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Studies have proven that the ridge estimator proves itself as a highly
desirable shrinkage tool for addressing multicollinearity issues. A widely
used model called negative binomial regression model (NBRM functions effi-
ciently when count data contains overdispersion properties. Maximum likeli-
hood estimator (MLE) produces coefficients whose variance becomes affected
negatively by multicollinearity issues. The proposed paper introduces the
generalized ridge estimator to resolve the shortcomings of ridge estimator.
Various approaches to estimate the shrinkage matrix have been developed.
Monte Carlo simulation findings demonstrate that the proposed estimation
technique produces superior MSE results than traditional MLE estimates
and ridge estimates regardless of the selected shrinkage matrix estimation
methodology. The estimating methods used for shrinkage matrices result in
different levels of performance enhancement.

keywords: Negative binomial regression model; ridge estimator; multi-
collinearity; generalized ridge estimator; Monte Carlo simulation.

1 Introduction

The negative binomial regression model (NBRM) serves as a common statistical ap-
proach to study numerous real-world problems particularly focused on mortality studies
that examine fatalities and health insurance problems that analyze individual claims
Algamal (2012); Cameron and Trivedi (2013); De Jong (2008); Kandemir Çetinkaya and
Kaçıranlar (2019); Lukman et al. (2021); Salih et al. (2024).
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When using NBRM it is assumed that no connection exists between the explanatory
variables. Actual situations reveal that this common misconception leads to the multi-
collinearity issue. The maximum likelihood (ML) estimation approach produces unsta-
ble coefficients with high variance that result in low statistical significance when used
to estimate NBRM regression coefficients during multicollinearity Kibria et al. (2015);
Månsson (2012, 2013); Türkan and Özel (2018); Hoerl and Kennard (1970).

In classical linear regression models the following relationship is usually adopted

y = Xβ + ε, (1)

where y is an n×1 vector of observations of the response variable, X = (x1, ...,xp) is an
n× p known design matrix of explanatory variables, β = (β1, ..., βp) is a p× 1 vector of
unknown regression coefficients, ”and ε is an n × 1 vector of random errors with mean
0 and variance σ2.

Ridge regression reduces the large variance by shrinking all regression coefficients
toward zero Asar and Genç (2016); Batah et al. (2008a). This done by adding a positive
amount to the diagonal of XTX. As a result, the ridge estimator is biased, but it
guaranties a smaller mean squared error than the ML estimator.

In linear regression, the ridge estimator is defined as

β̂Ridge = (XTX+ qI)−1XTy, (2)

where I is the identity matrix with dimension p × p and q ≥ 0 represents the ridge
parameter (shrinkage parameter). The ridge parameter, q, controls the shrinkage of
β toward zero. For larger value of q, the β̂Ridge estimator yields greater shrinkage
approaching zero Batah et al. (2008a).

2 Negative binomial regression model (NBRM)

The NBRM is very popular in applied research when the dependent variable yi becomes
non-negative integers or counts distributed as NB(µi, µi + δµ2

i ) where µi = exp(xiβ)
such that xi is the ith row of the data matrix X which is a n*(p+1) data matrix with
p explanatory variables, β is the coefficient vector of order (p+1)*1 with intercept and
zi is a random variable following the gamma distribution such that zi ∼ Γ (δ,δ), i=1,
2, 3, . . . , n Hilbe (2011); Massaro and Bozdogan (2015). The density function of the
dependent variable yi is

pr (yi | xi) =
Γ
(
α−1 + yi

)
Γ (α−1) Γ (1 + yi)

(
α−1

α−1 + µi
)α

−1
(

µi

α−1 + µi
)yi (3)

where the over dispersion parameter α is define as α=1/δ. The conditional mean and
variance are given as follows

E (yi | xi) = µi , V (yi | xi) = µi(1 + αµi) (4)
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This is the most commonly applied NBRM and the estimate of β is usually found by
maximizing the log likelihood

l (α, β) =
n∑

i=1

{
yi−1∑
j=0

log
(
j + α−1

)
− log (yi!)

−
(
yi − α−1

)
log (1 + α exp (xiβ)) + yi log (α) + yi log (exp (xiβ))

}
(5)

Since ln
[
Γ(α−1+yi)
Γ(α−1)

]
=

∑n
i=1

(
j + α−1

)
. The vector of coefficients using maximum

likelihood estimation by solving the equation

S (β) =
∂l(µ, y)

∂β
=

n∑
i=1

(yi − µi)

1 + αµi
xi = 0 (6)

Since the Eq. (6) is nonlinear in β the solution of S(β) equal to zero is found by using
the method of scoring

βr = βr−1 + I−1 (βr−1)S(βr−1) (7)

where S(βr−1) is the first derivative of the log-likelihood evaluated at βr−1 and

I−1 (βr−1) = E

(
∂2l (X,β)

∂β∂β′

)
= XTWX (8)

where W = diag
[

(µi(βr−1))
1+αr−1µi(βr−1)

]
. The final part of Eq. (8) may be written as

XTWXβr = XTWz(βr−1) (9)

By define z(βr−1) as a vector where the ith value equals log (µi (βr−1)) + yi−µi(βr−1)
µi(βr−1)

.
This method is known as iteratively weighted least squares IWLS and in the final the
maximum likelihood estimate of β denoted as βML is obtained (Rashad et al., 2021;
Al-Taweel and Algamal, 2020; Algamal, 2025). The covariance matrix of this estimator
given by

Cov
(
β̂ML

)
= (XTWX)−1 (10)

The MSE is given by

MSE
(
β̂ML

)
= E(β̂ML − β)T (β̂ML − β)

= tr[(XT ŴX)−1]

=
J∑

j=1

1

λj(β̂ML)
(11)

where λj is the jth eigenvalue of the (XT ŴX) matrix.
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3 Generalized ridge estimator in NBRM

The weighted matrix of cross-products is used when there is a substantial correlation
between the explanatory factors, XT ŴX is ill-conditioned which leads to instability and
high variance of the maximum likelihood estimator. To avoid this problem the Negative
Binomial ridge regression proposed (NBRR) by (Månsson, 2012). By minimizes the
weighted sum of squares error (WSSE). Hence β̂ML is given by:

β̂NBRR =
´

(XŴX + qI)
−1 ´

XŴX β̂NBML

= (X́ŴX + qI )
−1 ´

XŴŜ (12)

In Månsson [6] it is shown that the MSE of this estimator equals:

MSE(β̂NBRR) =
J∑

j=1

λj

(λj + q)2
+ q2

J∑
j=1

αj
2

(λj + q)2
= γ1 (q) + γ2(q) (13)

where γ1 (q) is the variance and γ2 (q) is the bias part of β̂NBRR

The MSE of β̂NBRR is lower than β̂ML estimate such that when we found q (where
qmay take on value between zero and infinity) such that the reduction in the variance
part is greater than the increase of the squared part, for this reason NBRR estimation
is better than ML, furthermore NBRR is simple method since it dose not require any
changes of the negative binomial regression.
Researchers recommend the generalized ridge estimator (GRE) as an extension of

ridge estimator which distinguishes itself from the regular ridge estimator is there are p
values of q, such that Hoerl and Kennard (1970)

β̂GRE = (XTX+Q)−1XTy, (14)

where Q = diag(q1, q2, ...., qp). The good thing where using GRE is find the best values
of qiso as to obtain the MSE which is less than when we using the ridge estimator and
OLS.

The generalized ridge estimator for NBRM (GRNBRM) is defined as

β̂GRNBRM = (XTŴX+Q)−1XTŴXβ̂ML

= (XTŴX+Q)−1XTŴû.
(15)

The selection of the matrix Q is very important. In this paper, several methods are
adapted to estimate Q, such as Hocking et al. (1976), Nomura (1988), Troskie and
Chalton (1996), Firinguetti (1999), Alkhamisi and Shukur (2007), Batah et al. (2008b),
Al-Hassan (2010), Dorugade and Kashid (2010), Månsson et al. (2010), Dorugade (2014),
Asar et al. (2014) and Bhat and Raju (2017). These methods are given below, respec-
tively

q̂i(HK) =
1

α2
i

, (16)
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where αj is defined as the jth element of γ β̂MLand γ is the eigenvector of theXTŴX.

q̂i(N) =
1

α̂2
i

{
1 +

[
1 + λi(α̂

2
i )

1/2
]}

[15] (17)

q̂i(TC) =
λi

λiα̂2
i

(18)

q̂i(F ) =
λi

λiα̂2
i + (n− p)

(19)

q̂i(HSL) =

∑p
i=1(λiα̂

2
i )

2

(
∑p

i=1(λiα̂2
i ))

2
(20)

q̂i(AH) =

∑p
i=1(λiα̂

2
i )

2

(
∑p

i=1(λiα̂2
i ))

2
+

1

λmax
(21)

q̂i(D) =
1

λmaxα̂2
i

(22)

q̂i(SB) =
λi

λiα̂2
i

+
1

λmax
(23)

q̂i(SV 1) =
p

α̂2
i

+
1

λMaxα̂2
i

(24)

q̂i(SV 2) =
p

α̂2
i

+
1

2
(√

λMax/λMin

)2 (25)

q̂i(M) =
1

λMaxα̂
2
i

(n−p)+λMaxα̂
2
i

(26)

q̂i(AS) =
1

α̂2
i

+
1

λi
(27)

4 Simulation results

This section demonstrates how Monte Carlo simulation examines the new estimator with
varying levels of multicollinearity through experimental tests. The response variable of
observations is generated from negative binomial regression as NB(µi, µi + θµ2

i ) with
µi = exp(xTi β) (Algamal, 2020; Algamal and Abonazel, 2022; Abonazel et al., 2022).
Here, β = (β0, β1, ..., βp) with and Månsson and Shukur (2011). n= 30, 50 and 150 and
p=3 and 7. The generated data is repeated 1000 times and the averaged mean squared
errors (MSE) is calculated as

MSE(β̂) =
1

1000

1000∑
i=1

(β̂ − β)T (β̂ − β), (28)
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where β̂ is the estimated coefficients for the used estimator.

The averaged MSE all the combination of n, p, and ρ, are respectively summarized in
Tables 1 – 6. The best value of the averaged MSE is highlighted in bold. The following
are some observations that can be made:

1. The MSE of GRNBRM is often lower than that of MLE.

2. Regardless of the kind of K matrix estimation technique used, it is clear that
GRNBRM achieved a lower MSE than NBRR.

3. It is clear that there is a negative effect on MSE with respect to the number of
explanatory variables, as their values increase as p increases.

4. The MSE performance of SV2 method exceeded alternative methods when applied
to the NBRM on all experimental conditions. All testing conditions demonstrated
that HK as well as SB methods yielded inferior performance compared to alterna-
tive methods used.

5. When the correlation degree grows, independent of the values of n and p, the MSE
values increase in terms of ρ values, demonstrating the superiority of the SV2
approach.

Table 1: Average MSE values when n = 30 and p = 3

Methods

ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 5.6741 5.8372 6.0518

NBRR 4.2001 4.2214 4.1991

F 2.9714 3.0257 3.0403

HSL 3.3838 3.4381 3.4527

SV1 3.3424 3.3967 3.4113

SV2 2.7977 2.852 2.8666

D 3.2043 3.2151 3.2207

AH 3.309 3.3633 3.3779

HK 3.7548 3.8091 3.8237

N 3.4182 3.4264 3.4288

TC 3.4968 3.5511 3.5657

SB 3.5015 3.5558 3.5704

M 3.3065 3.3603 3.3749

AS 3.3674 3.4217 3.4363



Electronic Journal of Applied Statistical Analysis 219

Table 2: Average MSE values when n = 30 and p = 7

Methods

ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 5.8841 6.0472 6.2618

NBRR 4.4101 4.4314 4.4091

F 3.1814 3.2357 3.2503

HSL 3.5938 3.6481 3.6627

SV1 3.5524 3.6067 3.6213

SV2 2.9977 3.052 3.0666

D 3.4143 3.4251 3.4307

AH 3.519 3.5733 3.5879

HK 3.9648 4.0191 4.0337

N 3.6282 3.6364 3.6388

TC 3.7068 3.7611 3.7757

SB 3.7115 3.7658 3.7804

M 3.5165 3.5703 3.5849

AS 3.5774 3.6317 3.6463

Table 3: Average MSE values when n = 50 and p = 3

Methods

ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 5.7831 5.9462 6.1608

NBRR 4.3091 4.3304 4.3081

F 3.0804 3.1347 3.1493

HSL 3.4928 3.5471 3.5617

SV1 3.4514 3.5057 3.5203

SV2 2.8967 2.951 2.9656

D 3.3133 3.3241 3.3297

AH 3.418 3.4723 3.4869

HK 3.8638 3.9181 3.9327

N 3.5272 3.5354 3.5378

TC 3.6058 3.6601 3.6747

SB 3.6105 3.6648 3.6794

M 3.4155 3.4693 3.4839

AS 3.4764 3.5307 3.5453
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Table 4: Average MSE values when n = 50 and p = 7

Methods

ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 5.7501 5.9462 6.1608

NBRR 4.2761 4.3304 4.3081

F 3.0474 3.1347 3.1493

HSL 3.4598 3.5471 3.5617

SV1 3.4184 3.5057 3.5203

SV2 2.8637 2.951 2.9656

D 3.2803 3.3241 3.3297

AH 3.385 3.4723 3.4869

HK 3.8308 3.9181 3.9327

N 3.4942 3.5354 3.5378

TC 3.5728 3.6601 3.6747

SB 3.5775 3.6648 3.6794

M 3.3825 3.4693 3.4839

AS 3.4434 3.5307 3.5453

Table 5: Average MSE values when n = 150 and p = 3

Methods

ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 5.7961 5.9592 6.1738

NBRR 4.3221 4.3434 4.3211

F 3.0934 3.1477 3.1623

HSL 3.5058 3.5601 3.5747

SV1 3.4644 3.5187 3.5333

SV2 2.9097 2.964 2.9786

D 3.3263 3.3371 3.3427

AH 3.431 3.4853 3.4999

HK 3.8768 3.9311 3.9457

N 3.5402 3.5484 3.5508

TC 3.6188 3.6731 3.6877

SB 3.6235 3.6778 3.6924

M 3.4285 3.4823 3.4969

AS 3.4894 3.5437 3.5583
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Table 6: Average MSE values when n = 150 and p = 7

Methods

ρ = 0.90 ρ = 0.95 ρ = 0.99

MLE 5.7811 5.9442 6.1588

NBRR 4.3071 4.3284 4.3061

F 3.0784 3.1327 3.1473

HSL 3.4908 3.5451 3.5597

SV1 3.4494 3.5037 3.5183

SV2 2.8947 2.949 2.9636

D 3.3113 3.3221 3.3277

AH 3.416 3.4703 3.4849

HK 3.8618 3.9161 3.9307

N 3.5252 3.5334 3.5358

TC 3.6038 3.6581 3.6727

SB 3.6085 3.6628 3.6774

M 3.4135 3.4673 3.4819

AS 3.4744 3.5287 3.5433

5 Real data application

We use the suggested estimator to the Spanish La Liga football season of 2016–2017
in order to further examine the utility of our new estimator. There are 20 teams in
this data. The number of matches won is represented by the response variable. The six
considerable explanatory variables included the number of yellow cards (x1), the number
of red cards (x2), the total number of substitutions (x3), the number of matches with
2.5 goals on average (x4 ), the number of matches that ended with goals (x5), and the
ratio of the goal scores to the number of matches (x6)”. As stated in (Alobaidi et al.,
2021), the data follows NBRM and there is high colinearity.

The estimated MSE values for the used estimators are listed in Table 7. According
to Table 7, it is clearly seen that the SV2 estimator shrinks the value of the estimated
coefficients efficiently.

6 Conclusions

NBRM serves as a statistical modeling approach which handles count data that shows
overdispersion by having a variance exceeding its mean. The MLE computations produce
unreliable coefficient estimates when multicollinearity occurs because they become char-
acteristically uncertain. The generalized ridge estimator was presented in this study as a
solution to the NBRM multicollinearity issue. A number of matrix estimation techniques
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Table 7: MSE values of the real data application

Methods MSE

MLE 10.7091

NBRR 9.2351

F 8.0064

HSL 8.4188

SV1 8.3774

SV2 7.8327

D 8.2393

AH 8.344

HK 8.7898

N 8.4532

TC 8.5318

SB 8.5365

M 8.3415

AS 8.4024

have been modified. Monte Carlo simulation experiments show that the GRNBRM esti-
mator performs better than MLE and NBRR in terms of MSE, independent of the type
of estimating method used for the Q matrix.
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