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Abstract: Geometric programming provides a powerful tool for solving non-

linear problems where non-linear relations can be well presented by an 

exponential or power function. In real life situations applications of geometric 

programming are sound in engineering design, sampling design etc. In this 

paper, the problem of allocation in first stage and second stage units in 

multivariate two stage sampling is considered. The problem is formulated as a 

convex programming problem with linear objective function. A solution 

procedure is developed to solve the resulting mathematical programming 

problem by using geometric programming technique. The computational details 

of the procedure are illustrated through a numerical example. 

 

Keywords: Two Stage sampling, Non-linear programming, convex programming, 

geometric programming. 

 

 

1. Introduction  
 

In many surveys the use of two stage sampling designs often specifies two stages of selection: 

clusters or primary sampling units (PSUs) at the first stage, and subsamples from PSUs at second 

stage as a secondary sampling units (SSUs). For the large-scale surveys, stratification may 

precede selection of the sample at any stage. Analysis of two-stage designs are well documented 

when a single variable is measured and the methods to obtain the optimum allocations of 

sampling units to each stage are readily available The problem of optimum allocation in two-

stage sampling with a single character is described in standard texts on sampling (see Cochran 
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[1] ). However when more than one characteristic are under study the procedures for determining 

optimum allocations are not well defined.  

The traditional approach is to estimate optimal sample size for each characteristic individually 

and then choose the final sampling design from among the individual solutions. In practice it is 

not possible to use this approach of individual optimum allocations because an allocation, which 

is optimum for one characteristic, may not be optimum for other characteristic. Moreover, in the 

absence of strong positive correlation between the characteristics under study the individual 

optimum allocations may differ a lot and there may be no obvious compromise. In certain 

situations some criterion is needed to work out an acceptable sampling design which is optimum 

in some sense for all the characteristics. Geometric programming (GP), a systematic method for 

solving the class of mathematical programming problems that tend to appear mainly in 

engineering design, was first developed by Duffin and Zener in the early 1960s, and further 

extended by Duffin et al. [4]. Davis and Rudolph [3] use geometric programming to optimal 

allocation of integrated samples in quality control. Shiang [6] and Shaojian et.al [7] used G.P for 

engineering design problems. The paper is presented as follows: First an allocation problem is 

formulated in a two-stage sampling design in section 2 and geometric programming approach is 

used to solve it  section 3.  A numerical illustration is then presented in section 4 and the final 

comments and conclusion is given in section 5. 

 

 

2. Formulation of the Problem 
 

Let us assume that the population consists of NM  elements grouped into N first-stage units of M 

second-stage units each. Let n and m be the corresponding sample sizes selected with equal 

probability and without replacement at each stage. Let hrjy  be the value of the population at 

thr secondary stage unit in the thh primary stage unit for thj character, 

 1,2,..., , 1,2,..., , 1,..., .h N r M j p    

We define for thj  character: 

 
1

m
hrj

hj

r

y
y

m

 = Sample mean per sub unit at the 
thh primary stage unit. 

 
1

n
hj

j

h

y
y

n

 = Overall sample mean per sub unit (element). 

 
1

M
hrj

hj

r

y
Y

M

 = Mean per element at the 
thh  first stage unit. 

 
1

N
hj

j

h

Y
Y

N

 = Mean per element in the population. 

 
 

2

2

1 1

N
hj j

bj

h

Y Y
S

N





 = True variance between first stage unit means. 
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 
 

 

2

2

1 1 1

N M
hrj hj

wj

h r

y Y
S

N M 





  = True variance within first stage units. 

In case of equal first-stage units an unbiased estimate of jY  is jy  with its sampling variance as, 

  2 21 1 1 1
, 1,...,j bj wjV y S S j p

n N nm NM

   
       
   

     (1) 

(see proof in Appendix) 
 

The total cost function of a two stage sampling procedure may be given by: 

 

1 2C C n C mn            (2) 

 

Where:  

 1C The cost of the survey in approaching a single primary stage unit. 

 2 jC   The cost of enumerating the thj  character per element. 

 2 2

1

p

j

j

C C


 = The cost of enumerating all the p  characters per SSu.  

 

Suppose that it is required to find the values of n and m so that the cost C is minimized, subject 

to the upper limits on the variances. If N and M are large, then from (1), the limits on the 

variances may be expressed as: 

 
2 2

, 1,...,
bj wj

j

S S
v j p

n nm
     .       (3) 

 

Where jv  is the upper limits on the variances of various characters. Here 2

bjS  is the variance 

among primary stage units means and 2

wjS  is the variance among subunits within primary units 

for j
th

 characteristic respectively. 

The problem therefore reduces to find n and m which: 

 

1 2Minimize C C n C nm           (4) 
2 2

, 1,...,
bj wj

j

S S
Subject to v j p

n nm
         (5) 

1, 1n m            (6) 

 

(In each primary stage unit at least one secondary stage unit has to be enumerated as negative 

values of  PSUs and SSUs are of no practical use).  

 

 

3. Geometric programming approach 
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Geometric programming (GP) is a technique for minimizing a function called a “posynomials” 

subject to several constraints. A posynomial is a polynomial in several variables with positive 

coefficients in all terms and the power to which the variables are raised can be any real numbers. 

Both the cost function and the variance constraint functions are posynomials. G.P transforms the 

primal problem of minimizing a “posynomial” subject to “posynomial” constraints to a dual 

problem of maximizing a function of the weights on each constraint. Usually there are fewer 

constraints than strata, so the transformation simplifies the procedure. The problem (4) - (6) as 

such takes the following mathematical form: 

 

Find the vector x =   21, xx  ( nx 1   and nmx 2 )  

which minimizes C(x )  =  nmCnCxC
i

ii 21

2

1




      (7 )  

subject to g(x )= pqv
x

a
q

i q

iq
,...,1,

2

1




       (8 )  

and 2,1,0  ixi           (9 )  

 

We have substituted in the above equations: 

pqforaSaSnmxnx qwqqbq ,...,1,,, 2

2

1

2

21    

 

It may be noted that the objective function (7) is linear and the constraints (8) are nonlinear and 

the standard GP (Primal) problem stated with two subscripts is reduced to: 

 

Minimize  xf0  

Subject to   pqxfq ,...1,1          (10 )  

njx j ,...1,0   

 

Where posynomial q is: 

 

pqxdxdxf ji

qi

n

j

p

jiq
ij ,...,1,0,0,0,)(

1









 

 

,      (11 )  

 

where k  denotes the number of posynomial terms in the function, n  is the number of variables 

and the exponents ijp  are real constants. For our allocation problem, the objective function C(x) 

given in (7) and (8) has 0,1,2,2 21122211  ppppnk , ,2,1,  iCd ii  and the thq  

constraint has 0,1,2,2 21122211  ppppnk  and .2,1,  iad iqi  (see Maqbool & 

Pirzada[5]). The dual of GP problem stated in (10) is given by: 
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 
  
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


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





























 
p

q

w

qi

i

p

q qi

w

i

i
qi

ii

w
w

d
Maximize

1 ][0 ][

][

       (12 )  

[0]

subject to 1i

i

w


           (13 )  

 

0
0 ][


 

p

q qi

iij wP           (14 )  

p

i

ki

pqw

,.....,1

,.....,0,0




          (15 )  

 

Following Woolsey and Swanson [9] and Duffin et al [4], the allocation problem (7) & (8) will 

be solved in four steps as follows: 

 
Step 1: The Optimum value of the objective function is always of the form 

 
1 2

0

1 2

' int

'

. .
( )

.
......

' int

' int

K

w w

w

K

w s in the first constra s

w s in the last con

Coeff of first term Coeff of Second term
C x

w w

Coeff of last term

w

w s in the first constra s

w s in the last constra s







   
    
   

 
  

 

 
 
 

 
 
 




intstra s




















  (16) 

 

For our problem the objective function is: 

 

Cos t  =      43

21

21

2

2

1

1 ww

ww

kk
w

C

w

C
















       (17) 

Where  
2

2
2

1

1
1 ,

v

a
k

v

a
k   

 

Step 2: The equations generated for geometric program for the weights are 
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 1' functionobjectivetheinsw        (18) 

 

and for each primal variable jx  given n variables and k terms 

    0exp
1




termthatinxononenttermeachforw j

m

i

i     (19) 

In our case: 

 

121 ww  (Normalization condition, see (13))      (20) 

 

0)0()1()0()1( 4321  wwww         (21) 

 

0)1()0()1()0( 4321  wwww         (22) 

 

Equations (21) & (22) are Orthogonality conditions, see (14). Collectively, these conditions are 

referred to as dual constraints. For more details see Duffin et al. [4]. Now combining (20), (21) 

and (22), we get: 

 

121  ww ,  031 ww ,  042 ww  

 

which is a set of three linear equations in four unknowns. The above set of equations may be 

solved in terms of one w , say 1w . 

 

12 1 ww  ,     13 ww  ,     124 1 www   

 

Step 3: The contribution of terms in the constraints to optimal solution is always proportional to 

their weights. In this case: 

 

31
1

1 3 4

wk
w

x w w
 


          (23) 

 

1

43

4

2

2 1 w
ww

w

x

k



          (24) 

 

From the above equations (23) & (24), we get: 
 

1

1

2

2 1
x

k

x

k
  

 

which implies: 
11

12*

2
kx

xk
x


          (25) 
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Step 4: The primal variables may be found by: 
 

Kw

functionobjectiveintermlast

w

functionobjectiveintermond

w

functionobjectiveintermfirst
xC





......

sec
)(

21

0

 

 

In this case: 

 

1

*

22

1

11

1 w

xC

w

xC


 ,  he re  



















2

2
1

1

1
1 1

x

k
wand

x

k
w      (26) 

 

Since 1w  and 
*

2x  are already known from (23) and (25), the above equation can be solved for 
*

1x  in terms of the constants C  and k , then: 

 

*

1

1

1

*

1

12
2

1

1

*

11

1
x

k

kx

xk
C

x

k

xC




           (27) 

 

The above equation implies that: 

 

1

212
1

*

1
C

kkC
kx            (28) 

 

From equations (25) and (28), we can easily calculate the optimum values for are n  and  m . 

 

 

4. Numerical illustration 
 

We consider Chakravarthy [2] for numerical illustration, where dispersion matrix for 2 

characters in a sample of 20 PSUs and 8 SSUs in a situation when each PSU was drawn with 

equal probability at each stage is given below; the cost of enumerating a PSU is estimated as and 

that of SSU as: 
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Table 1. Dispersion Matrix. 

Dispersion due to Degree of Freedom S.P. Matrix Covariance Matrix 

Between PSUs 19 
0.5592 0.2993

1.1026

 
 
   

 
0.0294 0.0157

0.0580

 
 
   

 

Within PSUs  

Between SSUs 
140 

1.0872 0.3568

3.4041

 
 
   

 
0.0078 0.0025

0.0243

 
 
   

 

Total 159 
1.6454 0.6561

4.5067

 
 
   

 
 

 

In this case the values of N  and M  are not known, they may be assumed to be infinite. Also the 

data may be taken as derived from a pilot survey and a similar survey is to be planned for which 

we require the best values of n and m  which minimizes the total cost. Therefore from the above 

dispersion matrix, we have: 

 
2

1Sw =0.0078,         2

2Sw =0.0243 
2

1Sb =0.0037,          2

2Sb =0.0073 

 

These are sample estimates and are subject to the sampling fluctuations. Now our problem is to 

minimize: 

 

nmCnCMinimize 21           (29 )  

1

2

2

1

1

2

1 v
x

Sw

x

Sb
toSubject           (30 )  

2

2

2

2

1

2

2 v
x

Sw

x

Sb
          (31 )  

1,1 21  xx  

 

The upper bound of v is calculated using the lower 5 percent point of 2  distribution with 19 d.f. 

=10.117, we have: 

 

1v =0 .000345 ,  2v =0 .000681         (32 )  
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The upper confidence bounds of 2

jSw  at 95 percent confidence level are: 

 
2

1

2

2

Upper bound of  0.009589

Upper bound of  =0.030025

Sw

Sw





        (33) 

 

The upper confidence bounds of 2

jSb  at 95 percent confidence level are: 

 
2

1

2

2

Upper bound of  0.006129

Upper bound of  =0.011180

Sb

Sb





        (34) 

 

Using the values (32), (33) and (34), our problem becomes: 

 

Minimize 21 5.27.8 xxC          (35) 

Subject to 000345.0
009589.0006129.0

21


xx

      (36) 

000681.0
030025.0011180.0

21


xx

      (37) 

0, 21 xx  

 

The normalized constraints are: 
 

1
000345.0

009589.0

000345.0

006129.0

21


xx

        (38) 

 

1
000681.0

030025.0

000681.0

011180.0

21


xx

        (39) 

 

Which gives:  

 

1
79.2776.17

21


XX

          (40) 

 

1
08.4441.16

21


XX

          (41) 

 

Let us take the constraint (41) as active (if both constraints were active, then one would not be 

able to find an optimal dual solution nor an optimal solution to the original solution, see 

Shiang[8] and Maqbool & pirzada [5]. Then 41.161 K  and 08.442 K . Substituting the values 

of 121 ,, CKK  and 2C  in equation (28) and (25), we get: 
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7.8

08.4441.165.2
41.16*

1


x  

 

  3182.30*

1  nx  

 

and compute 3009.3
31

27.93
m  and rounding yields: 

 

  933*31*

2  nmx ,  

 

using the values of *

1x and *

2x , we get the total cost as: 

 

935.2317.8 C 2.502 .  

 

Therefore the optimum values are 31n  and 93nm , i.e 3m . This shows that the solution 

is feasible. Thus, we require a sample of 31 primary stage units and 3 secondary stage units in 

each primary stage unit giving us a total of 93nm  elementary units for the sample. The above 

results can easily be verified through GP optimization algorithms available on internet (see 

GPGLP [10] & XGP [11]. 

 

 

4. Comments and Conclusion 
 

Optimum allocation in two stage sampling is easy when dealing with one variable. However a 

simple technique has not been available when one is interested in estimating more than one 

variable. This paper is an attempt to utilize geometric programming approach to the solution of 

optimum allocation problems in multivariate two-stage sampling. The solution described here is 

much simpler than complex analytical techniques described in statistical literature. Geometric 

programming has already shown its power in practice in the past. In real world applications, the 

parameters in the geometric program may not be known precisely due to insufficient 

information. The numerical result illustrates the feasibility and effectiveness of the present 

approach. With the availability of GP optimization software, the wider applications of the 

proposed approach can be utilized in double sampling design having multiple characters and in 

case of response error ( interviewer variability), various agricultural surveys where two stage 

sampling designs are frequently employed for different research studies. 
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Appendix: Proof of equation (1) 
 

  ,
1111 22

wjbjj S
NMnm

S
Nn

yV 
















  

 

With simple random sampling at both the stages: 

 

    yEEyE j 21  = 







 iY

n
E

1
1 = YY

N
i 














1
 

     1 2 1 2jV y V E y E V y        , because: 

         ˆˆˆ
2121 VEEVV 

. 

Since   
n

y
yE i

2 , the first term on the right is the variance of the mean per subunit for a 

one stage simple random sample of n units, hence by using the basic theorems of SRS ( see 

Cochran [1]): 

 

   2

21 jSb
N

nN
yEV 







 
          (42) 

 

Furthermore, with   
n

i

n

y
y  and simple random sampling used at the second stage: 

 

  mSw
Mn

mM
yV r /2

22 






 
          (43) 

 

Where  
2

2 /( 1)r rj rSw y y M    is the variance among subunits for the h th primary unit. 

When we average over the first stage samples: 

 




n

h

r

n

Sw

1

2

  averages to 2

1

2

j

N

h

r Sw
N

Sw




,  
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Hence: 

 

   mnSw
M

mM
yVE j /2

21 






 
         (44) 

 

Adding (42) and (44) gives: 

 

  ,
1111 22

wjbjj S
NMnm

S
Nn

yV 
















  

 

If we ignore the terms independent of n and m, we get the variance: 

 
nm

S

n

S
yV

wjbj

22

  
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