmmm  (13) 

 
Finally, the maximum ):( mmX  has beta distribution with parameters  ,1m  . Therefore 
 

   ,)(=)( :: xFBxF mmmm  (14) 
  

   
   

.
21

=Varand
1

= 2):():(  mm
mX

m
mXE mmmm  (15) 

 

From (11), (13) and (15), we have  
2
1=ˆBGRSSOE  . Hence, BGRSSO̂  is an unbiased estimator 

with variance given by 
 

 
   

.
2112

110=ˆVar 2

2



mmm

mm
BGRSSO  (16) 

 
From (8), (9) and (16), the efficiency of BGRSSO̂ with respect to SRS̂  is given by 
 

     .
110
21=ˆ,ˆ, 2

2




mm
mmeff SRSBGRSSO   (17) 
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For example, if 3=m , we have   2.=
40
80=ˆ,ˆ BGRSSOSRSeff   Note that when, 3=m , the 

efficiency value is equal to that obtained using the usual RSS  method. For 9=m  , we have 

  6.395=
4644

29700=ˆ,ˆ SRSBGRSSOeff  . 

Second: If m is even, then 






 mmX

:
2

 has beta distribution with parameters 





 

2
2,

2
mm . So that  

 
 ,)(=)(

:
2

:
2

xFBxF
mm

mm






  (18) 

 
and 
 

.
1)4(

=Varand
1)2(

= 2:
2

:
2 




































 m

mX
m
mXE

mmmm  (19) 

 

Also, 






  mmX

:
2

2  has beta distribution with parameters 





 

2
,

2
2 mm . Therefore,  

 
 .)(=)(

:
2

2
:

2
2 xFBxF

mm
mm 






   (20) 

 
Thus,  
 

.
1)4(

=Var
1)2(
2= 2:

2
2:

2
2 































 







  m

mXand
m

mXE
mmmm  (21) 

 
The variance of the median given by  
 

  .124
=

2
1Var

:
2

2:
2 
































 







 mm

mXX
mmmm  (22) 

 
Based on Equations (19), (21) and (22), it can be shown that  
 

 
   

.
2112

9=ˆVar 2 


mm
m

BGRSSE  (23) 

 
From (8), (9) and (23) the efficiency of BGRSSE̂  with respect to SRS̂  can be given by  
 

     
  .

9
21=ˆ,ˆ

2




mm
mmeff SRSBGRSSE   (24) 
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For example, if 6=m ,   4.356.=
90
392=ˆ,ˆ BGRSSESRSeff   

Now we will compare the BGRSS̂  estimators with RSS̂  based on the same number of 
measured units. For uniform (0,1), we know that  
 

   .16
1=ˆVar
mmRSS  (25) 

 
From (16) and (25), the efficiency of BGRSSO̂  with respect to RSS̂  is given by  
 

   
 BGRSSO

RSS
RSSBGRSSOeff




ˆVar
ˆVar=ˆ,ˆ   .

110
212= 2 


mm
mm  (26) 

 

It is clear that    1>
110
212

2 


mm
mm . For even sample size, from (23) and (25) the efficiency of 

BGRSSE̂  with respect to RSS̂  is given by 
 

   
 BGRSSE

RSS
RSSBGRSSEeff




ˆVar
ˆVar=ˆ,ˆ   

  .
9

212=



mm

mm  (27) 

 

It is easy to show that   
  1>

9
212




mm
mm . From Equations (26) and (27) it is obvious that 

BGRSS is more efficient than RSS in estimating the mean of the standard uniform 
distribution. 
 
4.2  Normal distribution 
 
Let 921 ,...,, XXX  constitute a random sample from normal population with mean 0 and 
variance 1. Let us define the error function )(zErf  to be the integral of the Gaussian 

distribution as given by dtezErf t
z

2

0

2=)( 
. The random variable 9):(1X  has the cdf  

 

,
2

1
512
11=)(

9

9):(1 













xErfxF  

 
with mean   1.48501=9):(1 XE  and variance   0.357353=Var 9):(1X . Also, the median 9):(5X  
has cdf  
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,
2

35
2

175

2
345

2
325128

2
1

256
1=)(

43

2

5

9):(5





























































xErfxErf

xErfxErf

xErfxF  

with mean   0=9):(5XE  and   0.166101=Var 9):(5X . The maximum 9):(9X  has the cdf  
 

,
2

1
512
1=)(

9

9):(9 













xErfxF  

 
with mean   1.48501=9):(1XE  and   0.357353=Var 9):(9X . 
It is clear that   0=ˆBGRSSOE   and the variance   0.0326225=ˆVar BGRSSO . By Equation (9) 
the SRS  estimator of normal mean from a sample of size 9 has the variance 

  0.11111=ˆVar SRS  . Therefore the efficiency of BGRSSO with respect to SRS is given by  
 

  3.406.=
0.0326225

0.11111=ˆ,ˆ SRSBGRSSOeff   

 
4.3 Logistic distribution 
 
If 921 ,...,, XXX  constitute a random sample from logistic distribution with parameters 0 and 
1, then the random variable 9):(1X  has the cdf  
 

,
1

111=)(
9

9):(1 








 xe

xF  

 
with mean   2.71786=9):(1 XE  and   1.76245=Var 9):(1X  . Also, the median 9):(5X  has the 
cdf given by  
 

       ,93684126
1

1=)( 5
99):(5

xxxxx
x

eeeee
e

xF 


 

 
mean   0=9):(5XE ,   0.442646=Var 9):(5X , and the maximum 9):(9X  has  
 

  ,
1

1=)( 99):(9 xe
xF


 

 
with mean   2.71786=9):(1XE  and   1.76245=Var 9):(9X  . 
It is clear that   0=ˆBGRSSOE   and variance   0.146946=ˆVar BGRSSO  . From Equation (9), the 
SRS  estimator of logistic mean from a sample of size 9 has the variance 
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  0.36554=ˆVar SRS  . Therefore, from (8) we have  
 

  2.487.=
0.146946
0.36554=ˆ,ˆ SRSBGRSSOeff   

 
We can see that the BGRSS  method is more efficient than the SRS  for estimating the mean 
of the uniform distribution, normal distribution and logistic distribution based on the same 
number of measured units.  
 
5. Simulation study 
 
In this section, we compare the efficiency of the proposed estimators of the population mean 
using BGRSS  method relative to SRS  method. Three symmetric distributions, namely, 
uniform, normal and logistic, and also three asymmetric distributions, exponential, beta and 
gamma are considered. We compare the average of 70,000 sample estimates using 

1,2,...,7=k  corresponding to the sample sizes 3,6,...,21=m  respectively. If the distribution 
is symmetric the efficiency of the BGRSS  relative to SRS  can be obtained using Equation 
(8). But if the distribution is asymmetric the efficiency is defined as:  
 

   
  ,ˆMSE

ˆVar=ˆ,ˆ
BGRSS

SRS
SRSBGRSSeff


  (28) 

 
where the  BGRSS̂MSE  is the mean square error of the BGRSS̂ , and 

      2ˆˆVar=ˆMSE   BGRSSOBGRSSOBGRSSO E . Results of the efficiency and bias values 
are given in Table 1. Based on Table 1, we may conclude the following:   
 

(1) Gain in efficiency is obtained by using BGRSS compared to SRS for estimating 
the population mean for different values of m  if the underlying distribution is 
symmetric about its mean. For example, for 9=m , the efficiency of the BGRSS 
is 6.420 for estimating the population mean of a uniform distribution (0,1)U . 

(2) When comparing the efficiencies obtained for the symmetric distributions 
considered in this study, the BGRSS is most efficient for estimating the mean of 
the uniform distribution. 

(3) For asymmetric distributions considered in this study, the BGRSS mean estimator 
has a small bias. For example, if the distribution is (7,4)B  with sample size 

9=m , the efficiency of BGRSS is 3.684 with bias 0.006.  
  

6. Example for real data set 
 
In this section, a collection of a real data set is used to illustrate the BGRSS for estimating the 
population mean. These data consists of height )(H , and the weight )(W  of 348 students. 
Table 2 contains the summary statistics of the data. We will show how to use the RSS and 
BGRSS to estimate the mean of the students height based on their weight. It is known that the 
coefficient of skewness should be close to zero for symmetrically distributed data. But since 
the coefficient of skewness of the weight and height are 1.1954 and 0.0289, respectively, so 
that these data are asymmetrically distributed. 
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To illustrate the RSS and BGRSS methods, we first fix the values of height )(H  and do the 
ranking based on the values of the weight )(W . Let 2=k , then 6=m . For estimating the 
mean of height consider the following steps:  
 
Step 1: Randomly select 6 independent simple random samples each of size 6 ordered pairs 

),( HW  as:  
 
Set 1:{(47, 159),(35, 146),(60, 145),(37, 144),(61, 173),(34, 139)}  
Set 2:{(33, 146), (36, 137), (52, 170), (48, 160), (73, 162), (62, 165)}  
Set 3:{(54, 160), (56, 165), (39, 151), (37, 155), (55, 147), (46, 160)}  
Set 4:{(40, 148), (68, 164), (51, 156), (36, 149), (60, 160), (95, 162)}  
Set 5:{(40, 154), (54, 156), (33, 141), (34, 141), (37, 142), (41, 158)}  
Set 6:{(50, 158), (56, 166), (87, 155), (37, 144), (40, 138), (49, 163)}. 

 
Step 2: For each set in Step 1, rank the pairs within each set based on their weight (in bold) 
from the lowest to highest as shown below:  

 
Set 1: (34,139),(35,146),(37,144),(47,159),(60,145),(61,173)}  
Set 2: (33,146),(36,137),(48,160),(52,170),(62,165),(73,162)}  
Set 3: (37,155),(39,151),(46,160),(54,160),(55,147),(56,165)}  
Set 4: (36,149),(40,148),(51,156),(60,160),(68,164),(95,162)}  
Set 5: (33,141),(34,141),(37,142),(40,154),(41,158),(54,156)}  
Set 6: (37,144),(40,138),(49,163),(50,158),(56,166),(87,155)} 

 
Step 3: Now, we will consider the SRS, RSS and BGRSS as: 
1. Under SRS, we have 6 estimates of the mean. Let SRSiH ,̂  be the mean of the ith set 

1,2,...,6)=(i . So we have: 
 

151=ˆ 1,SRSH , 156.66=ˆ 2,SRSH , 156.33=ˆ 3,SRSH , 156.5=ˆ 4,SRSH , 148.66=ˆ 5,SRSH , 
154,=ˆ 6,SRSH  

 
2. Under RSS method, from the i th set, select and measure the height corresponding to the 
i th ordered weight values. The six RSS height are: 139,137,160,160,158 and 155. Hence, the 
RSS estimator of the mean is given by:  
 

151.5=
6

909=
6

155158160160137139=ˆ ,


RSSH  

 
3. Under BGRSS, the lowest ranked units are measured from the first two sets, the median is 
measured from the third and fourth sets and largest ranked units are measured from the last 
two sets. Thus, height values considered are: 139, 146, 157.5, 158, 156, 155. The mean height 
can be estimated using BGRSS as:  
 

151.92.=
6

911.5=
6

155156158157.5146139=ˆ ,


BGRSSH  

 
Table 3 provide the means, variances and the efficiencies based on 50,000 simulated values 
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of SRSH ,̂  and BGRSSH ,̂ . From Table 3, the estimated mean is found to be close to the real 
value of the population mean. Also, we can see that the BGRSS method is more efficient than 
the SRS for estimating the population mean of the height.  
 
7. Summary 
 
A gain in efficiency is obtained using BGRSS for estimating the population mean. It is found 
that BGRSS is more appropriate for estimating the population mean of symmetric 
distributions than asymmetric distributions considered in this study. Thus, it is recommended 
to use BGRSS for estimating the population mean of symmetric distribution, also for 
estimating the mean of symmetric distributions when the sample size is small since the bias is 
very negligible. 
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Appendix: Tables 
 
Table 1 - The efficiency values for estimating the population mean using BGRSS with respect to 
SRS with m= 3,6,…,21. 
Distribution    3=m    6=m    9=m    12=m    15=m    18=m    21=m   

 Uniform 
(0,1)  

 Eff    2.000   4.265   6.420   9.439   11.567   14.977   17.155  

Normal (0,1)   Eff    1.917   2.883   3.515   3.984   4.343   4.655   4.925  
Logistic 

(0,1)  
 Eff    1.841   2.281   2.524   2.661   2.785   2.812   2.823  

Exponential 
(1)  

 Eff    1.638   1.484   0.972   0.597   0.387   0.265   0.194  

  Bias    0.000   0.135   0.229   0.309   0.369   0.424   0.470  
Beta (7,4)   Eff    1.994   3.087   3.684   3.957   3.843   3.550   3.143  

  Bias    0.000   0.004   0.006   0.008   0.010   0.011   0.012  
Gamma 

(2,1)  
 Eff    1.759   1.926   1.456   0.935   0.636   0.451   0.332  

  Bias    0.000   0.140   0.241   0.328   0.394   0.451   0.501  
 

 

Table 2 - Summary statistics of 348 students data. 
   Mean  Variance  Skewness  

Weight )(W  in kg 50.3017 275.7560 1.1954 
Height )(H  in cm 152.3250 131.0560 0.0289 

Correlation coefficient 0.6775   
 

Table 3 - Summary results of estimating the population mean of the height of 348 students using 
BGRSS method with m= 3,6,…,18. 

  Size   SRS   BGRSS Efficiency  
  m    Mean    MSE    Mean    MSE     
 3   152.353   43.4037   152.359   31.3387   1.38496  
6   152.332   21.4179   151.623   10.1066   2.11918  
9   152.328   14.1717   151.278   6.59716   2.14815  

12   152.323   10.6051   151.048   5.23777   2.02473  
15   152.313   6.94952   150.702   4.57425   1.51924  
18   152.339   5.82804   150.586   4.56858   1.27563  
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