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Frequent injuries pose a problem in professional soccer that is being tack-
led with preventive measures. Consequently, injury prediction and preven-
tion are also increasingly addressed from a statistical perspective. In a pilot
study, several machine learning algorithms and conventional statistical ap-
proaches have been compared regarding their potential to predict time-loss
non-contact lower-body injuries in professional youth soccer players, using
data from a prospective cohort study with 56 players of which 22 were in-
jured. The covariates considered here include basic soccer-related as well
as neuromuscular and biomechanical features derived from physical testing.
Lasso regularized logistic regression, naive Bayes, linear discriminant analy-
sis, k -nearest neighbors, classification trees, random forests, XGBoost, and
support vector machines are considered for binary classification and predic-
tion of an injury occurrence. The prediction results from a cross-validated
procedure are compared regarding multiple quality measures. Post Lasso
logistic regression with a reduced penalty gives the best results with an ac-
curacy of 0.625, a predictive likelihood of 0.593, and a Brier score of 0.228.
The respective sensitivity and specificity are 0.773 and 0.529, with an AUC
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of 0.672. Moreover, an XGBoost model slightly outperforms the Lasso model
in terms of accuracy (0.661), while for the other performance measures it is
dominated by the Lasso.

In addition to the specific results on the available injury data set, the
proposed comparison procedure of several models for binary prediction pro-
vides a generally applicable analysis guideline. This roadmap can also be
applied in other contexts where similarly structured small but rich data sets
are available.

keywords: injury prediction, soccer, lasso regularization, machine learn-
ing, binary classification.

1. Introduction

Professional soccer is a sport with a high injury incidence. By considering different
countries, Junge and Dvorak (2004) found that adult male professional players sustain
approximately one performance affecting injury per year. Moreover, as a particular
example, the incidence of hamstring injuries has increased severely over the span of two
decades (Ekstrand et al., 2023). Young professional players are even more often affected
by injuries than adult players (Pfirrmann et al., 2016).

First of all, injuries negatively affect the careers of the players and are naturally
unpleasant for them. Moreover, they have the consequence that players will miss training
sessions or matches. Finally, also their teammates can be affected by fear of an own
injury or by low confidence in the team’s competence due to replacements. Such negative
emotions can also spread between players (social contagion; Hurley, 2016). Injuries in the
team tangibly impact the performance (Hägglund et al., 2013). Not least, the absence
of a professional player due to an injury costs the club a considerable amount of money
(Ekstrand, 2013). All these issues have led to an increased focus on injury risk factors
and causes, prevention, and prediction in sport science.

For these reasons, injury prevention in professional soccer has become an important
aspect also in the field of statistical analysis. Machine learning models are promising
instruments for accurate prediction. Beside conventional statistical approaches such as
(regularized) logistic regression, linear discriminant analysis, k-nearest neighbors, and
naive Bayes classifiers, possible machine learning methods include trees, random forests,
extreme gradient boosting, and support vector machines. Most works attempt to model
non-contact soft-tissue injuries, because they are seen as predictable and preventable
(Rossi et al., 2022). Player-specific characteristics such as age, weight, height, or body
mass index (BMI) are often considered in such models. Moreover, soccer players also
complete several neuromuscular and biomechanical tests to assess their physical perfor-
mance. Measurements from these tests can be valuable covariates in injury prediction
models.

A study on elite male youth soccer players by Read et al. (2018) approached non-
contact lower extremity injury prediction using multivariate binary logistic regression.
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Rossi et al. (2018) used logistic regression, tree-based, and random forest models for
injury forecasting. López-Valenciano et al. (2018) studied injuries of soccer players and
handball players with the same injury definition as used here, employing tree models
in combination with boosting and bagging. We will use similar covariates such as age,
BMI, player position, kicking leg, as well as covariates describing core stability, dynamic
postural control, and hip strength. Oliver et al. (2020) also used trees to predict injuries
in elite male youth soccer players, while Rommers et al. (2020) employed the XGBoost
method for the same purpose, both using covariate measurements collected before the
season.
This work continues the research of Kolodziej et al. (2023), who used different Lasso-

penalized logistic regression models (Friedman et al., 2010) to predict the injury status
of young professional soccer players. An overview of publications on machine learning
in team sports with the subtopic of injuries (Claudino et al., 2019) presents one study
involving the Lasso method for injury risk modeling. A more extensive systematic re-
view of injury prediction models in sport (Bullock et al., 2022) reveals the existence
of three studies using Lasso-penalized models for injury prediction. However, they all
focus on different study subjects other than young professional soccer players. In the
present manuscript, we apply further conventional statistical as well as machine learning
approaches to the data of Kolodziej et al. (2023) in an attempt to increase the predic-
tion quality and provide a comprehensive analysis comparing state-of-the-art methods.
Particularly, we examine if modern machine learning models are able to outperform the
classical statistical approaches of Kolodziej et al. (2023). To the best of our knowledge,
this work is the first to provide a thorough comparative study comparing conventional
statistical methods with modern machine learning approaches in the context of young
professional soccer. We incorporate the previous and the new models into a parallel
cross-validation (CV) procedure to make results comparable and obtain fair prediction
results on unseen test data. Regarded covariates are basic ones such as age, BMI, train-
ing age, player position, and kicking leg, as well as a range of covariates derived from
physical testing. Moreover, we seek to identify the most important covariates for good
injury prediction from the best-performing algorithms with the goal of assisting soccer
coaches and healthcare providers in injury prevention.
Our available data set contains a rich selection of variables. However, due to large

efforts needed for the data acquisition (and a restricted number of professional players
available to be investigated), it consists of only 56 observations. Given the rather small
sample size, our work mostly aims at providing a thorough guideline for the comparison
of modeling approaches. The proposed analysis framework could be useful in other
contexts where the same restrictions regarding data availability apply, which often is the
case in professional sports.
The remainder of this manuscript is structured as follows. The data at hand are de-

scribed in Section 2. In Section 3, the applied statistical modeling methods as well as our
cross-validation framework for comparing the methods are briefly described. Section 4
provides both the previous results of Kolodziej et al. (2023) and those from our new
analyses. Finally, Section 5 summarizes our main findings, addresses the limitations of
these analyses, and gives prospects to potential future analyses.
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2. Data

A professional athlete health care data set of a prospective cohort study of 56 young pro-
fessional male soccer players, belonging to three different youth teams (under 16, under
17, under 19) from two German professional soccer clubs, is regarded in this work. The
same data set has already been analyzed in Kolodziej et al. (2023), whereby we include
one specific player that was injured twice only once into our data set. Exclusion crite-
ria were the usage of prophylactic devices, a musculoskeletal injury reported no longer
than six weeks ago, or any current physical indisposition with the risk of a performance
impairment. Players outside of these criteria underwent testing before the season of
2018/19 at the start of the preparation phase. After completing a questionnaire guided
by a research assistant, the practical screening took place in one sport science research
center. Figure 1 shows the stages of the screening process. A 3D motion analysis device
and force plates recorded the players while they performed a single-leg drop landing
(SLDL) task and an unanticipated side-step cutting (USSC) task. Additionally, their
postural control under three different conditions and the strength of their lower body was
measured. The screening is described in detail in Kolodziej et al. (2021) and Kolodziej
et al. (2022). Tables 5 to 8 in Appendix A list the physical variables derived from the
measurements and transformations thereof used as covariates. For the 10 months of the
season after the testing, it was documented whether the players suffered from any time-
loss non-contact soft-tissue injury of the lower body. As specified in Rossi et al. (2022),
a time-loss injury by definition leads to absence in physical training or matches for at
least one day after the injury occurrence. Professional healthcare staff documented in-
juries using a standardized injury form without knowledge of the players’ screening and
testing results. In the following, the occurrence of such injuries is encoded as a binary
(response) variable y ∈ {0, 1}, with 0 = no injury and 1 = injury. Incomplete ob-
servations missing more than half of the covariate values due to technical problems are
excluded from the analysis, leading to our sample size of 56.

3. Methodology

In this section, we first briefly introduce all statistical and machine learning approaches
considered in this work (Section 3.1). Next, in Section 3.2 we introduce several qual-
ity measures which will be used for comparison of the predictive performance of the
approaches. Finally, we explain a cross-validation strategy and how hyperparameter
tuning is done in Section 3.3.

3.1. Statistical and machine learning approaches

A classification problem consists of training observations with a categorical outcome y.
An observation has features xxx = (x1, . . . , xp)

⊤ to be used as predictors, and the category
or class y it belongs to. Using the given data, the goal is to find a model, or learner, that
can correctly predict the class of an observation from its feature values. New observations
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Figure 1: Injury risk screening protocol (Kolodziej et al., 2023)

with a given feature vector and unknown class can then be processed by the learner to
predict their class or their posterior class probabilities (see, e.g., Hastie et al., 2009).

Logistic regression

In a logistic regression model (see, e.g., Tutz, 2012), the probability π(xxx) of a binary
event y conditioned on covariates xxx = (x1, . . . , xp)

⊤ is modeled with unknown but fixed
coefficients β0, β1, . . . , βp ∈ R. Then, π(xxx) is transformed via the logit function, i.e.,

log

(
π(xxx)

1− π(xxx)

)
= xxx⊤βββ ⇐⇒ π(xxx)

1− π(xxx)
= exp

(
xxx⊤βββ

)
⇐⇒ π(xxx) =

exp
(
xxx⊤βββ

)
1 + exp (xxx⊤βββ)

.

The coefficient vector βββ is estimated via maximum likelihood (ML) techniques (see, e.g.,
McCullagh and Nelder, 1989, for further details).

Following Tutz (2012), the estimated probability for yi = 1 for an observation with
features xxxi is calculated via

π̂(xxxi) =
exp

(
xxx⊤i β̂ββ

)
1 + exp

(
xxx⊤i β̂ββ

) .
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Lasso regression

If there are many possible predictors available, variable selection can be useful to ob-
tain a sparse model with only the most relevant features included and, thus, better
interpretability. The Least Absolute Shrinkage and Selection Operator (Lasso; Tibshi-
rani, 1996) regression is a suitable regularization method that results in variable selec-
tion. Via penalization of the regression coefficients, it shrinks all coefficients towards
0, and only retains the most important covariates in the model. It adds the penalty
−λ

2

∑p
j=1 |βj | to the conventional log-likelihood. The penalty parameter λ controls the

strength of the penalization and amount of shrinkage of the coefficients, and hence, the
number of covariates in the model. It needs to be tuned. As λ increases from 0, the
regression coefficients are shrunk, and the number of covariates retained in the model
descends from p down to 0 (James et al., 2021). This property makes Lasso particularly
useful in high-dimensional data situations, especially with more covariates than obser-
vations (p > n). The Lasso estimate is given by the βββ that maximizes the penalized
log-likelihood (Friedman et al., 2010).

The relaxed Lasso (Meinshausen, 2007) is a two-staged modification of the usual Lasso
procedure. It maximizes the penalized log-likelihood

lp(βββ) = l(βββ)− ϕ
λ

2

p∑
j=1

|βj |

with respect to βββ. As before, λ ∈ [0,∞) controls the penalty strength and, hence, how
many of the most important covariates are retained in the model. The second tuning
parameter ϕ determines how much the regression coefficients of the selected variables
are finally shrunk, while ϕ = 1 leads to the classic Lasso estimator. For ϕ ∈ (0, 1), there
is less shrinkage on the coefficients the smaller ϕ is. In the special case ϕ = 0, the feature
selection is controlled by λ in a first step. Then, a model containing only the selected
features is estimated in the classical way, meaning only the corresponding regression
coefficients are (re-)estimated in a second, unregularized estimation step. This case is
also known as the so-called post Lasso. For simplicity and to avoid time-consuming
multidimensional tuning, we restrict ourselves to the two extreme cases, ϕ = 1 (regular
Lasso) and ϕ = 0 (post Lasso).

Naive Bayes

The naive Bayes method classifies observations directly (Cleve and Lämmel, 2020), cal-
culating posterior class probabilities from their features xxx, the prior class probabilities
πk, and the class-specific densities fk(xxx), k = 1, . . . ,K. The posterior probability for
class k of an observation with feature vector xxx, i.e., P(Y = k|XXX = xxx), can then be derived
via the Bayes’ theorem. The simplifying assumption that the p features are independent
in each class allows for factorizations of the density functions into a product of the single
variable densities fkj(xj), j = 1, . . . , p, see, e.g., Hastie et al. (2009) and James et al.
(2021) for details. The method is quite simple, however, it has to be noted that the
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probability predictions can suffer from a large amount of included features (Friedman,
1997).

Linear discriminant analysis

In linear discriminant analysis (LDA; Hastie et al., 2009), the feature vector in class k
is assumed to be distributed according to N (µµµk,ΣΣΣ) with class-specific means µµµk and a
common covariance matrix ΣΣΣ. Bayes’ theorem is then used to calculate posterior class
probabilities using multivariate normal densities fk(xxx) and prior class probabilities πk.
A large number of features p > n can lead to problems due to singular matrices (Yu and
Yang, 2001).

k-nearest neighbors

The k-nearest neighbors (KNN) method classifies an observation via considering its k
closest observations in the feature space based on a suitable distance measure. Majority
vote among the classes of its k nearest neighbors determines the class it is assigned to.
Moreover, the relative frequencies of classes of the closest neighbors serve as posterior
probability estimates. Note that the number of considered neighbors k is a tuning
parameter (see, e.g., Hastie et al., 2009). Again, the curse of dimensionality can lead to
a poor performance of KNN when including many features (Friedman, 1997).

Classification trees

The Classification and Regression Tree (CART) method (Breiman et al., 1984) is a
stepwise, top-down, greedy procedure to split the feature space and thus a data sample
into classes. In each iteration, a single covariate xj and a cut point s are chosen to split
the feature space into two regions R1(j, s) = {x|xj < s} and R2(j, s) = {x|xj ≥ s},
which also splits the observations into two sets accordingly. The choice of the split point
and splitting variable is made such that the total impurity of the two new sets with
regard to the class variable, measured, e.g., by the Gini index, is reduced as much as
possible in comparison to the whole set. This binary splitting procedure is repeated
until a stopping criterion such as a minimal set size (James et al., 2021) or impurity
improvement (Breiman et al., 1984) is reached. To prevent overfitting, the tree can be
pruned. The predicted class for an observation is the majority class in the final leaf the
observation ends up in, and posterior probabilities are the relative frequencies of the
classes in that leaf (James et al., 2021). As tuning parameters, we use both the minimal
number of observations in a set, and the complexity parameter cp that stops the tree
growing if the impurity is not decreased by at least the factor cp. If the response is
continuous, so-called regression trees can be constructed in a similar fashion. Since any
tree split only involves a single best feature separately, trees can handle a large input
number of features.
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Random forests

The random forest (Breiman, 2001) extends the tree concept and contains a multitude
of trees that are grown in parallel. Several bootstrap samples, each of size n, from
the original data are drawn (with replacement), and a fully sized tree is grown on each
sample. For every split, only a subset of a pre-specified size mtry ≤ p of randomly
selected covariates may be used, where mtry is the main tuning parameter of the method.
An observation is classified based on the majority vote over all trees in the forest. As
the procedure is based on individual trees, it inherits the property to be able to easily
handle a large input number of features (James et al., 2021).

XGBoost

Boosting, another approach to combine many learners, works sequentially instead of
parallelly (James et al., 2021). Boosting of trees can be conducted via a gradient descent
procedure (Friedman, 2001). Extreme Gradient Boosting (XGBoost; Chen and Guestrin,
2016) is a further development of this method with additional regularization to prevent
overfitting. After the first tree is fitted, every subsequent tree is trained on the residuals
based on the true outcome and a prediction based on all previous trees (James et al.,
2021). The prediction is updated by adding the new prediction contribution scaled by a
small learning rate ν ∈ (0, 1], making the learner “weak” (Friedman, 2002). The number
of learners M , the learning rate ν, and the maximal tree depth are the main tuning
parameters we focus on. Again, as also this procedure is based on individual trees, it
inherits the property to be able to easily handle a large input number of features.

Support vector machine

Support vector machines (SVMs; Cortes and Vapnik, 1995) construct a hyperplane in the
feature space to separate the data with regard to the outcome. This is done such that a
margin on both sides of the hyperplane preferably does not contain many sample obser-
vations. Observations within the margin or even on the wrong side of the hyperplane are
penalized, with the cost of such violations being a tuning parameter. Moreover, the total
allowed violation is limited. Nonlinear boundaries between the classes are possible by in-

troducing kernels. We use the radial kernel K(xxxi1 ,xxxi2) = exp
(
−γ

∑p
j=1(xi1j − xi2j)

2
)
,

with γ > 0 representing a second tuning parameter (see, e.g., James et al., 2021).

Shapley Additive Explanation values

Lundberg and Lee (2017) propose a game theoretical approach to assign so-called SHap-
ley Additive exPlanation (SHAP) values to features in a model as a measure of their
importance in the prediction for one observation. The mean absolute value over all
observations then represents the global importance of a feature in the model.
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3.2. Metric definition

We are searching for a model that can not only identify players at risk of an injury, but
that has an overall good prediction performance from a global statistical perspective.
Therefore, we jointly regard all following measures to assess the accordance between the
models’ predictions and the true outcomes:

� the global accuracy, which gives the relative frequency of observations for which
the prediction matches the true class; a common and overall measure of model
accuracy (Yale et al., 2018);

� the sensitivity, which is the relative frequency of observations with true class 1
that are predicted as class 1; important for injury prediction;

� the specificity, which is the percentage of true class 0 observations that are pre-
dicted as class 0; important for non-injury prediction;

� Youden’s index (Youden, 1950), given by sensitivity + specificity− 1, representing
a summary of the two above measures; important if correct prediction of both
classes is equally relevant;

� the AUC, which is the area under the ROC (receiver operating characteristic)
curve; relative predictive power of a model (Yale et al., 2018), model’s ability to
discriminate between the classes (Van Calster et al., 2019);

� the (average) predictive Bernoulli likelihood, given by 1
n

∑n
i=1 π̂

yi
i (1− π̂i)

1−yi , rep-
resenting the average probability of a correct class prediction regardless of class;

� the Brier score, given by 1
n

∑n
i=1 (yi − π̂i)

2, representing the average quadratic
deviation between true and predicted class; does not only take into account the
class predictions, but also the predicted probabilities.

All above measures take values in [0; 1]. A large value in this interval indicates a good
performance for all measures but the Brier score, which is an error measure where a
small value is desirable.

3.3. Leave-one-out cross-validation implementation and
hyperparameter tuning

The comparison of the approaches from Section 3.1 is done via a nested cross-validation
procedure. We perform a leave-one-out (LOO) CV on an outer level. Cycling through
all observations, each one is once taken out, leaving 55 observations for training. These
are randomly split into 15 CV folds for an inner CV that is used for hyperparameter
tuning. Using 15-fold CV leads to a good compromise of having an appropriately large
number of folds, which are not too small with three or four observations each. The same
folds are used for all methods for better comparability. The best tuning parameters for
the logistic Lasso regression approaches are chosen consulting the deviance, which is the
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suggested measure by the glmnet authors (Tay et al., 2023). For all other approaches,
the Brier score is used to select the tuning parameters with the best predictions. All
methods are then fitted once again on all 55 observations with these respective best
hyperparameters. Predictions for the respective left out observation are saved and the
measures from Section 3.2 are used to assess them1. The simple constant model is
exempt from this procedure and uses the proportion of injured players in the whole data
set as a predicted probability for every observation, and in the following analyses serves
as a benchmark.

The hyperparameters mentioned in Section 3.1 are tuned using an even grid of nine
possible values each, which are given in Table 1. For Lasso logistic regression, however,
a grid of 100 λ values is created automatically via the cv.glmnet function from the
glmnet package. For post Lasso, ϕ is set to 0. Finally, note that there are no natural
tuning parameters for naive Bayes and LDA.

Let θ be the threshold value for converting a predicted probability for class 1 into a
prediction of class 1, i.e., a learner predicts class 1 for an observation if its predicted
probability is greater than or equal to θ. We conduct the analysis for θ = 0.5, θ = 0.4,
and for the respective optimal θ for each method according to Youden’s index (Youden,
1950).

Table 1: Grids of hyperparameters used in tuning (using 9 different values for each grid)

Method Parameter Smallest Value Largest Value Log Scale

k-nearest Neighbors k 7 15 no

Classification Tree cp 0.00001 0.1 yes

min. # obs. 2 10 no

Random Forest mtry 2 18 no

XGBoost max. depth 1 9 no

ν 0.00001 0.1 yes

M 10 100 no

Support Vector Machine cost 0.0001 10000 yes

γ 0.0001 10000 yes

3.4. Construction of bootstrap confidence intervals

Principally, a single value for every measure from Section 3.2 and every method from
Section 3.1 results from the analysis of our data set using the procedure from Section 3.3.
To quantify the uncertainty of these values, said procedure is repeated for a number of

1An important technical detail is that this is done on the whole data set level, since this is necessary
to calculate e.g. the sensitivity, specificity, and AUC. Casalicchio and Burk (2024) refer to this as
micro-averaging.
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B bootstrap samples from the original data set. The samples are drawn in a stratified
manner such that the proportion of injured players in each sample corresponds to the
true proportion (Fox, 2015). Moreover, it is ensured that in every bootstrap sample at
least 35 % of the observations (corresponding to at least 20 players) are drawn exactly
once. Only these unique observations from every sample undergo the CV-type procedure
of being left out of the data set described above. Thus, predicted probabilities for
these observations are obtained from separate training data, analogous to the process in
the original data set, avoiding information leakage and over-optimism. This bootstrap
procedure generates B values for every combination of quality measure and modeling
approach. In order to be able to assume normality in every set of B values, we suggest
to choose B ≥ 30. Then, Gaussian confidence intervals can be constructed using the
estimated means and standard deviations.

All analyses were carried out with R (R Core Team, 2022) in version 4.3.0. The specific
packages used for the different modeling approaches are glmnet (Tay et al., 2023) for all
Lasso models, e1071 (Meyer et al., 2023) for naive Bayes and the SVM, MASS (Venables
and Ripley, 2002) for the LDA, kknn (Schliep and Hechenbichler, 2016) for KNN, rpart
(Therneau and Atkinson, 2023) for trees, ranger (Wright and Ziegler, 2017) for random
forests, and xgboost (Chen et al., 2023) for XGBoost.

To make the tuning process of all employed approaches as much comparable as pos-
sible, all models except for the Lasso-regularized logistic regressions, which were tuned
via cv.glmnet from glmnet (Tay et al., 2023), were tuned with the package mlr3verse
(Lang and Schratz, 2023).
The pROC package (Robin et al., 2011) was used to calculate AUC values and the iml

package (Molnar et al., 2018) for SHAP values. The package rpart.plot (Milborrow,
2022) was used for classification tree plotting.

4. Application on injury data

Descriptive characteristics of the injury data set and the previous results of Kolodziej
et al. (2023) are briefly presented in Section 4.1. In Section 4.2, we apply all classifica-
tion methods introduced in Section 3.1 to the data using CV, and illustrate the main
findings on the prediction quality. Important covariates for several learning methods are
compared in Section 4.4.

4.1. Descriptive analysis and previous results

Our injury data set contains 56 observations of 86 covariates and the outcome variable.
Overall, 22 of 56 players (39.3 %) suffered an injury in the observation time of 10 months.
Tables 5 to 8 in Appendix A contain the arithmetic means and standard deviations of all
physical continuous covariates on the whole data set as well as separately for injured and
non-injured players. In Figures 3 to 7 in Appendix B, the distributions of the remaining
variables are illustrated.
Kolodziej et al. (2023) analyzed the injury data using Lasso logistic regression models,

using main effects of all available covariates to model the injury probability. The penalty
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strength λ was set to either its optimal value, λopt, according to a 15-fold CV, or to λ1se,
a slightly smaller value2. The regression coefficients were either shrunk by the respective
λ, or not shrunk using post Lasso. These two modeling options in combination with the
two λ candidates led to four possible Lasso models.

All models competed in a LOO CV prediction competition similar to the one described
in Section 3.3. Altogether, the performance of the post Lasso model with the smaller
penalty λ1se turned out to be best. Of the four models, it reached the largest predictive
likelihood of 0.58, and also the largest AUC value of 0.63. Moreover, it clearly achieved
the largest sensitivity of 0.35. Its specificity of 0.79 was, albeit smaller, in the range of
the other models.

4.2. Results of the leave-one-out cross-validation competition on
predictive power

The LOO CV strategy from Section 3.3 is used to compare the methods from Section 3.1
fairly and assess their predictive performance on unseen data. We include all available
covariates from Kolodziej et al. (2023) in the modeling approaches in linear form only
(but note that the tree-based approaches of course can account for non-linear and in-
teraction effects nevertheless). For comparison and as a benchmark, we also regard a
deterministic featureless learner that simply uses the relative frequency of injured play-
ers in the data as the predicted probability for class 1, which is called constant in the
following.

Table 2 presents the predictive performance results of the LOO CV for the threshold
θ = 0.5. The best accuracy of 0.661 is reached by XGBoost, corresponding to a correct
prediction for 37 out of 56 players. The post Lasso with λopt has one and the post Lasso
with λ1se and the SVM have two matches less. The latter Lasso approach, Naive Bayes,
the tree, and XGBoost all achieve the largest sensitivity of 0.409. Of these, XGBoost
has the largest specificity of 0.824. It also shows the largest value of 0.233 of Youden’s
index over all methods. Finally, the post Lasso with λ1se reaches the largest AUC of
0.672, the largest predictive likelihood of 0.593, and the smallest Brier score of 0.228
over all other methods. With θ = 0.5, the post Lasso with λ1se and XGBoost show good
values for several quality measures.

We repeat the analysis for θ = 0.4, which is very close to the proportion of observations
of class 1 in the whole data set. The results are shown in Table 9 in Appendix C. The
KNN algorithm reaches the largest accuracy of 0.625, predicting the classes of 35 out of
56 players correctly. It also shows the largest specificity of 0.853, while its sensitivity is
0.227. Conversely, XGBoost achieves the largest sensitivity of 0.727, and a specificity
of 0.294. The largest value of Youden’s index of 0.131, however, is reached by the post
Lasso with λ1se. The modeling approach also still shows the largest AUC, the largest
predictive likelihood, and the smallest Brier score, all of which do not depend on the
chosen threshold θ.

2This is the smallest λ within one CV standard error of λopt. It leads to a weaker regularization than
λopt, so it typically results in a slightly larger model.
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Table 2: Quality measure results for the threshold θ = 0.5 (best value in bold fontbold fontbold font)

Acc Sens Spec Youd AUC Pred. L. Brier

Lasso λopt 0.607 0.091 0.941 0.032 0.586 0.532 0.238

Lasso λ1se 0.589 0.136 0.882 0.019 0.508 0.527 0.257

Post Lasso λopt 0.643 0.4090.4090.409 0.794 0.203 0.638 0.577 0.239

Post Lasso λ1se 0.625 0.364 0.794 0.158 0.6720.6720.672 0.5930.5930.593 0.2280.2280.228

Naive Bayes 0.518 0.4090.4090.409 0.588 -0.003 0.515 0.536 0.420

LDA 0.482 0.364 0.559 -0.078 0.370 0.440 0.510

KNN 0.589 0.045 0.941 -0.013 0.549 0.546 0.252

Tree 0.518 0.4090.4090.409 0.588 -0.003 0.473 0.508 0.424

Random Forest 0.536 0.136 0.794 -0.070 0.449 0.509 0.258

XGBoost 0.6610.6610.661 0.4090.4090.409 0.824 0.2330.2330.233 0.549 0.509 0.253

SVM 0.625 0.091 0.9710.9710.971 0.061 0.434 0.542 0.232

Constant 0.607 0.500 0.523 0.239

Abbreviations: Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Youd: Youden’s index, AUC:
Area under the ROC curve, Pred. L.: Predictive Bernoulli likelihood, Brier: Brier score

Lastly, we conduct the analysis again, using the respective best threshold θ that leads
to the maximal value of Youden’s index for each method. Table 3 displays these best
threshold values and the resulting quality measures, along with bootstrap confidence
intervals described in Section 4.3. For the constant learner, two thresholds θ lead to a
maximal Youden’s index, namely θ = 0 and θ = 1. Consequently, we have two best
constant models, which predict either 1 or 0 for all observations, respectively, and their
accuracies sum up to 1. The XGBoost method has the largest accuracy of 0.661 again,
and its best θ is very close to 0.5. Even if its sensitivity is only at 0.5, the other measures
are often better than most approaches, at least. The post Lasso with λopt and the SVM
have large sensitivity values, the LDA has a large specificity. The best performance of
both measures combined in the form of Youden’s index is reached by the post Lasso
approach with λ1se. Again, it also has the best AUC value, predictive likelihood, and
Brier score, since these measures do not depend on the threshold θ. While the post Lasso
with λopt shows good values for many measures, it is still often slightly outperformed by
the one with λ1se.

Altogether, the post Lasso with λ1se shows the best results for four out of seven quality
measures considered here. The XGBoost has the largest accuracy of all methods, and
often one of the best results among the newly employed methods.
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Table 3: Best thresholds θ according to Youden’s index and quality measure results, to-
gether with 95 % bootstrap confidence intervals for the respective best threshold
(best value in bold fontbold fontbold font). Colors indicate if the interval covers the true value
( yes / no ).
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4.3. Uncertainty quantification

In order to obtain uncertainty intervals for the quality measures from Section 4.2, we
employ the bootstrap procedure described in Section 3.4. A set of B values for every
quality measure and method except for the constant models is obtained from the boot-
strapped LOO CV. Due to the large computational burden of this procedure, we decided
to choose B = 30. In order to justify that an assumption of normality is acceptable for
these sets, we carefully investigated corresponding density plots. Exemplary ones for
the accuracy, the predictive likelihood and the Brier Score for the post Lasso approach
with λ1se, the random forest an KNN are provided in Figure 8 in Appendix D. For
all other measures and methods, these look quite similar. Therefore, we proceed with
the normality assumption and construct a respective 95 % confidence interval (CI) from
every value set, belonging to one measure and modeling approach. The intervals are
given in Table 3, where a color scheme indicates whether the value obtained from the
original data lies within the respective CI.

All employed measures can take values between 0 and 1, but the interval widths for
the different measures show differences. Some CIs for the sensitivity or specificity cover
almost the whole [0, 1]-interval, while for the predictive likelihood and Brier score, much
smaller CIs are obtained. In most cases, the models’ performances on the bootstrap
data sets are overall slightly better than on the original data. For many modeling
approaches, the original performance measure value is not even included in the bootstrap
CI. However, for KNN, the classical Lasso and both post Lasso approaches, the intervals
cover the true value for all seven performance measures. Moreover, the true values often
lie approximately in the middle of their intervals for these approaches. Therefore, we
conclude that such bootstrap CIs give a reasonable range for the performance measures
of these methods in situations comparable to ours.

4.4. Important covariates

In the following, we compare the proposed most important covariates of three mod-
els. Firstly, the post Lasso approach with a smaller penalty λ1se emerges as the overall
best one from our comparisons. Secondly, XGBoost is a modern, popular and power-
ful machine learning modeling approach and shows the largest accuracy. Thirdly, the
classification tree, which despite not showing a convincing performance, is highly inter-
pretable. After re-tuning the hyperparameters in a 15-fold CV using all observations, we
fit the three approaches on the whole data set with the obtained best hyperparameters
and calculate variable importances based on SHAP values. The Lasso model selects three
covariates (see also Kolodziej et al., 2023). The resulting classification tree is shown in
Figure 2 and uses four different splitting variables. Here it is to be noted that due to
the small sample size and the nature of the tree algorithm, a slightly differing data set
might profoundly change the structure of the resulting tree (see Hastie et al., 2009). The
10 largest SHAP values for XGBoost are given in Table 4.

The covariate with the largest absolute coefficient (β̂ = −0.987) and the second largest
SHAP value of 0.101 in the Lasso model is the concentric knee extension torque. In
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XGBoost, the feature also has the largest variable importance of 0.044. Moreover, it
is the third tree splitting variable and shows the largest SHAP value of 0.183 in this
model as well. Both tree and Lasso model link a higher value of the covariate to a lower
probability to be injured.
The second covariate chosen by the Lasso model, the hip external and internal rotation

moment in the SLDL task, has a regression coefficient of β̂ = −0.963 and is thus asso-
ciated with a smaller injury probability. Moreover, in the Lasso model, it has the third
largest SHAP value of 0.092. The other two models don’t use this feature primarily.
The center of pressure (COP) sway of a force plate the athletes stood on to test their

postural control under static conditions is the third covariate chosen by the Lasso model,
with a regression coefficient of β̂ = 0.731. Here, it has the largest SHAP value of 0.144.
The COP sway has the second largest SHAP value of 0.036 in XGBoost, and it is the
first splitting variable in the classification tree with the second largest SHAP value of
0.151. In both the Lasso and the tree model, a larger COP sway is associated with a
larger injury probability.
The second splitting variable in the tree with the third largest SHAP value of 0.110

is the hip adduction and abduction moment in the USSC task. A higher value of the
covariate is related to a higher injury risk. The covariate is the third most important
variable in the XGBoost model, however, the SHAP value of 0.017 is only half as large
as the second largest value.
The plantar and dorsal moment of the ankle in the USSC task appears as the fourth

splitting variable in the classification tree, shows a SHAP value of 0.096, and predicts
a higher injury probability with a larger value. XGBoost contains this feature as the
seventh most important one.

Table 4: Top 10 SHAP values for XGBoost fitted on the whole data set

XGBoost

Rank Variable SHAP value

1 Concentric Knee Extension 0.044

2 COP Sway 0.036

3 Hip Adduction/Abduction Moment USSC 0.017

4 Knee Adduction/Abduction PEAK SLDL 0.017

5 BMI 0.010

6 Knee External/Internal Rotation IC SLDL 0.009

7 Ankle Plantarflexion/Dorsalflexion Moment USSC 0.007

8 Hip External/Internal Rotation IC SLDL 0.005

9 Eccentric Knee Extension Ratio 0.005

10 Knee Flexion/Extension PEAK USSC 0.003

Following Van Calster et al. (2019), the calibration of risk prediction models is an
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Figure 2: Classification tree obtained on the whole data set. In each node, the upper
0 or 1 gives the prediction of the respective node. In the second line of each
node, on the left side is the number of injured players within the node and
on the right side the number of uninjured players. The splitting criteria for
sorting the data is added on the links between the nodes.
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important aspect. Mean calibration is assessed via comparison of the true relative event
frequency and the average predicted risk from the regarded models. In our data, we
observe a proportion of 0.393 of injured players. This is also the average predicted risk by
the post Lasso model and the classification tree. XGBoost predicts an injury probability
of 0.456 on average, thus in general overestimating the risk. We also calculated the
so-called calibration intercepts and slopes as suggested by Van Calster et al. (2019)
for weak calibration assessment. By construction, the post Lasso model numerically
meets the target values of 0 for the calibration intercept and 1 for the slope. For the
classification tree, the deviation from these target values is less than 1%3. For XGBoost,
the calibration intercept is −0.271. However, since the predicted class 1 probabilities
are even perfectly linearly separable with regard to the true classes, calculation of the
calibration slope is not possible.

5. Conclusion, limitations, and discussion

On a small scale, our work approaches the problem of predicting the binary injury sta-
tus in young professional soccer players. Player-specific as well as biomechanical and
neuromuscular features are considered for prediction. The latter are collected in a prac-
tical screening, consisting of tests of postural control, strength, and motion. Preliminary
work on the data by Kolodziej et al. (2023) investigates the prediction capacity of several
Lasso-regularized logistic regression models, yielding a model with a reduced penalty and
a post coefficient re-estimation step as the best one. In our work, we compare it to the
prediction power of other conventional and machine learning approaches on the same
task. We also provide bootstrap-based confidence intervals to quantify the uncertainty
of the obtained prediction performance measures.

All in all, no new method substantially outperforms the best post Lasso model with
λ1se, which reaches the largest value of Youden’s index of 0.302, the largest AUC of 0.672,
the largest predictive likelihood of 0.593, and the smallest Brier score of 0.228, using its
best threshold. Its sensitivity and specificity values are 0.773 and 0.529, respectively. As
the most important predictors for the injury status, it contains the concentric extensor
peak torque of the knee, the transversal plane moment of the hip in a single-leg drop
landing task, and the sway of the COP of a force plate in a postural control test (see also
Kolodziej et al., 2023). The best XGBoost model and classification tree place the largest
importance for injury prediction on the COP sway, and use the concentric knee extensor
peak torque as the second or third most important variable. The corresponding high
relevance of these two variables in the three algorithms generally confirms the results
from Kolodziej et al. (2023) and is a strong argument for their importance in injury
prediction. However, a drawback of our classical modeling approach is the inability to
draw any conclusions on causality of these variables on the injury risk.

When investigating another population of players with similar inclusion criteria, our

3Note that for 13 observations, we changed the predicted class 1 probability from the respective tree
node from 1 to 0.999. This was necessary for transforming the predicted probabilities for the logistic
model fitting for the calibration evaluation.
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findings of important predictors could possibly be generalized. However, caution is to
be applied when it comes to identifying the best performing models. In our study with
the small sample size of n = 56, it is entirely possible/probable that modern machine
learning methods can not realize their full potential. Therefore, the Lasso model might
be outperformed by other approaches with the inclusion of more observations, and we
warn against generalizing the goodness of the Lasso model here to other settings. In
case of availability of data where n > p, conventional statistical methods that struggle
with high-dimensional data might also improve.
From a larger perspective beyond the specific problem of injuries in young professional

soccer, we hope to provide a thorough and extensive guideline here on how several
modeling approaches in a binary classification and prediction setting can be compared.
We propose a roadmap for the analysis of small data sets with (typically expensive) high-
quality variables, seeking to extract as much information as possible from data collected
with significant efforts.
In our analysis, after choosing best thresholds for every modeling approach, we re-

gard all prediction quality measures in parallel, regardless of whether they depend on a
threshold. A legitimate alternative might be a two-stage process where the best model-
ing approaches are first identified based on threshold-independent measures like AUC,
predictive likelihood, and Brier score. In a second step, the optimal threshold could be
determined for the chosen approaches. In our case, the post Lasso model with λ1se shows
the best performance of all approaches for all three mentioned global measures.
The reliable prediction of soccer injuries in young professional male players remains

a challenge. While the best model found here can identify a large proportion of players
that are not going to be injured, it is less capable to detect players that are going to
suffer an injury. Hence, the search for prediction models and larger data sets allowing
for better overall predictive performance continues.
Optimization might be possible by not only conducting physical tests before the sea-

son, but also regularly within the season. However, the expenditure of time necessary
for more tests would be a new issue. Moreover, while larger data sets of many teams
would be desirable, dividing the work of collecting the data might affect their quality
when it is not done in a standardized way (Petrie and Falkstein, 1998).
In the future, we intend to analyze the data again with time-to-event approaches,

regarding the time between the screening and a potential injury as a more informative
outcome compared to a binary one. Our hope is that the utilization of this additional
information in the data may lead to an increase in prediction quality.
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Appendix A Physical covariates

Table 5: Means ± standard deviations of the postural control covariates and strength
covariates for all players, and separately for injured and non-injured players

Covariate all injured not injured

Postural Control

Static COP Sway 119.193± 24.318 129.730± 26.363 112.375± 20.529

Dynamic DPSI 4.598± 0.937 4.520± 1.054 4.649± 0.866

Unstable Path of Platf. 0.392± 0.189 0.443± 0.226 0.360± 0.155

Strength

Trunk Flexion 2.337± 0.482 2.209± 0.466 2.421± 0.481

Extension 4.936± 1.054 4.801± 0.935 5.023± 1.129

Flex. + Ext. 3.637± 0.670 3.505± 0.606 3.722± 0.704

Flex./Ext. 0.488± 0.117 0.473± 0.120 0.497± 0.116

Lat. Flex. 2.411± 0.498 2.309± 0.456 2.477± 0.520

Lat. Flex. l/r 0.974± 0.176 0.979± 0.119 0.971± 0.206

Tr. Rot. 1.978± 0.340 1.914± 0.334 2.020± 0.342

Tr. Rot. l/r 1.016± 0.160 1.049± 0.189 0.995± 0.138

Core Score 16.053± 2.561 15.456± 2.410 16.438± 2.615

Hip Abduction 1.917± 0.324 1.896± 0.321 1.931± 0.330

Adduction 2.074± 0.531 1.985± 0.463 2.131± 0.570

Abd./Add. 0.959± 0.190 0.981± 0.166 0.945± 0.206

Knee Conc. Ext. 3.084± 0.475 2.855± 0.472 3.233± 0.421

Conc. Ext. l/r 1.004± 0.143 1.041± 0.178 0.981± 0.111

Conc. Flex. 1.667± 0.255 1.565± 0.201 1.733± 0.268

Conc. Flex. l/r 0.971± 0.110 0.988± 0.103 0.960± 0.115

Ecc. Ext. 3.652± 0.706 3.382± 0.701 3.827± 0.661

Ecc. Ext. l/r 1.016± 0.185 1.051± 0.193 0.993± 0.179

Ecc. Flex. 2.124± 0.417 1.980± 0.322 2.216± 0.448

Ecc. Flex. l/r 1.012± 0.137 1.020± 0.142 1.006± 0.135

Conv. K. Rat. 0.545± 0.070 0.555± 0.070 0.539± 0.070

Func. K. Rat. 0.693± 0.118 0.702± 0.116 0.688± 0.121

Abbreviations: COP: center of pressure, DPSI: Dynamic Postural Stability Index, Platf.: Platform,
Flex.: Flexion, Ext.: Extension, Lat.: Lateral, l/r: left/right, Tr.: Transversal, Rot.: Rotation,
Abd.: Abduction, Add.: Adduction, Conc.: Concentric, Ecc.: Eccentric, Conv.: Conventional,
Func.: Functional, K. Rat.: Knee Ratio
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Table 6: Means ± standard deviations of the joint kinematics covariates in the SLDL in
degrees for all players, and separately for injured and non-injured players

Covariate all injured not injured

Joint Kinematics in the SLDL

Ankle Ev./Inv. IC 8.342± 3.724 8.464± 4.081 8.263± 3.536

Ev./Inv. PEAK 9.468± 3.835 9.832± 4.087 9.232± 3.706

Pl.fl./Do.fl. IC 24.339± 5.185 24.661± 4.822 24.132± 5.469

Pl.fl./Do.fl. PEAK 26.315± 6.036 27.377± 6.028 25.628± 6.030

Ext./Int. Rot. IC 1.730± 3.952 1.353± 4.029 1.975± 3.942

Ext./Int. Rot. PEAK 3.154± 4.484 2.783± 4.653 3.394± 4.425

Hip Add./Abd. IC −9.642± 2.859 −10.059± 2.713 −9.372± 2.958

Add./Abd. PEAK 0.360± 3.299 0.564± 3.519 0.229± 3.196

Flex./Ext. IC −30.004± 6.974 −30.057± 7.649 −29.970± 6.620

Flex./Ext. PEAK −44.372± 8.698 −44.399± 9.986 −44.354± 7.915

Ext./Int. Rot. IC −4.764± 4.573 −4.694± 5.678 −4.810± 3.785

Ext./Int. Rot. PEAK 0.627± 4.230 1.353± 4.953 0.157± 3.693

Knee Flex./Ext. IC 14.926± 4.927 14.651± 4.598 15.103± 5.188

Flex./Ext. PEAK 52.218± 4.618 52.873± 4.396 51.794± 4.772

Ext./Int. Rot. IC −2.056± 3.966 −1.596± 4.196 −2.354± 3.844

Ext./Int. Rot. PEAK 10.060± 4.433 9.553± 4.675 10.387± 4.309

Add./Abd. IC 1.966± 2.935 1.639± 3.027 2.178± 2.899

Add./Abd. PEAK −0.833± 4.024 −1.934± 4.658 −0.120± 3.441

Abbreviations: SLDL: single-leg drop landing task, Ev.: Eversion, Inv.: Inversion, IC: initial contact
(first moment of contact with the force plate), PEAK: peak value (maximal value within 100 ms
after IC), Pl.fl.: Plantarflexion, Do.fl.: Dorsalflexion, Ext.: External, Int.: Internal, Rot.: Rotation,
Add.: Adduction, Abd.: Abduction, Flex.: Flexion, Ext.: Extension
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Table 7: Means ± standard deviations of the joint kinematics covariates in the USSC in
degrees for all players, and separately for injured and non-injured players

Covariate all injured not injured

Joint Kinematics in the USSC

Ankle Ev./Inv. IC 12.858± 5.801 13.156± 6.115 12.665± 5.674

Ev./Inv. PEAK 22.108± 4.928 22.400± 5.336 21.919± 4.719

Pl.fl./Do.fl. IC −2.652± 9.044 −0.931± 10.749 −3.766± 7.716

Pl.fl./Do.fl. PEAK 3.448± 6.490 5.075± 6.863 2.396± 6.108

Ext./Int. Rot. IC −3.207± 5.028 −3.425± 5.820 −3.066± 4.531

Ext./Int. Rot. PEAK 0.150± 5.173 −1.145± 5.297 0.988± 4.990

Hip Add./Abd. IC −7.095± 4.380 −6.951± 4.525 −7.188± 4.349

Add./Abd. PEAK −3.499± 4.535 −3.731± 4.635 −3.348± 4.533

Flex./Ext. IC −66.918± 8.794 −64.476± 10.712 −68.498± 7.022

Flex./Ext. PEAK −68.429± 8.495 −66.038± 10.058 −69.976± 7.045

Ext./Int. Rot. IC 2.711± 4.684 2.667± 5.954 2.739± 3.742

Ext./Int. Rot. PEAK 6.241± 5.402 6.634± 7.087 5.986± 4.063

Knee Flex./Ext. IC 43.161± 11.834 39.393± 12.017 45.598± 11.221

Flex./Ext. PEAK 56.807± 5.251 55.873± 5.855 57.411± 4.815

Ext./Int. Rot. IC 7.247± 5.737 6.451± 6.415 7.763± 5.289

Ext./Int. Rot. PEAK 12.656± 5.402 11.534± 5.968 13.382± 4.958

Add./Abd. IC −1.106± 4.343 −1.149± 4.054 −1.079± 4.579

Add./Abd. PEAK −6.094± 4.730 −6.370± 4.714 −5.915± 4.802

Abbreviations: USSC: unanticipated side-step cutting task, Ev.: Eversion, Inv.: Inversion, IC: initial
contact (first moment of contact with the force plate), PEAK: peak value (maximal value within
100 ms after IC), Pl.fl.: Plantarflexion, Do.fl.: Dorsalflexion, Ext.: External, Int.: Internal, Rot.:
Rotation, Add.: Adduction, Abd.: Abduction, Flex.: Flexion, Ext.: Extension
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Table 8: Means ± standard deviations of the joint moment covariates in Nm
kg and the

vertical ground reaction forces in N
kg for all players, and separately for injured

and non-injured players

Covariate all injured not injured

PEAK Joint Moments

Ankle Ev./Inv. USSC −0.352± 0.097 −0.356± 0.084 −0.349± 0.106

Ev./Inv. SLDL −0.417± 0.116 −0.427± 0.125 −0.411± 0.112

Pl.fl./Do.fl. USSC −0.131± 0.178 −0.138± 0.192 −0.127± 0.172

Pl.fl./Do.fl. SLDL 0.056± 0.021 0.054± 0.023 0.057± 0.020

Ext./Int. Rot. USSC −0.065± 0.061 −0.058± 0.062 −0.070± 0.060

Ext./Int. Rot. SLDL −0.363± 0.101 −0.363± 0.092 −0.363± 0.107

Hip Add./Abd. USSC −0.626± 0.268 −0.596± 0.278 −0.646± 0.264

Add./Abd. SLDL −0.990± 0.209 −1.005± 0.200 −0.980± 0.217

Flex./Ext. USSC 3.752± 0.683 3.631± 0.694 3.829± 0.675

Flex./Ext. SLDL 3.656± 0.543 3.765± 0.533 3.586± 0.545

Ext./Int. Rot. USSC −0.504± 0.222 −0.515± 0.187 −0.497± 0.244

Ext./Int. Rot. SLDL −0.651± 0.220 −0.724± 0.295 −0.604± 0.141

Knee Flex./Ext. USSC −2.238± 0.502 −2.258± 0.515 −2.224± 0.501

Flex./Ext. SLDL −2.503± 0.392 −2.499± 0.445 −2.505± 0.361

Ext./Int. Rot. USSC −0.320± 0.242 −0.334± 0.275 −0.311± 0.222

Ext./Int. Rot. SLDL −0.095± 0.073 −0.115± 0.106 −0.082± 0.037

Add./Abd. USSC 0.741± 0.271 0.742± 0.257 0.740± 0.284

Add./Abd. SLDL 0.875± 0.202 0.841± 0.186 0.897± 0.212

PEAK Vertical Ground Reaction Force

vGRF USSC 20.877± 2.498 20.385± 2.491 21.195± 2.487

vGRF SLDL 38.238± 3.857 37.996± 4.602 38.395± 3.355

Abbreviations: PEAK: peak value (maximal value within 100 ms after initial contact), Ev.: Ev-
ersion, Inv.: Inversion, USSC: unanticipated side-step cutting task, SLDL: single-leg drop landing
task,Pl.fl.: Plantarflexion, Do.fl.: Dorsalflexion, Ext.: External, Int.: Internal, Rot.: Rotation, Add.:
Adduction, Abd.: Abduction, Flex.: Flexion, Ext.: Extension, vGRF: vertical ground reaction force
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Appendix B Covariate distributions
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Figure 3: Distribution of the kicking leg for all players (n = 56), the injured players
(ninjured = 22), and the non-injured players (nnot injured = 34).
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Figure 4: Distribution of the player position for all players (n = 56), the injured players
(ninjured = 22), and the non-injured players (nnot injured = 34).
Abbreviations: Def.: Defense, Def. Mid.: Defensive Midfield, Att. Mid:,
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Figure 5: Distribution of the age for all players (n = 56), the injured players
(ninjured = 22), and the non-injured players (nnot injured = 34).
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Figure 6: Distribution of the BMI for all players (n = 56), the injured players
(ninjured = 22), and the non-injured players (nnot injured = 34).
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Figure 7: Distribution of the years of soccer training for all players (n = 56), the injured
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Appendix C Quality measure results

Table 9: Quality measure results for the threshold θ = 0.4 (best value in bold fontbold fontbold font)

Acc Sens Spec Youd AUC Pred. L. Brier

Lasso λopt 0.571 0.409 0.676 0.086 0.586 0.532 0.238

Lasso λ1se 0.518 0.364 0.618 -0.019 0.508 0.527 0.257

Post Lasso λopt 0.554 0.455 0.618 0.072 0.638 0.577 0.239

Post Lasso λ1se 0.589 0.455 0.676 0.1310.1310.131 0.6720.6720.672 0.5930.5930.593 0.2280.2280.228

Naive Bayes 0.536 0.455 0.588 0.043 0.515 0.536 0.420

LDA 0.482 0.364 0.559 -0.078 0.370 0.440 0.510

KNN 0.6250.6250.625 0.273 0.8530.8530.853 0.126 0.549 0.546 0.252

Tree 0.518 0.409 0.588 -0.003 0.473 0.508 0.424

Random Forest 0.518 0.500 0.529 0.029 0.449 0.509 0.258

XGBoost 0.464 0.7270.7270.727 0.294 0.021 0.549 0.509 0.253

SVM 0.554 0.136 0.824 -0.040 0.434 0.542 0.232

Constant 0.607 0.500 0.523 0.239

Abbreviations: Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Youd: Youden’s index, AUC:
Area under the ROC curve, Pred. L.: Predictive Bernoulli likelihood, Brier: Brier score
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Appendix D Bootstrap results
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Figure 8: Density plots of bootstrapped values for three selected performance measures
and modeling approaches, respectively
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