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keywords: Air pollutants concentrations, compositional data, log-ratios,
principal component analysis

∗Corresponding authors: menini@unior.it
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1 Introduction

Air pollution poses a significant threat to both human health and the environment.
Addressing air pollution as a science-policy initiative is crucial for mitigating its adverse
effects on health. Concerns surrounding nitrogen pollution, particularly nitrogen oxides
in the air and ammonia nitrogen in water, highlight the need for effective bioremediation
strategies using microalgae. Additionally, studies on air quality and thermal comfort in
kitchen environments demonstrate the use of computational fluid dynamics to assess and
improve air pollution levels.

Changing climate conditions may impact future air pollution control strategies, em-
phasizing the importance of considering emission reduction measures within the context
of climate change. A novel approach to air filtration involves using polypropylene nonwo-
ven materials loaded with cerium-doped manganese oxides submicron particles for ozone
decomposition. Strategies for mitigating air pollution can also include solar chimneys,
which have the potential to eliminate pollutants, particularly particulate matter, on a
large scale.

Recent advancements in using metal-organic framework-derived nanostructures for the
removal of volatile organic compounds address the industrially released gases and anthro-
pogenic particles contributing to air pollution. Environmental sustainability challenges
posed by the COVID-19 pandemic necessitate the development of suitable implementa-
tion strategies to ensure sustainability during this period. Moreover, creating a toxic-free
environment is essential for protecting human health and sustaining the health of the
planet for future generations.

In conclusion, there is an urgent need to address air pollution as a threat to human
health and the environment through innovative bioremediation strategies, advanced air
quality monitoring techniques, and sustainable pollution control measures. The litera-
ture underscores the interconnectedness of air pollution with climate change, industrial
activities, and global health crises, highlighting the importance of collaborative efforts
to mitigate the impacts on both human populations and ecosystems.

Principal component analysis (PCA) has been widely used to analyze air pollution
and its associated factors. Probabilistic PCA has been utilized to aggregate PAH con-
centrations in residential locations during wildfires. Investigations into the relationship
between technological progression and ambient air pollution have led to the development
of separate indicators for both aspects. PCA-GLM analysis has explored the most sig-
nificant air pollutants and gestational periods in relation to preterm birth risk in rural
populations.

The effectiveness of air pollution control policies emphasizes the importance of in-
tegrating evaluation models and deep learning forecast methods. Assessments of air
quality improvement strategies consider various factors, including meteorology, pollu-
tant emissions, and energy structure. The impact of lockdown measures on air quality
has been observed, revealing fluctuations in pollutant concentrations during different
phases. Changes in air pollution levels during the pandemic underscore the importance
of monitoring air quality during such events.

In a different context, spatial data analysis using moss biomonitoring showcases diverse
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applications of environmental monitoring techniques. Studies conducted in critically
polluted industrial areas employ multivariate statistical methods to assess air quality
and propose strategies for future sustainability.

1.1 Compositional nature of air pollutants concentration

Jarauta et al (2016) explains that the concentrations of air pollutants are inherently clas-
sified as compositional data, meaning that they are represented as proportions or parts
of a whole in a designated air volume or mass (Gallo et al., 2019). This characteristic
is crucial for understanding the interplay between different pollutants and their impacts
on air quality. The compositional nature of air pollution data signifies that the presence
of each pollutant is not independent; rather, the concentration of one pollutant affects
and is affected by the concentrations of others. This interconnectedness is essential for
accurate modeling and analysis of air quality and pollution dynamics. Monitoring and
interpreting pollution data as compositional data poses challenges, as traditional sta-
tistical methods may not be suitable. Specialized techniques are required to account
for the interdependencies among various pollutant concentrations while ensuring accu-
rate assessment of air quality. Also the detrimental effects of air pollution are widely
acknowledged; effectively combating this issue necessitates a deep understanding of the
specific pollutants at play, their sources, and their evolving trends. This knowledge
gap underscores the critical need for robust statistical research on air pollutant data.
Compositional Principal Component Analysis (CoDA PCA) holds the competency to
critically analyze compositional data, a type of data where the relative proportions of
components are more important than their absolute values. This makes it particularly
well-suited for fields like air quality research, where understanding the interplay between
various pollutants is crucial. Unlike traditional PCA, CoDA PCA doesn’t treat each pol-
lutant concentration independently (Gallo e Simonacci, 2013). Instead, it considers the
closed-sum nature of the data, where all pollutant measurements add up to a constant
value (often 100%). This allows CoDA PCA to identify critical combinations of pollu-
tants that contribute the most to air quality variations. By critically analyzing these
relationships, researchers can move beyond studying individual pollutant concentrations
and gain a deeper understanding of the complex dynamics at play. This enriched knowl-
edge can then be used to develop more targeted and effective strategies for air pollution
control. The paper is organized into three sections, in which second section deals with
the methodology adopted for the analysis, the third section focuses on analysis of the
data and interpretation of the findings and the last section marks the discussion and
concluding remarks.

2 Methodology

2.1 About the Study location and data set

Kodungaiyur, situated in Chennai, Tamil Nadu, is significant for air quality studies due
to its urban classification, industrial activities, and waste management practices. These
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factors contribute to complex air pollution dynamics, making it a vital location for mon-
itoring air quality. As shown in figure 1, Kodungaiyur is home to one of Chennai’s major
municipal solid waste dumping grounds. The area has been utilized for waste disposal
since 1986, with a current dumping rate of approximately 1,800 tons per day. From the
studies conducted by Karthikeyan et al. (2011) and Vijiyalakshmi et al. (2017), it can be
understood that, the open burning of waste at this site releases a variety of pollutants,
including particulate matter (PM), volatile organic compounds (VOCs), and the haz-
ardous gases like sulfur dioxide (SO2) and nitrogen oxides (NOx) into the atmosphere.
The report prepared by Chennai Metropolitan Water Supply and Sewerage Board, 2016
highlights the region’s proximity to industrial zones and heavy traffic contributes to
elevated levels of air pollutants. Emissions from vehicles, construction activities, and
industrial operations are primary sources of air pollution in Kodungaiyur, exacerbating
the existing environmental issues. Research by Mariselvam, et al (2019) indicates that
the air quality in Kodungaiyur has direct health impacts on the local population. Stud-
ies have shown a correlation between high levels of PM2.5 and increased incidences of
respiratory and eye illness among residents. This underscores the importance of mon-
itoring air quality as a means to protect public health. The Central Pollution Control
Board (CPCB) monitors air quality in Kodungaiyur, providing crucial data that can be
used to analyze trends in pollution levels over time. Sangeetha P (2022) shows that this
information is vital for policymakers and researchers aiming to identify pollution sources
and evaluate the effectiveness of air quality management strategies in Chennai. Further-
more, Suresh et al (2023) highlights the upsurge of PM10 exceedance as time elapses,
hence making the region more prone to particulate matter emissions. For the following
parameters, PM2.5 (particulate matter less than 2.5 micrometers in diameter), PM10
(particulate matter less than 10 micrometers in diameter), NO (Nitric oxide), NO2 (Ni-
trogen dioxide), NOx (Oxides of Nitrogen), NH3 (ammonia), SO2 (sulfur dioxide), CO
(carbon monoxide), Ozone, Benzene and Toluene, the 24-hour average measurements
were taken over a period from January 1, 2024 to June 10, 2024.
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Figure 1: Geographical Location of Kodungaiyur
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2.2 Principal Component Analysis

Principal Component Analysis (Trendafilov et al., 2021) is a feature reduction tech-
nique used to simplify datasets with many features by transforming them into a new
set of uncorrelated variables called principal components (PCs). PCA reduces the num-
ber of features while retaining essential information by selecting the top PCs based on
the variance they explain. For example, if the first three PCs explain 98% of the to-
tal variance, only these three are retained, reducing dimensionality without significant
information loss. PCA is particularly useful when original variables are strongly corre-
lated, enhancing model efficiency and performance. The major purpose of standardizing
continuous variables prior to performing Principal Component study (PCA) is to ensure
that each variable contributes equally to the study. PCA is sensitive to the variances of
the starting variables, therefore without standardization; variables with greater ranges
may dominate the analysis, resulting in biased conclusions and also standardization han-
dles the variables measured with different units uniformly. Standardization gives each
variable a mean of zero and a standard deviation of one, putting them on the same scale.
This enables PCA to precisely identify the principle components that capture the most
variance in the data, resulting in more trustworthy and interpretable findings.

2.3 PCA on Compositional Data:

Compositional Principal Component Analysis (PCA)(Aitchison, 1986) is a statistical
technique that aims to analyze and reduce the dimensionality of compositional data.
This methodology is vital for exploring relationships among components that are part of
a whole, which is particularly important in fields where data are constrained to sum to
a constant, such as chemical compositions or environmental data. Since compositional
data are constrained to a simplex, traditional PCA methods are not appropriate as they
do not account for the specific geometry of the data. To address this, compositional PCA
employs specific transformations, such as the Centered Log-Ratio (CLR), Additive Log-
Ratio transformation (ALR), and Isometric Log-Ratio (ILR) transformation, to project
the data into a Euclidean space where standard PCA can be applied. The first step in
PCA is transforming the data into a suitable form.

2.3.1 Centered Log-Ratio (CLR) Transformation:

The CLR is a technique for analyzing compositional data that addresses the constraint
that variables reflect proportions of a whole and must sum to a constant total. The
transformation converts compositional data from a simplex space to a real Euclidean
space, allowing regular statistical techniques to be more efficiently used. The method
involves taking the natural logarithm of component proportions to a reference com-
ponent and centering them on their mean. Given a D-dimensional vector, say X =
(x1, x2, . . . , xD) where xi > 0 for i = 1, 2, . . . , D and

∑D
i=1 xi = 1 the CLR transfor-
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mation of X is given by:

clr(X) = ln
(xi
x̄

)
where x̄ =

(
D∏
i=1

xi

) 1
D

(1)

where xi represents the components of the compositional data and (D) is the number of
components.CLR transformation provides a way to analyze data with respect to the geo-
metric mean, making it suitable for identifying relative changes in components (Egozcue
et al., 2003).

2.3.2 Isometric Log-Ratio (ILR) Transformation::

The ILR transforms compositional data into a multivariate observation z = (z1, . . . , zD−1)
in the Euclidean space. This transformation is useful for retaining the distances between
data, which is critical for statistical analysis. The ILR transformation for a compositional
vector X = (x1, x2, . . . , xD) is given by:

zj =

√
i

i+ 1
ln

(∏i
j=1 xj

xi + 1

)
, i = 1, . . . , D − 1 (2)

This transformation reduces the number of dimensions in the data while keeping im-
portant information about the component relationships. When considering only two
parts, (x1, x2), the equation simplifies to:

z =

√
1

2
ln

x1
x2

(3)

In this case, the ILR variable z is univariate but contains information about the
relationship between(x1, x2) by means of their logarithmic ratio.
Using the basis vectors obtained from the SBP (Sequential Binary Partition), trans-

form the CLR coordinates into ILR coordinates. If V1, V2, . . . , VD−1 are theorthonormal
basis vectors, the ILR coordinates are:

zj = clr(X) · Vj for j = 1, 2, . . . , D − 1 (4)

where · denotes the dot product.
The ILR transformation effectively reduces the dimensionality of the compositional

data from D to D − 1, making it possible to apply standard statistical methods to the
transformed data.

2.3.3 Additive Log-Ratio (ALR) Transformation:

The ALR transformation uses one component as a reference and computes the natural
log-ratios of other components relative to this reference to get a closed composition.

alr(xi) = ln

(
xi
xD

)
for i = 1, 2, . . . , D − 1 (5)
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This means that each component xi of the composition is divided by the lastcompo-
nent xD and then the logarithm is taken. The ALR transformation is not an isometric
transformation. This means that it does not retain the geometric qualities of the orig-
inal data, such as distances, angles, and forms. As a result, the ALR transformation
should never be used to compute distances, angles, or forms because the results would
be distorted and incomprehensible in the context of the original data. Following the
transformation of the compositional data, PCA can proceed as normal. The princi-
pal components and matching eigenvalues of the modified data are then determined by
the PCA by calculating the covariance matrix of the data. The directions of highest
variability in the modified compositional data space are represented by these primary
components.

3 Analysis and Findings

The CoDA-PCA is applied on the transformed data (from three transformations) and
the findings from the analysis are interpreted in this section.

Table 1: Variance ratio explained by each Principal Component obtained from all three
log-ratio transformations

PCs CLR ILR ALR

PC1 0.5353 0.5353 0.5904

PC2 0.2282 0.2282 0.1787

PC3 0.1093 0.1093 0.1423

PC4 0.0757 0.0757 0.0503

PC5 0.0186 0.0186 0.0125

PC6 0.0128 0.0128 0.0099

PC7 0.0106 0.0106 0.0070

PC8 0.0065 0.0065 0.0050

PC9 0.0030 0.0030 0.0040

PC10 0.0001 0.0001 0.0000

PC11 0.0000 - -

This table summarizes the variance ratio explained by each Principal Component
(PC) for three different log-ratio transformations: Centered Log-Ratio (CLR), Isometric
Log-Ratio (ILR), and Additive Log-Ratio (ALR).The other observations from the table
as follows; Consistency Between CLR and ILR - The variance ratios for CLR and ILR
transformations are identical across all principal components, which suggest that these
two transformations yield the same PCA results in this context. This similarity might
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occur because both transformations respect the geometric properties of compositional
data and preserve the relative information between components. ALR Transformation
- The variance ratios for ALR differ slightly from those of CLR and ILR, particularly
for the first three principal components (PC1, PC2, and PC3). This difference indicates
that the ALR transformation, which uses a reference component, captures variance dif-
ferently, potentially emphasizing certain components over others. For example, PC1
explains more variance in ALR (0.5904) compared to CLR and ILR (0.5353), suggesting
that the first principal component in the ALR-transformed data captures more of the
total variance. However, PC2 and PC3 explain less variance under ALR, which indicates
that the variability is more concentrated in PC1 after the ALR transformation. Dom-
inance of the First Few PCs - Across all three transformations, the first two principal
components (PC1 and PC2) explain a large proportion of the total variance, with PC1
alone explaining over 50% of the variance in all cases. This suggests that the major-
ity of the information in the compositional data can be captured by just the first two
principal components. Moving further to higher-order components (PC4 and beyond),
the explained variance decreases sharply, indicating that these components contribute
only marginally to explaining the total variance in the data. The results suggest that
PCA on compositional data, regardless of the log-ratio transformation used, reveals a
strong underlying structure where the first few principal components capture most of
the variance. The slight differences in variance explained between ALR and the other
transformations highlight that the choice of transformation can influence the distribu-
tion of explained variance among the principal components. This means that the first
two or three principal components are likely sufficient for representing the underlying
structure of the compositional data.
This table shows the loadings of the first two principal components (PC1 and PC2) ob-

tained from PCA performed on data transformed using three different log-ratio methods:
CLR (Centered Log-Ratio), ILR (Isometric Log-Ratio), and ALR (Additive Log-Ratio).
The loadings represent how much each original variable contributes to each principal
component. CLR Transformation – Ozone has the highest positive loading (0.8427), in-
dicating that it strongly contributes to PC1. This suggests that variations in ozone levels
are a significant part of the overall variance captured by PC1.SO2 (-0.3288) and PM10 (-
0.2599) have notable negative loadings, meaning they inversely contribute to PC1. This
could indicate an inverse relationship between these pollutants and the overall structure
of the data as represented by PC1. SO2 (0.8519) strongly contributes to PC2, indicat-
ing that variations in SO2 levels drive a significant portion of the variance captured by
PC2.Benzene (-0.2911) and Toluene (-0.3436) have significant negative loadings, sug-
gesting an inverse relationship with PC2. ILR Transformation – CO (-0.8547) has the
highest negative loading, suggesting it significantly drives the variance captured by PC1
but in an inverse direction. PM10 (-0.2433) also contributes negatively, though less
strongly.PM2.5 (0.0442) contributes positively, though weakly, indicating it has a minor
positive relationship with PC1.NH3 (-0.8484) has a strong negative loading, indicating
it heavily influences the variance captured by PC2.Ozone (0.3431) and Benzene (0.3604)
contribute positively, suggesting that higher levels of these pollutants are associated with
the variance captured by PC2. ALR Transformation – CO (-0.7766) and PM10 (-0.3043)
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Table 2: First two principal components obtained from all three log-ratio transformations

Log-ratio
Transform-
ations

CLR ILR ALR

PCs PC1 PC2 PC1 PC2 PC1 PC2

PM2.5 -0.1973 -0.0614 0.0442 0.0409 0.0601 -0.0436

PM10 -0.2599 -0.1193 -0.2433 0.0256 -0.3043 0.1924

NO 0.0694 -0.1216 -0.1465 -0.0469 -0.2542 0.1345

NO2 0.0399 -0.0466 -0.1273 -0.0124 -0.2766 0.1559

NOx 0.0553 -0.0733 -0.1232 -0.1094 -0.2499 0.0522

NH3 0.0764 0.0354 0.2711 -0.8484 -0.0567 0.8309

SO2 -0.3288 -0.8519 -0.1049 0.0652 -0.2460 0.1412

CO 0.0343 -0.0033 -0.8547 -0.1085 -0.7766 -0.3622

Ozone 0.8427 0.1728 0.2331 0.3431 -0.0766 0.1792

Benzene -0.2088 -0.2911 0.1293 0.3604 -0.1659 0.2057

Toluene -0.1232 -0.3436 - - - -

are significant negative contributors, indicating they strongly influence PC1 but in an
inverse direction.PM2.5 (0.0601) has a positive, albeit weak, contribution, meaning it
has a slight positive relationship with PC1.NH3 (0.8309) contributes strongly to PC2,
suggesting it is a key driver of the variance captured by this component.CO (-0.3622)
contributes negatively, indicating it has an inverse relationship with PC2. Across all
transformations, certain pollutants like NH3 and CO appear to consistently have strong
loadings, albeit in different directions depending on the transformation and principal
component. This suggests that these pollutants are key drivers of the data’s variance,
regardless of the specific log-ratio transformation used. The choice of transformation
(CLR, ILR, and ALR) influences which variables are emphasized in the principal com-
ponents. For example, CO is a major contributor to PC1 in ILR and ALR but not in
CLR, where Ozone is more prominent. This implies that the interpretation of the prin-
cipal components and their environmental or health implications can vary depending on
the transformation applied to the data. PC1 generally represents a linear combination
where a few key pollutants such as Ozone, CO, SO2 dominate, suggesting that these
components capture the most substantial variation in the data. PC2 often highlights
a different set of pollutants e.g., SO2 in CLR, NH3 in ILR/ALR, which may indicate
different patterns or sources of pollution. A scree plot can significantly enhance the
interpretation of the tables provided by visually demonstrating how much of the total
variance in the data is explained by each principal component (PC).
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Figure 2: Scree plot – CLR Transformation

Figure 3: Scree plot – ILR Transformation

The scree plots in Figures 2, 3 and 4 which all exhibit similar patterns, visually
confirm that the variance drops significantly after the first two PCs. The “elbow” point
in each plot supports the conclusion that the first two PCs capture the majority of the
variance, consistent with the high variance ratios shown in Table 1. The elbow method,
observed in the scree plots, consistently indicates that retaining the first two PCs is a
reasonable choice because they capture the majority of the variance. This aligns with
the quantitative results in Table 1, where the cumulative variance explained by the first
two PCs is substantial across all transformations. Since the scree plots suggest that
only the first two PCs are necessary, this supports focusing on the loadings of these

Figure 4: Scree Plot – ALR Transformation
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PCs in Table 2. The loadings in Table 2 for PC1 and PC2 are thus the most critical
for interpretation, as they represent the variables contributing to the most significant
dimensions of variation in the data. Although the ALR transformation shows a slightly
higher variance explained by PC1, the scree plot still confirms that the general pattern
is similar to CLR and ILR, suggesting that the transformation choice doesn’t drastically
alter the conclusion about the number of important PCs. A biplot becomes essential
following the PCA results as it provides a comprehensive visual representation of the
data, allowing for the simultaneous interpretation of both the principal components and
the original variables.

Figure 5: Biplot – CLR Transformation

Figure 6: Biplot – ILR Transformation

Figure 5 provides a visual representation through biplot for PCA with CLR trans-
formation. The arrow for Ozone (O3) points strongly in the direction of PC1 with a
high positive loading (0.8427) and a moderate negative loading on PC2 (-0.1728). This
indicates that Ozone strongly contributes to the variance captured by PC1 and plays a
significant role in separating the data along this component. The arrow for SO2 points
in the negative direction for both PC1 (-0.3288) and PC2 (-0.8519), indicating it has a
strong influence, particularly along PC2. Its placement suggests that SO2 contributes
heavily to the variance captured by PC2 and is inversely related to the pollutants that
load positively on this component. Both PM10 and Toluene have moderate positive
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Figure 7: Biplot – ALR Transformation

loadings on PC2 and moderate negative loadings on PC1. Their arrows will point to-
ward the quadrant where PC2 is positive, indicating that these pollutants contribute to
PC2, but in a manner that is opposite to Ozone along PC1. These pollutants have nega-
tive loadings on PC1 and positive loadings on PC2, which suggests that they contribute
more to PC2 but are inversely related to the pollutants that load positively on PC1.
PM2.5, PM10, and Benzene are grouped relatively close together with negative loadings
on PC1 and positive loadings on PC2. This proximity suggests that these pollutants
are related and might be influenced by similar sources or processes in the environment.
The variables NO, NO2, and NOx have low but positive loadings on both PC1 and PC2,
indicating that they are somewhat related but do not dominate the variation captured
by either principal component. Their clustering close to the origin suggests they do not
strongly influence the separation of data along either PC1 or PC2. The biplot likely
shows a clear separation between O3 and SO2 due to their strong but opposite load-
ings on PC1 and PC2. This suggests that these pollutants are negatively correlated
and represent different aspects of the data variability. Clusters of observations near
certain arrows would suggest that those pollutants are dominant in those observations.
For example, a cluster near the PM2.5, PM10, and Benzene arrows would indicate that
these pollutants are jointly prevalent in those observations. Biplot for PCA with ILR
transformation is showed in figure 6. The arrow for CO points strongly in the positive
direction of PC1 (-0.8547) and slightly negative in PC2 (-0.1085). This indicates that CO
is the most influential pollutant along the first principal component (PC1), contributing
significantly to the variance captured by PC1. The arrow for NH3 points strongly in
the negative direction for both PC1 (-0.2711) and particularly for PC2 (-0.8484). This
suggests that NH3 has a strong influence on the second principal component (PC2) and
negatively correlates with variables that load positively on PC2.Both O3 and Benzene
have positive loadings on PC2 (0.3431 and 0.3604, respectively) but negative loadings on
PC1 (-0.2331 and -0.1293, respectively). This suggests that these pollutants contribute
to PC2 and are inversely related to the variables contributing to PC1, particularly CO.
The arrow for PM10 points moderately in the positive direction of PC1 (0.2533) and
slightly on PC2 (0.0256). This indicates that PM10 is a contributor to PC1 and has a
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mild influence on the variance captured by PC2. The pollutants NO, NO2, and NOx
have positive loadings on PC1 but slightly negative or very small loadings on PC2. This
indicates that they contribute to PC1 but have little impact on PC2. NO, NO2, NOx,
and PM10 are grouped closely with positive loadings on PC1, suggesting they are related
and may share similar sources or effects in the environment. Their proximity indicates
that they jointly influence the variance captured by PC1.O3 and Benzene are grouped
with positive loadings on PC2 and negative loadings on PC1, indicating they are related
and may act together in influencing the variance captured by PC2. Their direction sug-
gests an inverse relationship with pollutants like CO, which dominate PC1.CO and NH3
are likely plotted in opposite quadrants due to their contrasting loadings and CO with
strong positive influence on PC1 and NH3 with strong negative influence on PC2. This
suggests that these pollutants are inversely related, perhaps indicating different sources
or environmental conditions affecting them. Observations near the CO arrow would in-
dicate high CO levels, while those near NH3 would indicate high NH3 levels. Clusters of
observations near the O3 and Benzene arrows would suggest higher levels of these pollu-
tants. Observations that cluster near NO, NO2, NOx, and PM10 arrows would indicate
that these pollutants are prevalent together in those data points. Figure 7 shows the
biplot of ALR transformation. CO (-0.7765) has the largest negative loading on PC1,
indicating that it is the strongest driver of variation along this component. This suggests
that CO is highly influential in differentiating samples along PC1, possibly due to its
distinct sources or high concentration levels compared to other pollutants. The pollu-
tants PM10 (-0.3042), NO (-0.2542), NO2 (-0.2766), NOx (-0.2499), and SO2 (-0.2459)
have moderate negative loadings on PC1, indicating they are somewhat aligned with
CO in driving the variation along this axis. These pollutants likely come from similar
sources or processes, such as combustion or traffic emissions. PM2.5 (0.0600) and Ozone
(-0.0766) have smaller loadings, meaning they have less influence on PC1. Ozone has a
small negative loading, while PM2.5 has a small positive loading, suggesting they may
not be strongly associated with the dominant source(s) of pollution represented by PC1
and seems to represent pollution from combustion-related sources, primarily dominated
by CO, and to a lesser extent, PM10, NOx, and SO2. Since many of these pollutants are
linked to vehicular or industrial emissions, PC1 likely captures the variation due to these
sources. NH3 (0.8309) has a very large positive loading on PC2, making it the dominant
pollutant driving variation along this component. This indicates that PC2 is likely asso-
ciated with sources specific to NH3, such as agricultural activities, waste management,
or certain industrial processes. Benzene (0.2057), PM10 (0.1924), and NO2 (0.1559) also
contribute to PC2, although to a lesser extent than NH3. The positive loadings suggest
that they may share some secondary sources with NH3 or reflect different processes that
contribute to pollution variation captured by PC2. CO (-0.3621) has a negative loading
on PC2, indicating it is inversely related to NH3. This suggests that areas or time periods
with high NH3 concentrations may have lower CO levels, pointing to different sources
for these pollutants. PC2 is primarily driven by NH3, likely representing pollution from
agricultural or waste sources. The positive loadings of pollutants like PM10 and Ben-
zene might indicate that they are associated with industrial or urban activities, but on
a smaller scale compared to NH3. The negative contribution of CO suggests that PC2
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distinguishes between NH3-driven pollution and CO-related emissions. PC1 likely rep-
resents pollution driven by combustion and vehicular emissions, with CO, PM10, NOx,
and SO2 contributing strongly. PC2 differentiates pollution from agricultural or waste
sources, with NH3 being the primary driver. The findings from the study highlights the
need for targeted pollution control measures, particularly focusing on major pollutants
like ozone (O3), NH3, and SO2, which have significant impacts as shown in both CLR
and ALR analyses. Policy efforts should aim to reduce O3 by addressing emissions from
industrial activities and vehicles, as it is a secondary pollutant formed from precursors
like NOx and VOCs. NH3 and SO2, which are influenced by agricultural and industrial
sources respectively, require stricter emission standards and the promotion of cleaner
technologies to mitigate their levels. In addition, addressing source-specific pollution
is crucial. CO, identified as a dominant factor in the ILR analysis, can be managed
by improving vehicle emissions standards, promoting cleaner fuels, and enhancing in-
dustrial practices to reduce incomplete combustion. Since NOx plays a dual role by
contributing to O3 formation and overall pollution, strategies should focus on reducing
emissions from transportation and industry through advanced combustion technologies
and enhanced regulatory controls. Pollution source identification is also critical, with
PM2.5, PM10, and benzene clustering in the CLR analysis, suggesting a shared source,
likely from construction, industrial activities, and vehicular emissions. Comprehensive
air quality monitoring is necessary to identify and regulate these sources effectively. To
strengthen air quality management, establishing a network of air quality monitoring
stations across Chennai is recommended, with real-time data systems to provide imme-
diate feedback and enable timely interventions during pollution spikes. Public awareness
must be a key component of these efforts. Educating the public on the health impacts
of pollutants like O3, NH3, and SO2, and encouraging behavioral changes, such as using
public transport or reducing vehicle idling, can help minimize individual contributions
to air pollution. Finally, cross-sector collaboration is essential for policy integration. A
coordinated approach across transportation, industry, and agriculture is necessary to
ensure that efforts in one sector do not adversely affect others. Strengthening regulatory
frameworks and incentivizing cleaner technologies will further support compliance with
air quality standards and foster long-term improvements in air quality.

4 Conclusion

In this study, CoDA PCA applied to air concentration data from the Kodungaiyur region
of Chennai, using three different log-ratio transformations: Centered Log-Ratio (CLR),
Isometric Log-Ratio (ILR), and Additive Log-Ratio (ALR). The analysis demonstrates
that the first two principal components account for approximately 76% of the variance in
the data, indicating a robust reduction in dimensionality while retaining significant infor-
mation. The CLR transformed biplot reveals a clear structure in the data, with distinct
relationships between pollutants. The negative correlation between O3 and pollutants
like SO2 and Toluene suggests that different environmental processes or sources are in-
fluencing these pollutants. Additionally, the clustering of PM2.5, PM10, and Benzene
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highlights their potential common sources or similar environmental impacts, underscor-
ing their importance in the data’s variability. The ILR transformed biplot emphasizes
CO as the primary contributor to PC1 and NH3 as a significant factor for PC2. This
bifurcation indicates that CO and NH3 are associated with distinct aspects of pollution,
with CO dominating the variance captured by PC1 and NH3 significantly influencing
PC2. The proximity of NO, NO2, NOx, and PM10 suggests they are interrelated and
may originate from similar sources. The ALR transformed biplot further confirms O3
as a major pollutant affecting both principal components, particularly in the negative
direction. NH3 and SO2 are identified as key contributors to PC2, suggesting their
substantial role in the data’s variability. The clustering of NO, NO2, NOx, and CO
indicates they share related environmental sources or effects, predominantly influencing
PC1. The inverse relationship between O3 and pollutants like NH3 and SO2 suggests
different underlying sources or impacts on the environment. In conclusion, long-term
strategic planning for sustainable development must prioritize air quality by integrating
it into urban planning, designing cities to minimize pollution and enhance green spaces.
Addressing the impacts of climate change on air quality is also essential, with adapta-
tion measures to mitigate future changes in pollution patterns. Furthermore, support
for research and development is vital to drive technological advances in pollution con-
trol and monitoring, while investing in advanced data analysis tools will provide deeper
insights into pollution sources and trends, ultimately improving air quality management
and fostering innovative solutions
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