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Public health represents nowadays one of the major global challenges, es-
pecially with regards to the predictive analysis of biometric data. In this
framework, Body Mass Index (referred to as BMI) represents one of the
most recognized indicators for monitoring, understanding and forecasting the
general health of the population. An analysis of BMI could have important
social and economic impacts, allowing policy-makers to foster more and more
sustainable economic development and to develop preventive strategies (and
effective health policies) aimed at promoting social well-being. This contribu-
tion proposes the use of computational approaches to model BMI using both
traditional statistical methods and Al techniques, namely linear regression,
random forest, decision trees and neural networks. In particular, a compara-
tive analysis of the predictive performance of the models mentioned above is
proposed by discussing the significance of different health-related indicators
on BMI. The computational analysis is conducted on a dataset consisting of
health parameters of a sample of women in Belgium collected between 2000
and 2001. The results demonstrate the effectiveness of linear and Al-based
approaches in predicting BMI and provide valuable information for policy
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makers interested in quantitative assessment of health parameters and dis-
ease prediction to promote strategic choices that can contribute to improving
collective well-being and reducing health and economic disparities, generat-
ing benefits at both the individual and community levels.

keywords: Body Mass Index, Artificial Intelligence, Computational Ap-
proach, Numerical methods, Sustainable economic development.

1 Introduction

Population health represents nowadays one of the most debated topics amongst the
academic community, health professionals, and policy-makers (Turnock, 2012). In this
context, the deployment of Big Data approaches in health-related topics plays a crucial
role (Gamache et al., 2018), along with the development of methodological approaches
for their analysis (Wells et al., 2016). In fact, data-driven approaches to map and model
health-related dynamics would allow policy makers to define customized and sustainable
interventions for the population (Kuo et al., 2014), leading to more efficient manage-
ment of resources, improved outcomes in public health, and policy formulation directed
towards certain demographic and epidemiological needs. Additionally, these methods
can be employed to better predictive analytics: in this way it would be possible to early
identify potential health threats, and to optimize healthcare provisions, leading to a sus-
tainable and responsive healthcare system. In recent decades, a larger and larger public
has paid more and more attention to the individuals’ body weight: individuals’ weight
can be recognized as one of the most critical factors to define the individuals’ general
health and well-being, and many health problems could derive from weight, including
hypertension, cancer, diabetes and heart disease (Khanna et al., 2022; Tanaka, 2020).
In this contribution we focus on the individual’s Body Mass Index, referred to as BMI,
which is calculated as:
BM1I = weight/height?

where weight represents the individual’s weight measured in kilograms, and height rep-
resents the individual’s height measured in meters: this indicator is currently used to
assess the risk of developing the afore mentioned diseases, and it is important to empha-
size that it is intended as a population-level indicator, designed to provide a practical
comparative measure across adults of varying stature, rather than a direct assessment
of individual body fatness or health status. For instance, individuals with high mus-
cle mass may exhibit elevated BMI values while maintaining low body fat levels. The
normalization achieved by squaring height in the denominator enhances comparability
between shorter and taller individuals. From a geometric perspective, human beings
may be conceptualized as three-dimensional entities: in proportional growth, height
scales linearly with one dimension, whereas weight (mass) scales approximately with
volume, which is a cubic function of height. Nevertheless, body mass is also influenced
by body density, whose inter-individual variability is generally moderate and not known
a priori. Consequently, the use of height squared represents a pragmatic compromise for



460 di Tollo et al.

normalizing weight relative to body size. This approach, as originally demonstrated in
the seminal works of Adolphe Quetelet during the first half of the nineteenth century
(Quetelet, 1835), provides the most stable relationship between weight and stature at
the population level.

Based on the BMI values, it is possible to categorize adults into underweight, healthy
weight, overweight and obese (Weir and Jan, 2019): this categorization can be sum-
marised in Table 1 (Nuttall, 2015).

BMTI value | Weight Status
Below 18.5 Underweight
18.5 to 24.9 Healthy weight
25.0 to 29.9 Overweight

30 and higher | Obese

Table 1: Classification of the individual’s weight status according to the individual’s
BMTI values.

Since weight represents the projection of the individual’s health, BMI is also used as a
tool to identify the risk of the onset (or prevalence) of different health problems and as an
indicator of the individual’s energy balance. In this framework, we can assert that food
is a source of energy that, when not used and burned, leads to the creation of fat tissue.
According to Chambers and Swanson (Chambers and Swanson, 2010), the factors that
influence the energy balance have an influence on the value of BMI and can be grouped
as Dietary and Activity factors. Dietary factors include aspects of both eating habits and
general behavior associated with eating such as healthy eating (i.e. reduced consumption
of nutritious foods), emotional eating (i.e., the increased or excessive consumption of
nutrients linked to particular emotional states), or social influences on eating. Activity
factors refer instead to body movement and general physical activity. In addition to
physical exercise and diet, there are other factors that can have an impact on BMI
(Chambers and Swanson, 2010): in particular, reference can be made to dietary behavior
(according to which a greater frequency and/or a lesser effectiveness in weight control
can have both a positive and negative impact on BMT), alcohol consumption (an increase
in alcohol intake can influence BMT), amount of sleep (the reduction in hours of sleep
can have a negative impact on the BMI, making it either too low or too high), and early
maturation, according to which children who grow faster than their peers can have a
higher BMI.

Given the importance mentioned above, BMI has been investigated considering differ-
ent criteria, ranging from prediction of diseases to mortality based on BMI: Khanna et
al. (Khanna et al., 2022) states that BMI is important in this sense, referring to the fact
that it helps assess chronic conditions such as the risk of high blood pressure, diabetes,
cancer, high cholesterol, and diseases in later life. (see Section 2 for more details).

Many contributions stress the importance of an analysis of BMI to provide general im-
plications on public health (Wang et al., 2021), health economics (Miiller-Riemenschneider
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et al., 2008; Kouris-Blazos and Wahlqvist, 2007; Kelly et al., 2019) and social policies
(Swinburn, 2008). From an economic point of view, studies on BMI have important
implications on the containment of health costs (Kent et al., 2017), on the improvement
of employee productivity (Finkelstein et al., 2010; Finkelstein and Trogdon, 2008; Dall
et al., 2024), not to mention the use of BMI data to define policies aimed at optimiz-
ing public resources (Finkelstein and Trogdon, 2008). However, despite its importance
for academics and practitioners is clearly addressed, the computational approaches to
model, predict, or forecast BMI are still few and far between: some contributions focus
on predicting obesity and BMI using childhood data through logarithmic transformed
BMI, neural networks and penalized splines (Griggs, 2013), or contains basic definitions
to lists the diseases that can come from an unhealthy BMI (Weir and Jan, 2019); in
most cases, the experimental phase is not exhaustive, since there is a lack of comparisons
amongst different techniques, and the assumptions behind the approaches are not well
detailed.

Starting from these considerations, we aim to introduce a computational approach to
predict BMI that handles a real case study coming from a publicly available set of data
gathered between 2000 and 2001 about 489 women in Belgium, that has already been
used to compare obesity and metabolic syndrome prevalence using BMI and other indi-
cators (Wong et al., 2021). As for the computational approaches Al-related techniques
(Random Forest, Decision Trees and Neural Networks) to test their capabilities to pre-
dict the variable of interest, and compared their performances with Linear Regression
which, according to the Gauss—-Markov theorem (Greene, 2018), guaranties that, un-
der its assumptions, ordinary least squares regression provides the most precise (lowest
variance) estimates among all possible linear and unbiased methods. Because of this
property, linear regression serves as a theoretical gold standard or benchmark against
which other, often more flexible or robust models are compared.

The paper is organized as follows: Section 2 describes the related literature, Section 3
outlines data used in our study, that will be given as input of the techniques outlined in
Section 4; Section 5 reports the experimental analysis (whose results will be outlined in
Section 5.3), before concluding the paper and discussing further research in Section 6.

2 Main Literature

The influence of an individual’s weight on his/her overall health has been investigated
from different points of view. In what follows, we are outlining the aspects dealt with
by the literature that are relevant for our investigation. BMI has been introduced as an
indicator to predict health related aspects, i.e., a screening metrics to assess risk for hy-
pertension, diabetes, cancer, hypercholesterolemia, and other chronic diseases (Khanna
et al., 2022), especially focusing on children and infants: it has been shown that early
complementary food introduction before the age of 4 months is associated with increased
BMI at the age of 5-7 years (Ha et al., 2023), and this finding led to predict the pos-
sibility of child obesity and different health risks. In particular, Khanna et al (Khanna
et al., 2022) examine the relationships amongst BMI, waist circumference, and waist-hip
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ratio measures, focusing on how they may be used to forecast chronic diseases (e.g., di-
abetes and high blood pressure). Many contributions explore the relationships amongst
obesity, weight loss and health-related quality of life (referred to as HRQoL); Kolotkin
and Andersen (Kolotkin and Andersen, 2017) defines a framework aimed to compare
different stages of weight loss and gain related to bariatric surgery, providing evidence
of increased HRQoL after this kind of therapy, and showing that physical (rather than
mental) aspects of HRQoL are more correlated with obesity (that is associated to signif-
icantly lower HRQoL in all samples); Park et al. (Park et al., 2019) investigate the effect
of low BMI on the development of chronic obstructive pulmonary diseases (referred to
as COPD) and mortality, detecting that low BMI is a significant indicator. Other con-
tributions investigate the correlation between BMI and tuberculosis (Choi et al., 2021)
or asthma (Vortmann and Eisner, 2008), reporting that there is no apparent combined
effect of BMI and DM on the probability of incident tuberculosis. Additionally, com-
pared to individuals with a healthy BMI, obese individuals show a greater likelihood of
experiencing regular symptoms of asthma.

Another open research direction is given by using BMI for predicting eating dis-
orders: the American Psychiatric Association (APA) uses BMI to define the severity
of anorexia, categorizing it into mild, moderate, severe, or extreme, based on specific
ranges(Himmerich and Treasure, 2024). This perspective stresses the need for more
holistic approaches beyond BMI in understanding eating disorders, especially with re-
spect to different professional categories: Ralph-Nearman et al. (Ralph-Nearman et al.,
2020) investigate this aspect in professional female fashion models, and show that pro-
fessional female fashion models exhibit lower BMI than non-models, but they also show
higher fat percentage and muscle mass. This is correlated with a survey-based (alas,
not based on clinical observations) eating disorder assessment, in which models reported
higher eating and weight concerns than non-models. Please notice that higher BMI was
associated with greater eating disorder symptoms in both models and nonmodels, and
that models (contrarily to non models) showed a high correlation between muscle mass
and eating disorders.

Some contributions recognize the limitations of BMI in predicting eating disorders:
Ralph-Nearman et al. (Ralph-Nearman et al., 2024) highlights the BMI’s inability
to accurately reflect health or eating disorders, and express criticism to BMI for not
considering body fat, muscle mass, or bone density, thus questioning its efficacy in being
used for diagnosing conditions like anorexia.

As pointed out by Nuttall (Nuttall, 2015), there are several social standards and ex-
pectations to target the ideal weight and its distribution across an individual’s body,
with respect to gender, age, and cultures: this is reflected in the USA population, that
is classified with respect to BMI, and shows 63% of individuals that are overweight and
26% that are obese, on top of different changes in the statistics and the appearance of
the obesity pandemic. In the same direction, Chambers and Swanson (Chambers and

!Diabetes mellitus: a condition characterized by sustained high blood sugar levels, which occurs when
the pancreas does not produce enough insulin, or the cells of the body become unresponsive to
insulin’s effects.
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Swanson, 2010) develops a survey that explores the habits of a 18-77 years old aged sam-
ple (mostly women), showing that the amount of food consumed and the participation in
physical exercise (rather than more advertised predictors such as healthy eating and use
of mechanized transportation) are significant predictors of BMI. Several metrics have
been investigated to classify obesity, including percentage body fat (PBF'), BMI, and
fat mass index (FMI). In a study by Wong et al. (Wong et al., 2021), PBF was found to
classify more cases of obesity than both BMI and FMI, primarily due to its lower pre-
determined threshold. From the age of 50-59 onward, the differences between BMI and
PBF classifications become more pronounced, due to age-related loss of lean mass. In
contrast, BMI showed the lowest sensitivity for the diagnosis of obesity because it does
not distinguish between fat and lean mass: this limitation led to BMI underclassifying
some people with obesity into the category overweight compared to FMI. However, de-
spite these classification differences, there was no significant variation in the prevalence
of metabolic risk factors between individuals classified as obese by either BMI or FMI,
suggesting that the distribution of body fat may play a more significant role in metabolic
disregulation.

The influence of socioeconomic individual’s and communities’ characteristics are ex-
amined by Rundle et al. (Rundle et al., 2008), on a sample of 13,102 inhabitants from
New York City, concluding that that local setting might affect how socioeconomic po-
sition and body size relate to individuals, especially women. Furthermore, as outlined
by Chambers and Swanson (Chambers and Swanson, 2010), women are more likely to
report eating in response to more harmful societal pressures and, generally, for reasons
other than hunger, hence being more likely to engage in weight control behavior. In
contrast, men tend to report eating less healthy, but the quality of their chosen food
increases over years; men report higher alcohol use than females, and exhibit higher early
maturation factor, which is a condition characterized by the early onset of puberty: it
includes indicators such as heavier birth weight and being taller than peers at a young
age (e.g., age 7 years). Early maturation can have various implications for physical and
psychological development. For example, research has shown that early maturation is
associated with an increased risk of obesity and that children who mature early are more
likely to have higher BMI and PBF compared to their peers who mature later: This
relationship is due to the early onset of puberty leading to changes in body composition
and metabolism that favor fat accumulation. In addition, early maturation can have sig-
nificant psychological and social effects. Adolescents who mature early can experience
higher levels of stress and are more likely to engage in risky behaviors, including higher
alcohol use, as noted in the current study. Social pressures and expectations placed on
early-maturing children can contribute to these outcomes. Last, the underweight and
healthy weight groups show better sleep than the other groups, although there is an
increase in weight in children, and the sleep schedules are getting shorter. It is worth-
while to note, as a last finding, that Kamycheva et al. (Kamycheva et al., 2003) reports
a strong negative correlation between vitamin D consumption and BMI in Northern
Norway: According to this research, increasing vitamin D intake to the recommended
levels may be able to lower population rates BMI and obesity.
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As we have stated in the Introduction, contributions aimed to successfully predict BMI
are still few and far between, and amongst the different proposed approaches, Heslehurst
et al. (Heslehurst et al., 2019) show that mothers who are obese before having children
have a 264% higher chance of having obese children compared to mothers with a normal
weight before conception: this provides evidence for introducing pre-conception therapies
to help future women maintain their weight in order to prevent intergenerational obesity.
Baltasar et al. (Baltasar et al., 2011) aim to forecast the BMI of bariatric surgery
patients three years following their operation, based on the assumption that BMI values
are good indicators for evaluating and contrasting the outcomes of bariatric treatments.
This align with the study’s objective to create a mathematical formula to predict the final
BMI (FBMI) based on the initial BMI (IBMT) for better comparison of bariatric surgery
outcomes. In the same direction, Guo et al. (Guo et al., 2016) assess the relationship
between BMI and risk of breast cancer frequency: they developed a weighted BMI
genetic score made up of 84 BMI-related genetic variations, contradicting earlier studies
(Garcia-Estévez et al., 2021) which were reporting that genetically predicted BMI is
inversely linked with breast cancer risk.

It is worthwhile to mention that, according to He et al. (He et al., 2020), males
have higher levels of body admiration than females, and that both boys’ and girls’
body dissatisfaction are positively correlated with age. Interestingly, white women are
more likely than women of other races to be unhappy with their bodies. However, the
relationship between body appreciation and BMI does not show a significant difference
between males and females. The meta-analysis indicates that body admiration and BMI
are inversely related, but this relationship is not specifically stronger in males than in
females.

The issue of mortality is a key topic of research, and several contributions investi-
gate the relation between BMI and mortality in different scenarios. Bhaskaran et al.
(Bhaskaran et al., 2018) examines the associations between BMI and all-cause mortality
on a sample of 3,632,674 individuals, reporting that lower BMI was linked to an in-
creased mortality risk for mental, behavioral, neurological, and external causes of death.
BMI exhibited J-shaped correlations with overall mortality and the majority of particu-
lar causes of death. In the same direction, Flegal et al. (Flegal et al., 2013) explore the
relationship between BMI and mortality and found that both underweight and severe
obesity are associated with increased risk of mortality. However, they noted that over-
weight individuals had a lower mortality risk compared to normal-weight individuals,
suggesting a potential protective effect of being slightly overweight. Another study by
the Global BMI Mortality Collaboration involving 10.6 million participants from 239
prospective studies worldwide showed that both low and high BMI are associated with
increased mortality. The lowest mortality risk was observed at a BMI of 20-25 kg/m?.
This study emphasized the importance of maintaining a healthy weight within this range
to minimize the risk of premature death (Di Angelantonio et al., 2016).

These studies collectively underscore the nuanced relationship between BMI and mor-
tality, illustrating that both low and high BMI values are linked to increased mortality
risks, whereas maintaining a BMI within the 20-25 kg/m? range appears to be optimal
for reducing the risk of various causes of death.
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3 Data

The set of data used in this study consists of data gathered between 2000 and 2001
from 489 randomly chosen women from the electoral roll of Belgium. This publicly
available dataset has been used by Wong et al. (Wong et al., 2021) to compare obesity
and metabolic syndrome prevalence using FMI, BMI, and percentage body fat (PBF):
the three main metrics analyzed are BMI, FMI, and PBF, and they were used to assess
the prevalence of obesity and metabolic syndrome among individuals. Personal metrics
such as height, weight, and body composition, were also gathered from the individuals
to make computations, along with Dual-energy X-ray absorptiometry (DXA) body com-
position measurements and clinical data. The statistical analysis was performed using
MedCalc?, which is a statistical software package designed for biomedical research. The
significance level for the analysis was set at 0.05 (two — tailed), indicating that results
with a p — value less than 0.05 were considered statistically significant. The statistical
analysis included descriptive statistics, correlations, and comparisons between groups
to determine the relationship between body composition metrics and the prevalence of
metabolic conditions (Wong et al., 2021). For each woman, the dataset contains mea-
surements of height, BMI, FMI, PBF, lean and fat mass of various body parts, as well as
the occurrence of diseases such as diabetes mellitus (DM ), Hypertension, dyslipidemia,
and metabolic syndrome. Our set of data contains the following variables:

e BMI (Body Mass Index), whose definition has been provided in the Introduction.

e FMI (Fat Mass Index), which measures the amount of fat mass in relation to a
person’s height. It’s a more specific measure of body composition compared to
BMI, and is computed as:

FatMass(kg)
FMI=————-2-~
Height?(m?)
e PBF (Percent Body Fat), that represents the proportion of a person’s weight that
comes from fat tissue. It is defined as:

FatMass(kg)

PBF =
Total BodyW eight(kg)

100

e ALMI (Appendicular Lean Mass Index), that measures the quantity of lean mass
in the arms and legs in relation to a person’s height. It can be computed as:

Appendicular LeanMass(kg)
Height?(m?2)

ALMI =

e Height (cm): The standing height of the individual measured in centimeters.

e DM (Diabetes Mellitus): A binary variable indicating the presence (1) or absence
(0) of diabetes mellitus.

2 Available at https://www.medcalc.org, accessed on Februry 26th, 2025.
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Hypertension: A binary variable indicating the presence (1) or absence (0) of
hypertension.

Dyslipidemia: A binary variable indicating the presence (1) or absence (0) of
dyslipidemia.

Metabolic Syndrome: A binary variable indicating the presence (1) or absence (0)
of metabolic syndrome.

Age: The age of the individual.
WC (Waist Circumference): The circumference of the individual’s waist.

TB BMC (Total Body Bone Mineral Content): The total amount of bone mineral
content in the body.

TBM (Total Body Mass): The total mass of the body.

TB ST(Total Body Soft Tissue): The total mass of soft tissue in the body.

TB FAT (Total Body Fat Mass): The total mass of fat tissue in the body.

TB LEAN (Total Body Lean Mass): The total mass of lean tissue in the body.

ARMS BMC (Arms Bone Mineral Content): The bone mineral content in the
arms.

ARMS ST (Arms Soft Tissue): The mass of soft tissue in the arms.

ARMS FAT (Arms Fat Mass): The mass of fat tissue in the arms.

ARMS LEAN (Arms Lean Mass): The mass of lean tissue in the arms.

LEGS BMC (Legs Bone Mineral Content): The bone mineral content in the legs.
LEGS ST (Legs Soft Tissue): The mass of soft tissue in the legs.

LEGS FAT (Legs Fat Mass): The mass of fat tissue in the legs.

LEGS LEAN (Legs Lean Mass): The mass of lean tissue in the legs.

TRUNK BMC (Trunk Bone Mineral Content): The bone mineral content in the
trunk.

TRUNK ST (Trunk Soft Tissue): The mass of soft tissue in the trunk.
TRUNK FAT (Trunk Fat Mass): The mass of fat tissue in the trunk.

TRUNK LEAN (Trunk Lean Mass): The mass of lean tissue in the trunk.
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Table 2 reports the main statistics for all variables considered. Please notice that we
have run preliminary experiments in order to assess collinearity and to reduce the input
size by using Recursive Feature Elimination (RFE) (Guyon et al., 2002), which is a fea-
ture selection technique that provides interpretability while mitigating overfitting and
reducing data noise: it first fits a model on the entire set of predictors (and assigns each
feature an importance score); subsequently, it iteratively discards the least significant
features according to these rankings, retraining the model at each step, until a prede-
fined number of features remains (Brzezinski, 2020; Naseriparsa et al., 2014). The final
model is thus trained exclusively on the subset of features deemed most relevant to the
prediction task. In our case, we have compared our preliminary experiments (i.e., exper-
iments of techniques introduced in what follows coupled with REF) with experiments
without REF through a Wilcoxon signed rank test (tested against a 0.05 significance
level), and this led us to reject the null hypothesis of difference between the two ap-
proaches. Hence, we will report results without REF in what follows, also because the
introduced computational approaches (but the linear approach) do not reply on any
underlying model.

4 Computational approach

In this section we are giving a brief overview of the different tools used to perform our
prediction: linear regression will be outlined in Section 4.1, decision trees will be detailed
in Section 4.2, random forest in Section 4.3, and eventually, neural networks in Section
4.4.

4.1 Linear Regression

Linear regression models aim to find the link between a set of predictors and one depen-
dent variable by identifying the best-fitting line on the predictors dependent variables
space, by minimizing the Residual Sum of Squares (RSS) (Gupta and Nagalakshmi,
2019): they rely on the assumptions of linearity, independence, homoscedasticity, nor-
mality, and non-multicollinearity. They still represent a widespread tool for the predic-
tion exercise, though they suffer from assuming a model behind data. Amongst their
clear advantages we found to be the fact that they are able to assess the significance of
the different predictors w.r.t. the prediction exercise, and this will be useful in what fol-
lows. Alas, often the assumption of linearity is hard to be reflected on data at hand, and
that is why the next introduced models do not need any assumptions on the underlying
data.

4.2 Decision Trees

Decision trees (Rokach and Maimon, 2005) are flexible models for tasks involving re-
gression and classification, and rely on the use of decision rules use to discriminate the
output space: their hierarchical tree structure consists of root, internal, and leaf nodes,
and their iterate action of splitting the data according to the decision rule taken into
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account allow the end user to understand principles that control predictions. They
demonstrate flexibility in handling several types of data, including missing values, with-
out requiring the expansion of features. Anyhow, they suffer of some drawbacks, e.g.,
they can be computationally expensive during the training phase, particularly for large
or complex structures. Furthermore, they are prone to overfitting, especially when deal-
ing with complex datasets, which can lead to excessive variance and impair their capacity
to generalize to new data. The next method attempts to mitigate these shortcomings
by pooling a number of decision trees together.

4.3 Random Forest

Random Forest is a supervised learning method that relies on the bagging principle,
meaning that a collection of models is trained on various dataset subsets, and the result
is produced by combining the results of each individual model. The algorithm is made of
decision trees (of which it represents a generalization), directly exploiting their capability
of handling missing values and making optimal decisions (Rigatti, 2017).

The Random Forest algorithm can be summarized as follows:

Step 1: Each decision tree in the Random Forest model is built using a subset of features
and a subset of data points. To put it simply, m features and n random records are
selected from a data collection containing k records. This ensures diversity among
the trees in the forest and reduces the risk of overfitting.

Step 2: For every sample, a separate decision tree is built. This is done by recursively
splitting the data based on feature values, aiming to group similar data points
together.

Step 3: An output will be produced by each decision tree. The purpose here is to leverage
the diversity of the forest, since each tree has been trained on slightly different
data with unique features, their combined outputs can cover a broader spectrum
of the input space more accurately than any single tree could.

Step 4: The final product involves combining the outputs of all individual trees to get the
final prediction, and it is evaluated using either regression or classification-based
majority voting or averaging. For classification tasks, this is typically done through
majority voting where the predicted class is the one that a majority of the trees
have agreed upon. For regression tasks, the final prediction is usually the average
of all the tree outputs (Rigatti, 2017).

Please note that the singular decision trees may be trained independently by one another,
hence the training process can be completed quickly.
4.4 Neural Network

Neural Networks (Wu and Feng, 2018) are black-box based algorithm that mimic the
behavior of the human brain to solve complex problem, and are composed of neurons
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and synapses, that can be organized according to different topologies, amongst which the
most widespread architecture is (still) the feed-forward, in which neurons are organized
in layers: this network is often trained by using Back- Propagation, which is an algorithm
based on the gradient descent to change the synapses weights to perform learning.

All the afore mentioned algorithms have several parameters to be set: this repre-
sents a key topic in experimental algorithmics, since the algorithms behaviors may be
affected by these parameters. Many approaches have been proposed by the literature
to set the parameter values (referred to as parameter setting), and these can be classi-
fied in parameter tuning, in which the parameter values are determined before the run,
and parameter control, in which the parameter values are dynamically set during the
algorithm’s run. In this contribution, we have resorted to the Iterated Race method
(Lépez-Ibanez et al., 2016), which is a generalization of F-Race method for parameter
tuning of optimization algorithms (Birattari et al., 2010), that is, the tuning of their
parameters by finding the most appropriate setting given a set of instances of an opti-
mization problem. To this extent we have used the on- line available implementation
(in Python) by M. Lopez-Ibanez and L. Perez Caceres that can be found at the link
https://mlopez-ibanez.github.io/irace/. All tools outlined in this section have been im-
plemented in Python.

5 Experimental Analysis

In this section we are outlining our experimental analysis: first we are defining the main
building blocks of our approach, namely data pre-processing operations in Section 5.1,
the guidelines to partition our data amongst training and test set in Section 5.2, and
the results of the experiments performed (by using the tools outlined in Section 4) in
Section 5.3.

5.1 Data Pre-Processing

Data pre-processing is important in every experimental framework, to preserve the most
information as possible and to feed the computational tool with the most appropriate
input data. We have followed the guidelines reported in Angelini et al. (Angelini et al.,
2008) and Corazza et al. (Corazza et al., 2021), and performed the following tasks:

e Remowal and replacement. Detection of missing and wrong values and their han-
dling should always be performed as the first task of a sound experimental analysis.
In our case, the set of data at hand is already clean, since it is already being used by
Wong et al. (Wong et al., 2021). Hence, differently from Angelini et al. (Angelini
et al., 2008) and Corazza et al. (Corazza et al., 2021), we have neither removed all
entries with missing data, nor replaced the missing values by meaningful values,
since data is robust w.r.t. this aspect.

o Normalization. Data normalization is desirable for neural network in order to back-
propagate errors belonging to the same interval over the different variables, whilst
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not strictly necessary for all other tools identified in Section 4. Hence, we have
normalized data only to feed the neural network, by using the logarithmic normal-
ization used by di Tollo et al. (Di Tollo et al., 2015)(Di Tollo et al., 2012)(di Tollo

et al., 2014), in which the formula used is the following:
z; =log,(zi +1) (1)

where T; is the post-normalised value, z; the pre-normalised one and, to ensure
x; € [0,1] ], u has been set to Zyqe + 1.

e Correlation analysis. Correlation analysis is performed to better understand data
at hand, to avoid considering predictors that are too correlated, and to avoid
collinearity issues. We have performed Pearson correlation (Cohen et al., 2009)
analysis since our biggest concern has been devoted to linear regression. Spearman
(Hauke and Kossowski, 2011)(i.e., rank-based) correlation analysis led to compa-
rable results. Figure 1 reports the Pearson Correlations found over all possible
pairs of variables.
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Figure 1: Pearson correlation matrix amongst all pairs of variables in data at hand
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Amongst the observations to be reported, a strong positive correlation between
TBM and Total Body Soft Tissue Mass (7B ST') (0.97) has been remarked, indi-
cating a solid linear link that may affect both total bone mineral content and lean
mass. Other high positive correlations have been found over the following pairs of
variables: Legs Bone Mineral Content (LEGS BMC') and TB BMC (0.9), Legs Soft
Tissue Mass (LEGS ST') and Total Body Bone Mineral Content (7B ST) (0.91),
Total Body Lean Mass (TB LEAN) and Legs Body Lean Mass (LEGS LEAN)
(0.91): this suggests that these variables may be related as a result of physical
activity, the development of muscles, or overall body composition. Furthermore, a
moderate negative connection between Age and TB BMC (0.45) was also found,
which may have been caused by aging-related changes in bone density or overall
health. TB ST, TB FAT, and FMI showed strong positive relations with BMI
(0.92, 0.93, and 0.96 respectively), which is likely due to the effect of both lean
mass and fat mass on BMI. Additionally, a moderate positive correlation (0.47)
was observed between Metabolic Syndrome (MET SYN) and Diabetes Mellitus,
suggesting a possible link that might be attributed to shared metabolic or lifestyle
variables affecting both conditions.

Based on the correlation analysis, we have removed variables that appear in at
least a couple of variables showing correlation greater that 0.8. The variables
which were removed are the following: TB FAT, TBM, TB ST, FMI, TRUNK ST,
TRUNK FAT.

5.2 Training and Test Set

We have sampled two disjoint sets of individuals (i.e., the training set for learning, and
the test set to assess the results) out of the total number of observations, by randomly
allocating individuals to sets, with the only constraint that the training set has to contain
70% of the overall set, and the test set 30%. This has been done 30 times to produce 30
different partitions to validate our approaches over different sets of data and test their
robustness, as we will see in Section 5.3.

5.3 Results

As a first analysis, we want to report the results of the linear regression model, and the
scope of its application is twofold: first, it has been used to predict BMI; then, it is useful
to assess the significance of variables in the predictor set by analyzing their p — values,
taking in mind that p — values lower than 0.05 indicates that it is possible to reject the
null hypothesis that the predictor is not significant). The variables WC, TB BMC, PBF,
TB LEAN, ARMS BMC, ALMI, ARMS ST, ARMS FAT, ARMS LEAN, LEGS BMC,
LEGS ST, LEGS FAT , LEGS LEAN, TRUNK LEAN, DM, LIPID, HT, METSY N have
p —values smaller than 0.01, thus suggesting a high significance of many predictors and
suggesting a great level of complexity, hence justifying the application of more complex
heuristics. We can remark that Age shows a p — value of about 0.31, appearing to have
little significance in explaining the variance in BMI . Waist Circumference (WC') and
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indicators such as TB BMC, PBF, TB LEAN, ARMS ST, ARMS FAT, LEGS ST, LEGS
FAT, LEGS LEAN, TRUNK LEAN, and ALMI show extremely low p—values (< 0.01),
indicating their strong significance in relation to BMI. After assessing the significance of
the predictors, we report the results from the application of the different tools introduced
in Section 4: Table 3 reports the statistics of R? found, for each tool, over the thirty
different partitions defined in Section 5.2. Please note that only the statistics over the
test sets are reported.

It is interesting to note that the linear model alone is capable of producing good results,
also at the cost of a really low standard deviation. The standard deviation is also kept
low by random forests and decision trees, even though the overall performances of these
two methods show an average behavior that is worse than the linear model. Neural
networks, instead, are able to reach the best performance obtained over the database at
hand, but alas, their performances are affected by a high standard deviation. However,
given the low computational time required by all these methods, we may conclude that
they can be used jointly.

6 Conclusion

Population health studies are one of the key elements for healthcare, economics, and
demography as they are capable of influencing public policies, prevention strategies, and
resource allocation. For these reasons, there is a growing need to analyze Big Data in
the healthcare field with methodological approaches that allow their analysis. This work
addressed one of the topics that has shown increasing attention in the literature: the
body mass index. Although its importance is noted for academics and practitioners,
computational approaches to model, predict, or forecast BMI are still few and far be-
tween; moreover, in most cases, the experimental phase is not exhaustive, as there is
a lack of comparisons between different techniques and the assumptions underlying the
approaches are not well detailed. Our contribution proposed a computational approach
to model and predict BMI, proposing a comparative analysis amongst different forecast-
ing techniques. The analysis was conducted on a real case by analyzing in particular
a publicly available dataset collected between 2000 and 2001 in Belgium to compare
the prevalence of obesity and metabolic syndrome using body fat index (FMI), body
mass index (BMI) and body fat percentage (BEFP). Both traditional methods (linear re-
gression) and Al-related techniques (random forest, decision trees and neural networks)
are used, both associated with significant preprocessing. Our results show that a linear
trend is visible on the data and that linear models perform well. We note that A-based
approaches also perform well, but require computational time for learning, thus affecting
their performance when a maximum time constraint is imposed.

We note that this work highlights the importance of integrating traditional approaches
with more advanced Al-based techniques to improve predictive accuracy and decision
support in healthcare settings. As technological advances continue to evolve, integrating
sophisticated computational models into healthcare decision-making will be essential to
address complex epidemiological challenges, formulate public policies to address certain
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economic and demographic needs.

Future research will be devoted to the development of an algorithmic portfolio selec-
tion method to select the algorithm to be used based on the value assumed by some
hyperparameter during execution. In particular, we want to design a method that can
promote diversification or intensification depending on the needs of the search and switch
between these two paradigms by adaptively modifying its behavior based on the informa-
tion found during the search. Finally, we want to assess the robustness of the approach
over other sets of data, with respect to the same population over time and with respect
to a different population.
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Variable Min Max Avg Std.dev
BMI 15.9 46.1 26.6 4.89
FMI 2.6 27.4 10.9 3.72
PBF 0.1 0.6 0.4 0.08
ALMI 4.5 12.8 6.3 0.78
Height 143 179 162,1 6.35
DM 0 1 0.05 0.22
Hypertension 0 1 0.38 0.36
Dyslipidemia 0 1 0.43 0.50
Metabolic Syndrome | 0 1 0.16 0.37
Age 414 79.9 60.2 10.88
wc 51.5 131 83.7 11.97
TB BMC 1353.5 | 3328.1 | 2329.8 | 351.98
TBM 43.1 130.4 69.9 13.61
TB ST 41238 127066 | 67604.9 | 13427.84
TB FAT 7109.3 | 70914.7 | 28646.5 | 9897.86
TB LEAN 28050.3 | 61943.4 | 38954.6 | 5028.51
ARMS BMC 136.3 458.8 288.8 53.51
ARMS ST 3524 23739 7356.7 | 2290.97
ARMS FAT 360.6 16126.1 | 3200.3 | 1750.82
ARMS LEAN 2622.5 | 16719.3 | 4175.5 | 923.21
LEGS BMC 493.7 1758.2 | 902.4 162.94
LEGS ST 12601 52579 22789.4 | 5021.63
LEGS FAT 3383.4 | 32477.9 | 10453.9 | 3925.97
LEGS LEAN 8332.9 | 20101.1 | 12335.5 | 1724.73
TRUNK ST 18183 65372 33728.3 | 7272.80
TRUNK FAT 2350.1 | 33241.1 | 14000.6 | 5035.31
TRUNK LEAN 1845.8 | 31859.8 | 19689.6 | 3046.40

Table 2: Main Statistics of variables considered.
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Model Min | Max | Avg | Std.dev
Linear Regression | 0.93 | 0.98 | 0.951 | 0.021
Random Forest 0.82 | 0.91 | 0.861 | 0.024
Decision Trees 0.63 | 0.80 | 0.722 | 0.035
Neural Networks | 0.57 | 1 0.674 | 0.113
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Table 3: Main Statistics of the R? reported over 30 iterations of the different methods

outlined in the first column.



