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1 Introduction

There are several methods to enhance existing probability distributions to effectively
model data across different domains such as finance, engineering, and medical sciences.
These techniques have been developed to address the specific needs and challenges of
diverse fields, allowing for improved modeling and analysis of data in these areas. One
such technique involves the use of generators, and some of the recent generators include
Topp-Leone-G generator by Al-Shomrani et al. (2016), T-X approach by Alzaatreh et al.
(2013), beta-G generator by Eugene et al. (2002), Half Logistic-G Fod by Cordeiro et al.
(2016), exponentiated Half Logistic-G (EHL-G) Fod by Cordeiro et al. (2014), and many
others.

Recently, via the T-X generator, Zhao et al. (2020) proposed the type I heavy-tailed-G
(TIHT-G) distribution and demonstrated its usefulness in modeling heavy-tailed data.
They used the special case of this family, the type I heavy-tailed-Weibull (TIHT-W),
and compared it to Pareto and Weibull distributions, and found that it outperformed
these models.

This highlights the growing importance of heavy-tailed distributions in various fields
due to their ability to model extreme values and capture significant variability in data.
Significant research has since been conducted on heavy-tailed distributions, including the
work by Zhao et al. Zhao et al. (2021) on the Heavy-Tailed Beta-Power Transformed
Weibull (HTBPT–W) distribution, the Zubair-Weibull (Z-W) distribution by Ahmad
(2020), the new heavy-tailed Weibull (NEHTW) distribution by Arif et al. (2021), the
Weibull-Loss (W-Loss) model Ahmad et al. (2019), and the Topp-Leone Type I Heavy-
Tailed-G Power Series class of distributions explored by Nkomo et al. Nkomo et al.
(2024). Additionally, Amer et al. Amer (2020) investigated the Alpha-Power Trans-
formed Lomax distribution. The cumulative distribution function (cdf) of the TIHT-G
Fod is

F (x; θ, ϑ) = 1−Kθ(x;ϑ), (1)

where Kθ(x;ϑ) =
(

1−G(x;ϑ)
1−(1−θ)G(x;ϑ)

)θ
and probability density function (pdf) is

f(x; θ, ϑ) =
θ2g(x;ϑ) (1−G(x;ϑ))θ−1

(1− (1− θ)G(x;ϑ))θ+1
, (2)

for θ, x > 0 and parameter vector ϑ. Cordeiro et al. (2014) developed the EHL-G Fod
whose cdf is given by

FEHL−G(x;α, ϑ) =

[
G(x;ϑ)

1 +G(x;ϑ)

]α
, (3)

and the corresponding pdf is

fEHL−G(x;α, ϑ) = 2αg(x;ϑ)(G(x;ϑ))(α−1)
(
1 +G(x;ϑ)

)−(α−1)
, (4)
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where α > 0, and G(x;ϑ) is a parent or baseline cdf, and G(x;ϑ) = 1−G(x;ϑ).

The EHL-TIHT-G Fod combines the desirable features of the TIHT-G and EHL-G
families, resulting in a distribution that excels in capturing the intricate nature of heavy-
tailed data. This combination allows for remarkable flexibility in modeling heavy-tailed
data and effectively capturing their complex characteristics. Applications involving spe-
cific instances of the EHL-TIHT-G Fod have demonstrated its superiority over several
non-nested models. This performance showcases its potential to enhance modeling capa-
bilities in various domains, including engineering, medical sciences, and finance, where
heavy-tailed data commonly arise. By utilizing the EHL-TIHT-G Fod, researchers and
practitioners will gain access to an innovative tool that enables them to analyze and
model heavy-tailed data with greater flexibility and accuracy. Moreover, the EHL-TIHT-
G Fod offers the advantage of exploring hazard rate functions of various shapes including
bathtub and upside down bathtub among others. This additional feature enhances the
distribution’s utility in survival analysis and risk assessment. Overall, the introduction
of the EHL-TIHT-G Fod represents a significant contribution to the field, providing
statisticians, researchers, and practitioners with an advanced tool to tackle the chal-
lenges posed by heavy-tailed data. Its capabilities in capturing complex characteristics
and its superior performance in various applications make it a valuable asset in statisti-
cal modeling and analysis.

The paper is structured as follows: In Section 2, we introduce the EHL-TIHT-G Fod and
provide its linear representation and sub-families. Section 3 delves into specific cases of
the EHL-TIHT-G Fod. In Section 4, we present the mathematical properties associated
with this distribution. Section 5 examines various risk measures applicable to the EHL-
TIHT-G Fod. Section 6 covers seven different estimation techniques and comparisons
of these methods via Monte-Carlo simulations for this distribution. To demonstrate its
practical usefulness, Section 7 presents two real data examples. Finally, in Section 8,
we summarize the key conclusions of the paper and emphasize the importance of the
EHL-TIHT-G Fod.

2 The New Distribution

We derive the exponentiated half logistic-type I heavy-tailed-G (EHL-TIHT-G) in this
section. We use Π for G in this paper to reduce textual overlap. The cdf of the EHL-
TIHT-Π Fod is

FEHL−TIHT−Π(x; θ, α, ϑ) =

[
1−Kθ(x;ϑ)

1 +Kθ(x;ϑ)

]α
, (5)
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and pdf is

fEHL−TIHT−Π(x; θ, α, ϑ) =
2αθ2π(x;ϑ) (1−Π(x;ϑ))θ−1

[1− (1− θ)Π(x;ϑ)]θ+1

× [1−Kθ(x;ϑ)]
α−1

[1 +Kθ(x;ϑ)]
α+1 , (6)

where Kθ(x;ϑ) =
(

1−Π(x;ϑ)
1−(1−θ)Π(x;ϑ)

)θ
for θ, α > 0 and parameter vector ϑ. The hazard rate

function (hrf) of the EHL-TIHT-Π Fod is given by

h(x; θ, α, ϑ) =
2αθ2π(x;ϑ) (1−Π(x;ϑ))θ−1

[1− (1− θ)Π(x;ϑ)]θ+1

[1−Kθ(x;ϑ)]
α−1

[1 +Kθ(x;ϑ)]
α+1

× 1

1−
[
1−Kθ(x;ϑ)
1+Kθ(x;ϑ)

]α , (7)

for α, θ > 0 and parameter vector ϑ.

2.1 Expansion of the Density Function

This section provides the linear representation of the EHL-TIHT-Π Fod. The pdf of the
EHL-TIHT-Π Fod can be expressed as

fEHL−TIHT−G(x; θ, α, ϑ) =
∞∑
u=0

ωu+1πu+1(x;ϑ), (8)

where

ωu+1 = 2αθ2
∞∑

p,q,r,s,t=0

(−1)p+s+r+t+u

(
α− 1

p

)(
−(α+ 1)

q

)
(1− θ)s

(
r + s

t

)(
t

u

)
×

(
(1 + q + p)θ − 1

r

)(
1− ((1 + q + p)θ)

s

)
1

(u+ 1)
, (9)

and πu+1(x;ϑ) = (u + 1)π(x;ϑ)Πu(x;ϑ) is an exponentiated-Π (Expo-Π) distribution
with exponentiation parameter (u+1). The EHL-TIHT-Π Fod is tractable to the Expo-
Π distribution. The full expansion is shown in the appendix.

2.2 Sub-Families

Let X follows the EHL-TIHT-Π Fod with parameter vector (θ, α, ϑ).

� When α = 1, we have the half logistic type I heavy-tailed Π (HL-TIHT-Π) Fod
with cdf is

FHL−TIHT−Π(x; θ, ϑ) =
1−Kθ(x;ϑ)

1 +Kθ(x;ϑ)
, (10)

for θ > 0 and baseline vector of parameters ϑ.
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� When θ = 1, the exponentiated half logistic-Π (EHL-Π) Fod is obtained (see
Cordeiro et al. (2014) for details).

� When θ = α = 1, the half logistic-Π (HL-Π) Fod is obtained (see Cordeiro et al.
(2016)).

3 Specified Cases

This section presents specified cases for the EHL-TIHT-Π Fod, particularly when Burr
XII, Burr III, and Weibull distributions, respectively, serve as the parent distributions.

3.1 Exponentiated Half Logistic-Type I Heavy-Tailed-Burr XII
(EHL-TIHT-BXII) Distribution

Using the Burr XII distribution as the baseline distribution with the cdf Π(x; b, β) =
1− (1 + xb)−β and pdf π(x; b, β) = bβxβ−1(1 + xb)−β−1, for b, β > 0, the cdf and pdf of
the new EHL-TIHT-BXII distribution are

FEHL−TIHT−BXII (x;α, b, β, θ) =

[
1−K∗

θ (x; b, β)

1 +K∗
θ (x; b, β)

]α
, (11)

and

fEHL−TIHT−BXII(x;α, b, β, θ) =
2αθ2bβxβ−1(xb + 1)−βθ−1

[1− (1− θ)(1− (xb + 1)−β)]
1+θ

×
[1−K∗

θ (x; b, β)]
α−1[

1 +K∗
θ (x; b, β)

]α+1 , (12)

respectively, where K∗
θ (x;β, b) =

(
(xb+1)−β

1−(1−θ)(1−(xb+1)−β)

)θ
, for θ, β, α, b,> 0 and x > 0,

while the hrf is given by

h(x;α, b, β, θ) =
2αθ2bβxβ−1

(
1 + xb

)−β(θ+1)

[1− (1− θ) (1− (1 + xb)−β)]
θ+1

[1−Kθ(x;ϑ)]
α−1

[1 +Kθ(x;ϑ)]
α+1

× 1

1−
[
1−Kθ(x;ϑ)
1+Kθ(x;ϑ)

]α , (13)

for α, θ > 0 and parameter vector ϑ. From the EHL-TIHT-BXII distribution, we can
obtain the exponentiated half logistic-type I heavy-tailed-Lomax and the exponentiated
half logistic-type I heavy-tailed-log-logistic distributions by setting β = 1 and b = 1,
respectively.
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Figure 1: EHL-TIHT-BXII pdf and hrf plots

Figure 1 shows that the shape of the EHL-TIHT-BXII density can be positive or
negative-skewed, reverse-J, and almost symmetrical. The hrf displays both monotonic
and non-monotonic geometries.

The skewness plot indicates that skewness rises as θ and α are both increasing for

Figure 2: Skewness and kurtosis plots for EHL-TIHT-BXII distribution

b = 1.5 and β = 1.7. From the plot of kurtosis, we can see that kurtosis increases as α
is increasing and θ is increasing for b = 5.5 and β = 8.7.



108 Gwazane, Oluyede, and Chipepa

3.2 Exponentiated Half Logistic-Type I Heavy-Tailed-Weibull
(EHL-TIHT-W) Distribution

Let the parent distribution be Weibull, with the pdf π(x;ϖ) = ϖxϖ−1e−xϖ
and cdf

Π(x;ϖ) = 1 − e−xϖ
, for ϖ and x > 0, then the cdf and pdf of the EHL-TIHT-W

distribution are

FEHL−TIHT−W (x;ϖ,α, θ) =

[
1−K∗∗

θ (x;ϖ)

1 +K∗∗
θ (x;ϖ)

]α
, (14)

FEHL−TIHT−W (x;ϖ,α, θ) =

1−
(

exp(−xϖ)
1−(1−θ)(1−exp(−xϖ))

)θ
1 +

(
exp(−xϖ)

1−(1−θ)(1−exp(−xϖ))

)θ

α

, (15)

and

fEHL−TIHT−W (x;α, θ,ϖ) =
2αθ2ϖxϖ−1

(
e−xϖ)θ

[1− (1− θ) (1− exp(−xϖ))]1+θ

×
[1−K∗∗

θ (x;ϖ)]α−1[
1 +K∗∗

θ (x;ϖ)
]α+1 , (16)

respectively, where K∗∗
θ (x;ϖ) =

(
exp(−xϖ)

1−(1−θ)(1−exp(−xϖ))

)θ
, for α,ϖ, θ > 0 and x > 0. The

hrf is

h(x; θ, α,ϖ) =
2αθ2ϖxϖ−1 (exp(−xϖ))θ

[1− (1− θ) (1− exp(−xϖ))]θ+1

×
[1−K∗∗

θ (x;ϖ)]α−1[
1 +K∗∗

θ (x;ϖ)
]α+1

1

1−
[
1−K∗∗

θ (x;ϖ)

1+K∗∗
θ (x;ϖ)

]α , (17)

for α,ϖ, θ > 0 and x > 0.
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Figure 3: EHL-TIHT-W pdf and hrf plots

The shape of the distribution can be reverse-J, negative or positive-skewed. The plot
of the hrf show increasing, decreasing, and bathtub, followed by an inverted bathtub
geometries.

Figure 4: Skewness and kurtosis plots of the EHL-TIHT-W distribution

When α and θ increases, the skewness of the distribution also increases. Similarly,
when both θ and α increase, the kurtosis of the distribution also increases, considering
a fixed value of ϖ = 2.5.
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3.3 Exponentiated Half Logistic-Type I Heavy-Tailed-Burr III
(EHL-TIHT-BIII) Distribution

Using the Burr III distribution with cdf Π(x; c, k) = (1 + 1
xc )−k and pdf π(x; c, k) =

ckx−(c+1)

(1+ 1
xc

)k+1 for c, k > 0 and x > 0, as the baseline distribution, the cdf of the EHL-TIHT-

BIII distribution is

FEHL−TIHT−BIII (x; θ, k, α, c) =

[
1−Bθ(x; k, c)

Bθ(x; c, k) + 1

]α
, (18)

and the pdf is

fEHL−TIHT−BIII(x; θ, α, c, k) =
2αθ2ckx−(c+1)((1 + 1

xc )−(k+1)
(
1−

(
(1 + 1

xc )−k
))θ−1[

1− (1− θ)
(
(1 + 1

xc )−k
)]θ+1

× [1−Bθ(x; c, k)]
α−1

[Bθ(x; c, k) + 1]α+1 , (19)

where Bθ(x; k, c) =

(
1−((1+ 1

xc
)−k)

1−(1−θ)((1+ 1
xc

)−k)

)θ

, for θ, α, c, k > 0.

Figure 5: Plots for the EHL-TIHT-BIII distribution’s pdf and hrf

Figure 5 shows that shape of the EHL-TIHT-BIII distribution density can be reverse-
J, left or right-skewed and the hrf graphs display increasing, decreasing, bathtub, and
bathtub followed by inverted bathtub shapes.

When α and θ increases, the skewness of the distribution also increases. Similarly,
when both θ and α increase, the kurtosis of the distribution also increases, considering
a fixed value of c = 1.5 and k = 1.7.
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Figure 6: Skewness and kurtosis plots of the EHL-TIHT-BXII distribution

4 Some Statistical Properties

This section outlines some of the properties of the new Fod.

4.1 Quantile Function

If Q(u) denotes the quantile function of the EHL-TIHT-G Fod, then it is given by

Q(u) = Π−1


1−

(
1−u

1
α

u
1
α+1

) 1
θ

(
1− (1− θ)

(
1−u

1
α

u
1
α+1

) 1
θ

)
 , (20)

for specified baseline cdf Π(x;ϑ) and 0 < u < 1. See appendix for details.

4.2 Moments

Consider a random variable X which follows a EHL-TIHT-Π Fod, then its rth non-central
moment, E(Xr) is given by

E(Xr) =

∫ ∞

−∞
xrfEHL−TIHT−Π(x; θ, α, ϑ)dx. (21)

Using Equation (8), the rth moment is

E(Xr) =
∞∑
u=0

ωu+1

∫ ∞

−∞
xrπu+1(x;ϑ)dx =

∞∑
u=0

ωu+1E(Y r
u+1), (22)

where ωu+1 is defined by Equation (9) and E(Y r
u+1) is the rth moment of the Expo-Π

distribution with exponentiation parameter (u+1).
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4.3 Probability Weighted Moments

Probability Weighted Moments (PWMs) is a statistical method used to estimate pa-
rameters of a probability distribution based on weighted moments. It is particularly
useful when dealing with heavy-tailed or skewed distributions (see Hosking (1990)). The
(m,n)th PWMs, say ηm,n of X∼ EHL-TIHT-Π Fod is

ηm,n = E(Xm (F (X))n) =

∫ ∞

−∞
xmf(x; θ, α, ϑ) (F (x; θ, α, ϑ))n dx. (23)

Note that f(x; θ, α, ϑ)(F (x; θ, α, ϑ))n can be written as

f(x; θ, α, ϑ)(F (x; θ, α, ϑ))n =

∞∑
u=0

ω∗
u+1πu+1(x;ϑ), (24)

where

ω∗
u+1 = 2αθ2

∞∑
p,r,q,s,t=0

(−1)p+r+s+t+u

(
α(1 + n)− 1

p

)(
−(α(1 + n) + 1)

q

)
×

(
r + s

t

)(
t

u

)(
(1 + q + p)θ + 1

r

)(
−((1 + q + p)θ − 1)

s

)
(1− θ)s

u+ 1
, (25)

and πu+1(x;ϑ) is an Expo-Π density with (u+1) as the power parameter. Therefore, the
PWMs is given by

ηm,n =
∞∑
t=0

ω∗
u+1

∫ ∞

−∞
xmπu+1(x;ϑ)dx =

∞∑
u=0

ω∗
u+1E(Y m

u+1), (26)

where E(Y m
u+1) is m

th moment of an Expo-Π distributed random variable with exponen-
tiation parameter (u+1).
Details of the derivatives are provided in the appendix.

4.4 Distribution of Order Statistics

Order statistics are crucial for summarizing data, estimating parameters, conducting
hypothesis tests, and analyzing extreme events. They provide insights into the range,
central tendency, and spread of data, aiding in reliability analysis and model selection.
Their importance extends to fields such as finance, insurance, and environmental sci-
ences. The pdf of the ith order statistic from the EHL-TIHT-Π Fod is

fi:n(x; θ, α, ϑ) =
f(x; θ, α, ϑ)

B(i, n− i+ 1)

n−i∑
j=0

(
n− i

j

)
(F (x; θ, α, ϑ))j+i−1

=
1

B(i, n− i+ 1)

n−i∑
j=0

∞∑
u=0

(
n− i

j

)
ϕu+1πu+1(x;ϑ), (27)
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where B(., .) is the beta function, πu+1(x;ϑ) = (u + 1)π(x;ϑ)Πu(x;ϑ) is an expo-Π
distribution whose power parameter is (u+ 1), and

ϕu+1 = 2αθ2
n−i∑
j=0

∞∑
p,q,r,s,t=0

(−1)p+r+s+t+u

(
α(j + 1 + i)− 1

p

)

×
(
−(α(j + 1 + i) + 1)

q

)
(1− θ)s

(
r + s

t

)(
t

u

)(
(1 + q + p)θ − 1

r

)
×

(
−((1 + q + p)θ + 1)

s

)
1

u+ 1
. (28)

The full expansion is found in the appendix.

4.5 Entropy

Rényi entropy Rényi (1961) is an extension of the Shannon entropy Shannon (1951).
These measures offer insights into the information content and uncertainty within the
EHL-TIHT-Π Fod. Rényi entropy for the new Fod is given as

IR(ς) = (1− ς)−1 log

[∫ ∞

0
f ς(x)dx

]
= (1− ς)−1 log

[ ∞∑
u=0

v∗ue
(1−ς)IREΠ

]
, ς ̸= 1, ς > 0, (29)

where

v∗u =
∞∑

p,q,r,s,t=0

(−1)p+r+s

(
ς(α− 1)

p

)(
−ς(1 + α)

q

)(
(θ(ς + q + p)− ς)

r

)

×
(
−(θ(ς + q + p) + ς)

s

)
(1− θ)s

(
r + s

t

)(
t

u

)
2αςθ2ς

(
1 +

u

ς

)ς

(30)

and

IREΠ = (1− ς)−1 log

∫ ∞

0

[(
u

ς
+ 1

)
π(x;ϑ)Π

u
ς (x;ϑ)

]ς
dx (31)

is Rényi entropy of the Expo-Π distribution whose power parameter is
(
u
ς + 1

)
. See the

appendix for details.

4.6 Stochastic Ordering

We present stochastic ordering of the EHL-TIHT-Π Fod in this subsection. Yu (2009)
describes stochastic ordering as an ordering of how big random variables or random vec-
tors are. It is useful in fields such as life sciences, economics, and insurance. Stochastic
ordering is crucial in determining how well a model performs. There are several stochas-
tic orders, namely, hazard, likelihood ratio, variability, convex, Laplace transform and
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realizable monotonicity orders to mention a few. See Yu (2009) and references there in.
In this paper, we present the likelihood ratio order.

If X1 and X2 are continuous random variables whose pdfs are defined by f1(x) and
f2(x), respectively, then X2 is greater than X1 according to the likelihood-ratio ordering

if f1(x)
f2(x)

is non-decreasing in x.

Let f1(x) and f2(x) be pdfs given by

f1(x) = fEHL−TIHT−Π(x; θ, α1, ϑ) =
2α1θ

2π(x;ϑ) (1−Π(x;ϑ))θ−1

(1− (1− θ)Π(x;ϑ))1+θ

× [1−Kθ(x;ϑ)]
α1−1

[1 +Kθ(x;ϑ)]
1+α1

, (32)

and

f2(x) = fEHL−TIHT−Π(x; θ, α2, ϑ) =
2α2θ

2π(x;ϑ) (1−Π(x;ϑ))θ−1

(1− (1− θ)Π(x;ϑ))1+θ

× [1−Kθ(x;ϑ)]
α2−1

[1 +Kθ(x;ϑ)]
1+α2

, (33)

respectively for α1, α2, θ > 0, x > 0, and parameter vector ϑ, where Kθ(x;ϑ) =(
1−Π(x;ϑ)

1−(1−θ)Π(x;ϑ)

)θ
. Then the ratio of f1(x)

f2(x)
is given by

f1(x)

f2(x)
=

α1

α2

[1 +Kθ(x;ϑ)]
α1−α2

[1−Kθ(x;ϑ)]
α1−α2

. (34)

Differentiating Equation (34) with respect to x, we have

d

dx

[
α1

α2

[1−Kθ(x;ϑ)]
α1−α2

[1 +Kθ(x;ϑ)]
α1−α2

]
=

2α1(α1 − α2)K
′
θ(x;ϑ) [1 +Kθ(x;ϑ)]

α1−α2−1

α2 (1−Kθ(x;ϑ))
α1−α2+1 . (35)

If α1 < α2, then
∂
∂x

(
f1(x)
f2(x)

)
< 0. Therefore, likelihood ratio order exists between X1 and

X2, which implies that X1 and X2 are stochastically ordered.

5 Actuarial Measures

We address certain risk metrics, including the value at risk (VaR), tail value at risk
(TVaR), tail variance (TV), and tail variance premium (TVP) for the proposed Fod in
this section.
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5.1 Value at Risk

VaR provides an estimate of the maximum potential loss that could be incurred with a
certain level of confidence, indicating the risk exposure of a portfolio or investment. The
VaR of X for the proposed Fod, denoted by V aRq(X), is

V aRq = Π−1


1−

(
1−q

1
α

1+q
1
α

) 1
θ

(
(1− θ)

(
1−q

1
α

1+q
1
α

) 1
θ

− 1

)
 , (36)

for 0 < q < 1, and α, θ > 0.

5.2 Tail Value at Risk

If X follows the EHL-TIHT-Π Fod with parameter vector (θ, α, ϑ), then TVaR of X can
be derived as

TV aRq(X) = E(X|X > V aRq)

=
1

1− q

∫ ∞

V aRq

xfEHL−TIHT−Π(x; θ, α, ϑ)dx

=

∞∑
u=0

ωu+1

1− q

∫ ∞

V aRq

xπu+1(x;ϑ)dx, (37)

where ωu+1 is given by Equation( 9) and 0 < q < 1.

5.3 Tail Variance

In finance and risk management, TV is often used as a risk measure to assess the potential
losses associated with outliers. It is given by

TVq = E(X2|X > xq)− (TV aRq)
2. (38)

Note that

E(X2|X > xq) =
1

1− q

∫ ∞

V aRq

x2fEHL−T1HT−Π(x; θ, α, ϑ)dx, (39)

but fEHL−T1HT−Π(x; θ, α, ϑ) =
∑∞

u=0 ωu+1πu+1(x;ϑ), so that

E(X2|X > xq) =

∞∑
u=0

ωu+1

1− q

∫ ∞

V aRq

x2πu+1(x;ϑ)dx, (40)

where ωu+1 is given by Equation( 9), and 0 < q < 1, so that

TVq =

∞∑
u=0

ωu+1

1− q

∫ ∞

V aRq

x2πu+1(x;ϑ)dx− (TV aRq)
2 . (41)
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5.4 Tail Variance Premium

TVP represents the extra amount that individuals or organizations need to pay to obtain
protection against losses resulting from rare and severe events. TVP builds on TVaR,
and also depends on TV. TVP is given by

TV Pq = TV aRq + δ(TVq), (42)

where 0 < δ < 1.

5.5 Investigation of Risk Measures

We seek to compare the values of the VaR, TVaR, TV, and TVP of the EHL-TIHT-W
distribution to those of the TIHT-W distribution, and the alpha power Weibull (APW)
distribution in this section. The pdfs of the TIHT-W anf APW distributions are given
in the appendix. To obtain the results in Table 1, we did the following:

� Samples of size n = 100 from the EHL-TIHT-W, TIHT-W, EHL-W, and APW
distributions were generated.

� The calculation of the risk metrics for these distributions was done 1000 times.

� Results are shown in Table 1.

The distribution with largest values of the risk metrics is said to have the heaviest
tail (Ahmad et al. (2018)). The results from Table 1 shows that the EHL-TIHT-W
distribution has heavier tail as compared to TIHT-W and APW distributions. Table 1
shows that the EHL-TIHT-W distribution has the highest risk measures than the TIHT-
W and APW distributions when evaluated at similar parameter settings. This indicates
that the EHL-TIHT-W distribution is more capable of capturing extreme risk, making
it particularly suitable for scenarios in which tail risks are critical. It also out performs
the two nested models: type I heavy-tailed-Weibull (TIHT-W) by Zhao et al. (2020) and
the exponentiated half logistic-Weibull by Cordeiro et al. (2014).

6 Estimation Techniques

The section aims to provide several statistical methods for estimating the parameters
of the EHL-TIHT-Π Fod. These techniques play a crucial role in estimating unknown
parameters from observed data, enabling us to make informed inferences and predic-
tions. The estimation techniques considered include maximum likelihood estimates
(MLE), ordinary least squares estimates (OLSE), Cramér-von Mises estimates (CVME),
Anderson-Darling estimates (ADE), weighted least squares estimates (WLSE), right-
tailed Anderson-Darling estimates (RADE), and maximum product of spacing estimates
(MPSE).
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Table 1: Simulation Study of the Risk Metrics for EHL-TIHT-W Distribution

Distribution Parameters Level of Significance VaR TVaR TV TVP

0.60 13.5332 26.6657 182.7354 136.3070

θ = 0.2 0.65 15.2703 28.4204 184.1739 148.1334

0.70 17.2678 30.4498 185.9850 160.6393

0.75 19.6241 32.8576 188.3032 174.0850

EHL-TIHT-W α = 0.9 0.80 22.5058 35.8192 191.3517 188.9006

0.85 26.2293 39.6666 195.5434 205.8785

0.90 31.5155 45.1551 201.7902 226.7662

0.95 40.7166 54.7408 212.9284 257.0228

ω = 0.8 0.99 63.1156 78.0524 238.8445 314.5085

0.60 11.2409 21.3368 106.7655 85.3961

0.65 12.5921 22.6846 107.4645 92.5365

0.70 14.1388 24.2409 108.3869 100.1118

0.75 15.9566 26.0849 109.6073 108.2904

TIHT-W θ = 0.2 0.80 18.1728 28.3501 111.2505 117.3506

0.85 21.0290 31.2895 113.5495 127.8066

0.90 25.0748 35.4779 117.0201 140.7960

0.95 32.1014 42.7840 123.2699 159.8904

ω = 0.8 0.99 49.1657 60.5242 137.8915 197.0368

0.60 1.3705 3.0516 3.1746 4.9564

θ = 0.2 0.65 1.5887 3.2765 3.2130 5.3650

0.70 1.8411 3.5374 3.2591 5.8187

0.75 2.1404 3.8476 3.3157 6.3344

EHL-W 0.80 2.5082 4.2302 3.3876 6.9403

0.85 2.9856 4.7285 3.4838 7.6897

0.90 3.6667 5.4417 3.6239 8.7032

0.95 4.8589 6.6920 3.8698 10.3683

ω = 0.8 0.99 7.7844 9.7511 4.4381 14.1449

0.60 9.0679 12.2917 157.7922 106.9670

θ = 0.2 0.65 10.1689 13.4758 165.9039 121.3133

0.70 11.4509 14.9070 174.3883 136.9787

0.75 12.9833 16.6779 182.9818 153.9142

TIHT-W α = 0.9 0.80 14.8820 18.9410 191.0944 171.8165

0.85 17.3650 21.9741 197.4082 189.7711

0.90 20.9247 26.3782 198.6587 205.2796

0.95 20.9247 26.3782 198.7797 205.2799

ω = 0.8 0.99 42.1307 51.0171 198.7797 205.2799

0.60 1.0398 1.4215 0.1014 1.4823

β = 2.2 0.65 1.1054 1.4714 0.0957 1.5336

0.70 1.1760 1.5266 0.0901 1.5896

0.75 1.2540 1.5890 0.0843 1.6522

APW α = 0.9 0.80 1.3430 1.6620 0.0783 1.7246

0.85 1.4495 1.7511 0.0717 1.8121

0.90 1.5876 1.8692 0.0643 1.9271

0.95 1.7997 2.0548 0.0545 2.1066

λ = 0.8 0.99 2.2158 2.4040 0.0914 2.4945
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6.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a widely used technique that maximizes the likelihood
of observing the given data to determine the optimal parameter values.

The log-likelihood function, ℓ = ℓ(∆) based on a random sample of size n is:

ℓ = 2n log(θ) + n log(α) +
n∑

i=1

log[π(xi;ϑ)] + (θ − 1)
n∑

i=1

log[1−Π(xi;ϑ)]

− (θ + 1)
n∑

i=1

log [1− (1− θ)Π(xi;ϑ)]

+ (α− 1)
n∑

i=1

log

[
1−

(
1−Π(xi;ϑ)

1− (1− θ)Π(xi;ϑ)

)θ
]

− (α+ 1)
n∑

i=1

log

[
1 +

(
1−Π(xi;ϑ)

1− (1− θ)Π(xi;ϑ)

)θ
]
. (43)

Solving the following non-linear equations: ∂ℓ
∂α = 0, ∂ℓ

∂θ = 0, and ∂ℓ
∂ϑk

= 0, where ∂ℓ
∂α ,

∂ℓ
∂θ ,

and ∂ℓ
∂ϑk

are the partial derivatives of ℓ, results in the MLE of the model parameters.
Elements of the score vector are given in the appendix.

6.2 Maximum Product of Spacing Estimation

Let x1:n ≤ x2:n ≤ x3:n ≤ x4:n...... ≤ xn:n be order statistics of a random sample of
size n from the EHL-TIHT-G distribution. Then the MPSE of the parameters of the
EHL-TIHT-Π Fod is obtained by maximising

MPS(α, θ, ϑ) =
1

1 + n

1+n∑
i=1

ln [F (xi;α, θ, ϑ)− F (xi−1;α, θ, ϑ) (1 + n)] .

(44)

We find the MPSE by solving the non-linear equations

[
∂(MPS(α, θ, ϑ))

∂α
,
∂(MPS(α, θ, ϑ))

∂θ
,
∂(MPS(α, θ, ϑ))

∂ϑk

]T
= 0, (45)

where ∂(MPS(α,θ,ϑ))
∂α , ∂(MPS(α,θ,ϑ))

∂θ , and ∂(MPS(α,θ,ϑ))
∂ϑk

are the partial derivatives ofMPS(α, θ, ϑ)
with respect to the parameters α, θ, and ϑk.
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6.3 Anderson-Darling Estimation and Right-Tailed Anderson-Darling
Estimation

The Anderson-Darling estimates (ADE), (see Raschke (2017)) are defined by

ADE(α, θ, ϑ) = −n− 1

n

n∑
i=1

(2i− 1) [log (F (xi:n;α, θ, ϑ)) + log (1− F (xi:n;α, θ, ϑ))]

= −n− 1

n

n∑
i=1

(2i− 1)

[
log

([
1−Kθ(xi:n;ϑ)

1 +Kθ(xi:n;ϑ)

]α)]

− 1

n

n∑
i=1

(2i− 1)

[
log

(
1−

([
1−Kθ(xi:n;ϑ)

1 +Kθ(xi:n;ϑ)

]α))]
. (46)

We obtain the ADE by solving the non-linear equation[
∂(ADE(α, θ, ϑ))

∂α
,
∂(ADE(α, θ, ϑ))

∂θ
,
∂(ADE(α, θ, ϑ))

∂ϑk

]T
= 0, (47)

where ∂(ADE(α,θ,ϑ))
∂α , ∂(ADE)(α,θ,ϑ)

∂θ , and ∂(ADE(α,θ,ϑ))
∂ϑk

are the partial derivatives ofADE(α, θ, ϑ)
with respect to the parameters α, θ, and ϑk. The RADE are obtained by minimizing
the function:

RADE(α, θ, ϑ) =
n

2
− 1

n

n∑
i=1

(2i− 1) [log (1− F (xi:n;α, θ, ϑ))]

− 2
n∑

i=1

log (1− F (xi:n;α, θ, ϑ)) , (48)

with respect to parameters α, θ, and ϑk.

6.4 Ordinary Least Squares Estimation

The ordinary least squares estimation (OLSE) of the parameters of the EHL-TIHT-Π
Fod is obtained by minimizing the function:

OLSE(α, θ, ϑ) =
n∑

i=1

[
F (xi:n;α, θ, ϑ)−

i

n+ 1

]2
, (49)

with respect to parameters α, θ, and ϑk.

6.5 Weighted Least Squares Estimation

The weighted least squares estimation (WLSE) of the parameters of the EHL-TIHT-Π
Fod is obtained by minimizing following function:

WLSE(α, θ, ϑ) =

n∑
i=1

(1 + n)2(n+ 2)

i(n− 1 + 1)

[
F (xi:n;α, θ, ϑ)−

i

1 + n

]2
. (50)

with respect to α, θ, and ϑ.
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6.6 Cramér-von Mises Estimation

Cramér-von Mises estimation (CVME) of the parameters for the EHL-TIHT-Π Fod can
be obtained through the minimization of the function:

CVME (α, θ, ϑ) = − 1

12n

n∑
i=1

[
F (xi:n;α, θ, ϑ)−

2i− 1

2n

]2
, (51)

with respect to the parameters α, θ, and ϑk.

6.7 Simulation Study

This subsection presents results of the simulation study for various sample sizes. Tables
2, 3, 4, and 5 show the simulation results. The tables give the average bias (AvBias)
and root mean squared errors (RtMse) for the different estimation methods. The ranks
are given in the brackets. The AvBias and RtMse for the estimated parameter, say, ϖ̂,
are given by:

AvBias(ϖ̂) =

∑N
i=1 ϖ̂i

N
−ϖ, and RtMse(ϖ̂) =

√∑N
i=1(ϖ̂i −ϖ)2

N
, (52)

respectively.

Table 2: Simulation Results for (α, θ, ω) = (0.4, 1.2, 1.6)
MPSE MLE OLSE WLSE

Parameter RtMse AvBias RtMse AvBias RtMse AvBias RtMse AvBias

α 25 8.1941(5) 1.6502(6) 0.1712(1) 0.0252(1) 6.1794(2) 1.2977(4) 6.8158(4) 1.1312(3)

θ 25 0.5096(5) 0.1811(2) 0.3792(1) 0.1592(1) 0.5093(4) 0.2395(5) 0.4707(3) 0.2723(7)

ω 25 3.1462(7) 2.9393(7) 0.8668(1) 0.0313(1) 2.8693(6) 2.7028(3) 3.0032(4) 2.8585(6)∑
ranks 32 6 24 27

α 50 0.8195(2) 0.4334(3) 0.1549(1) 0.0190(1) 5.5171(7) 0.8075(7) 1.4757(4) 0.4691(4)

θ 50 0.3059(1) 0.3067(5) 0.3170(2) 0.0936(1) 0.4043(6) 0.2700(3) 0.3419(4) 0.3120(6)

ω 50 2.9926(6) 2.9659(5) 0.7836(2) 0.0055(1) 2.7297(5) 2.6745(2) 2.8046(3) 2.7995(6)∑
ranks 22 8 30 27

α 100 0.3836(2) 0.2563(2) 0.1340(1) 0.0153(1) 0.5235(5) 0.3217(5) 0.4317(4) 0.2712(4)

θ 100 0.2066(1) 0.3813(7) 0.2606(5) 0.0547(1) 0.2685(6) 0.3361(3) 0.2292(3) 0.3621(6)

ω 100 2.9064(5) 3.0245(7) 0.6630(3) 0.0128(1) 2.6842(4) 2.7511(3) 2.6969(1) 2.8212(6)∑
ranks 24 12 26 25

α 200 0.2799(2) 0.2155(2) 0.1107(1) 0.0187(1) 0.3648(6) 0.2652(6) 0.3192(4) 0.2394(5)

θ 200 0.1478(1) 0.3960(7) 0.2170(7) 0.0500(1) 0.1974(5) 0.3513(3) 0.1663(3) 0.3690(4)

ω 200 2.7170(7) 2.9238(7) 0.5480(1) 0.0378(1) 2.5284(3) 2.6891(3) 2.5346(5) 2.7421(4)∑
ranks 26 12 26 25

α 400 0.2095(2) 0.1743(2) 0.0954(1) 0.0179(1) 0.3111(7) 0.2550(7) 0.2460(3) 0.2100(4)

θ 400 0.1103(1) 0.4215(7) 0.1953(7) 0.0424(1) 0.1501(6) 0.3526(2) 0.1106(2) 0.3858(5)

ω 400 2.6800(7) 2.9338(7) 0.4627(1) 0.0473(1) 2.3979(2) 2.6279(2) 2.4771(4) 2.7373(4)∑
ranks 26 12 26 22

α 800 0.1850(2) 0.1668(2) 0.0743(1) 0.0127(1) 0.2736(7) 0.2442(6) 0.2226(4) 0.2030(4)

θ 800 0.0783(1) 0.4241(7) 0.1457(7) 0.0243(1) 0.1125(6) 0.3543(2) 0.0817(2) 0.3888(5)

ω 800 2.6182(7) 2.8980(7) 0.3542(1) 0.0320(1) 2.3255(2) 2.5914(2) 2.4461(5) 2.7255(5)∑
ranks 26 12 25 25

The numbers in brackets represent the ranks.
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Table 3: Simulation Results for (α, θ, ω) = (0.4, 1.2, 1.6)
CVME RTADE ADE

parameter n RtMse AvBias RtMse AvBias RtMse AvBias

α 25 8.4745(7) 1.6001(5) 8.3113(6) 1.8082(7) 6.7287(3) 1.0484(2)

θ 25 0.5213(2) 0.2205(4) 0.5302(7) 0.1886(3) 0.4432(2) 0.2595(6)

ω 25 2.8887(5) 2.7551(4) 2.7756(2) 2.6720(2) 2.8695(3) 2.7907(5)∑
ranks 31 27 21

α 50 2.7480(6) 0.7536(6) 1.4911(5) 0.5632(5) 1.0720(3) 0.4259(2)

θ 50 0.4153(7) 0.2588(2) 0.3656(5) 0.3010(4) 0.3214(3) 0.3155(7)

ω 50 2.7575(4) 2.7084(3) 2.8077(6) 2.8285(7) 2.7496(1) 2.7910(4)∑
ranks 28 32 20

α 100 0.5970(7) 0.3564(7) 0.5541(6) 0.3227(6) 0.3943(3) 0.2703(3)

θ 100 0.2758(7) 0.3228(2) 0.2597(4) 0.3471(4) 0.2126(2) 0.3595(5)

ω 100 2.6483(2) 2.7285(2) 2.7045(5) 2.8202(5) 2.6638(6) 2.7996(4)∑
ranks 28 30 23

α 200 0.4036(7) 0.2935(7) 0.3366(5) 0.2243(3) 0.2974(3) 0.2302(4)

θ 200 0.2042(6) 0.3362(2) 0.1853(4) 0.3926(6) 0.1577(2) 0.3724(5)

ω 200 2.4964(4) 2.660(2) 2.7097(6) 2.8890(6) 2.5302(5) 2.7431(5)∑
ranks 28 30 24

α 400 0.3076(6) 0.2529(6) 0.2588(5) 0.1988(3) 0.2478(4) 0.2104(5)

θ 400 0.1460(5) 0.3542(3) 0.1376(4) 0.3993(6) 0.1141(3) 0.3853(4)

ω 400 2.4097(3) 2.6406(3) 2.5977(6) 2.8315(6) 2.4801(5) 2.7376(5)∑
ranks 26 29 26

α 800 0.2688(6) 0.2417(1) 0.2037(3) 0.1710(3) 0.2328(5) 0.2120(5)

θ 800 0.1069(5) 0.3571(3) 0.0993(4) 0.4181(6) 0.0865(3) 0.3806(4)

ω 800 2.3349(3) 2.6051(3) 2.5908(6) 2.8566(6) 2.4192(4) 2.6949(4)∑
ranks 21 28 25

The numbers in brackets represent the ranks.
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Figure 7: Simulations Results for (α, θ, ω) = (0.8, 0.4, 3.2)

In Table 2, Table 3, Table 4, and Table 5, the row indicating
∑

ranks corresponds to
the partial sum of the ranks. Among all the estimators for a given metric, the subscript
indicates the rank. Table 1 presents, for example, the RtMse of α̂, obtained via the
MPSE method, as 8.1941(5) for n = 25. This indicates that the RtMse of α̂ obtained
using the MPSE method ranks fifth among all other estimators.



122 Gwazane, Oluyede, and Chipepa

Table 4: Simulations Results for (α, θ, ω) = (0.8, 0.4, 3.2)
MPSE MLE OLSE WLSE

parameter n RtMse AvBias RtMse AvBias RtMse AvBias RtMse AvBias

α 25 5.6513(7) 1.1265(7) 0.1389(1) 0.0072(4) 2.0629(3) 0.1714(5) 2.5294(5) 0.0686(3)

θ 25 3.6404(7) 3.3278(7) 0.9853(1) 0.2912(1) 2.6704(3) 2.5185(4) 2.9729(5) 2.5101(3)

ω 25 1.6432(3) 1.2862(2) 0.7352(1) 0.0876(1) 1.9109(7) 1.6962(7) 1.8746(4) 1.6634(6)∑
ranks 33 9 29 26

α 50 0.4492(3) 0.3275(7) 0.1214(1) 0.0045(1) 0.8202(6) 0.2006(4) 0.4788(4) 0.2999(5)

θ 50 2.7821(7) 2.5819(7) 0.9157(1) 0.2390(1) 2.5142(4) 2.4539(4) 2.5023(3) 2.4500(3)

ω 50 1.4363(3) 1.2017(3) 0.6343(1) 0.0577(1) 1.8134(7) 1.6692(7) 1.7635(5) 1.6383(5)∑
ranks 30 6 32 25

α 100 0.4008(3) 0.3237(2) 0.1098(1) 0.0148(1) 0.4225(4) 0.3660(5) 0.4314(6) 0.4056(7)

θ 100 2.2551(3) 1.8737(3) 0.8212(1) 0.1222(1) 2.4590(5) 2.4216(5) 2.4362(4) 2.4090(4)

ω 100 1.1877(3) 0.9172(4) 0.6079(1) 0.1018(1) 1.6890(6) 1.6004(6) 1.6474(5) 1.5694(5)∑
ranks 18 6 32 25

α 200 0.2801(3) 0.1537(3) 0.0846(1) 0.0041(1) 0.4490(5) 0.4333(5) 0.4689(6) 0.4609(7)

θ 200 1.4332(3) 0.7875(3) 0.6897(1) 0.1415(1) 2.4523(4) 2.4346(4) 2.4535(5) 2.4368(5)

ω 200 0.7379(3) 0.3785(3) 0.4634(1) 0.0241(1) 1.5656(7) 1.5129(7) 1.5128(5) 1.4661(5)∑
ranks 22 6 32 33

α 400 0.1337(3) 0.0334(3) 0.0745(1) 0.0011(1) 0.4783(6) 0.4721(5) 0.4818(7) 0.4786(7)

θ 400 0.6130(3) 0.1489(3) 0.5998(2) 0.1061(2) 2.4826(5) 2.4727(6) 2.4512(6) 2.4431(4)

ω 400 0.3089(2) 0.0713(3) 0.4037(3) 0.0151(1) 1.4465(5) 1.4126(5) 1.4539(7) 1.4259(7)∑
ranks 17 10 33 38

α 800 0.0386(2) 0.0027(3) 0.0588(3) 0.0002(1) 0.4904(6) 0.4874(4) 0.4967(7) 0.4952(7)

θ 800 0.1580(2) 0.0103(2) 0.4686(3) 0.0580(3) 2.4739(6) 2.4678(6) 2.4467(4) 2.4427(4)

ω 800 0.0846(2) 0.0054(2) 0.3199(3) 0.0132(3) 1.4005(6) 1.3785(5) 1.3912(4) 1.3775(4)∑
ranks 13 16 33 30

Table 5: Simulations Results for (α, θ, ω) = (0.8, 0.4, 3.2)
CMVE RTADE ADE

parameter n RtMse AvBias RtMse AvBias RtMse AvBias

α 25 3.2790(6) 0.3312(6) 1.5025(2) 0.0012(1) 2.3005(4) 0.0276(2)

θ 25 3.1508(6) 2.8071(6) 2.9424(4) 2.7441(5) 2.3735(2) 2.0207(2)

ω 25 1.8929(6) 1.6434(5) 1.8364(5) 1.5469(4) 1.6186(2) 1.3086(3)∑
ranks 35 21 15

α 50 1.2275(7) 0.1521(2) 0.5378(5) 0.3056(6) 0.3352(2) 0.1873(3)

θ 50 2.6560(6) 2.5774(6) 2.6363(5) 2.5762(5) 1.9775(2) 1.5272(2)

ω 50 1.8026(6) 1.6537(6) 1.6708(4) 1.5282(4) 1.3692(2) 1.0246(2)∑
ranks 33 29 13

α 100 0.4164(4) 0.3559(4) 0.4384(7) 0.4038(6) 0.2696(2) 0.1632(3)

θ 100 2.5102(6) 2.4706(6) 2.5117(7) 2.4848(7) 1.5961(2) 1.0330(2)

ω 100 1.6925(7) 1.6050(7) 1.5831(4) 1.5079(3) 1.0930(2) 0.6906(2)∑
ranks 33 29 13

α 200 0.4479(4) 0.4323(4) 0.4656(7) 0.4555(6) 0.1929(2) 0.0832(2)

θ 200 2.4878(7) 2.4683(6) 2.4816(6) 2.4701(7) 1.0588(2) 0.4633(2)

ω 200 1.5625(6) 1.5067(6) 1.4853(4) 1.4447(4) 0.6994(2) 0.3025(2)∑
ranks 33 34 13

α 400 0.4761(4) 0.4696(4) 0.4784(5) 0.4741(6) 0.0931(2) 0.0187(2)

θ 400 2.4976(7) 2.4870(7) 2.4724(4) 2.4659(5) 0.4969(1) 0.1004(1)

ω 400 1.4485(6) 1.4113(4) 1.4391(4) 1.4161(6) 0.3004(1) 0.0603(2)∑
ranks 32 30 9

α 800 0.4898(5) 0.4869(6) 0.4878(4) 0.4855(5) 0.0257(1) 0.0014(2)

θ 800 2.4776(7) 2.4718(7) 2.4673(5) 2.4640(5) 0.1385(1) 0.0076(1)

ω 800 1.4002(5) 1.3786(6) 1.4062(7) 1.3907(7) 0.0783(1) 0.0043(1)∑
ranks 36 33 7
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(i) (ii) (iii)

Figure 8: Line plots for RtMse performance of the EHL-TIHT-W model parameters for
Tables 4 and 5.

Table 6 shows that the MLE had the smallest RtMse and AvBias followed by WLSE
and ADE. The RADE performed badly as compared to other estimates.

Table 6: Overall Rankings of Estimation Methods for EHL-TIHT-W Distribution

Parameters n MPSE MLE LSE WLSE CVME RADE ADE

25 7 1 3 4.5 6 4.5 2

50 3 1 6 4 5 7 2

(α, θ, ω) = (0.4, 1.2, 1.6) 100 3 1 5 4 6 7 2

200 4.5 1 4.5 3 6 7 2

400 4.5 1 4.5 2 4.5 7 4.5

800 6 1 4 4 2 7 4

25 6 1 5 4 7 3 2

50 5 1 6 3 7 4 2

(α, θ, ω) = (0.8, 0.4, 3.2) 100 3 1 6 3 4.5 4.5 4.5

200 4 3 1 2 6 7 5

400 5 3 1 2 6.5 6.5 4

800 4 3 1 2 7 6 5∑
ranks 56 18 47 37.5 67.5 70.5 39

Overall rank 5 1 4 2 6 7 3

7 Applications

In this section, we compare the EHL-TIHT-W distribution to six other distributions
using two datasets. The estimated parameter values are presented together with their
standard errors (in brackets). We assess the usefulness of the model by evaluating
its fit against several alternative distributions and employ various statistical plots and
goodness-of-fit (GoF) statistics for comparison. We consider the following GoF statis-
tics to compare the models: -2loglikelihood (-2 log( L)), Bayesian information criterion
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(BIC), Consistent Akaike Information Criterion (CAIC), Kolmogorov-Smirnov (K-S),
Cramér-von Mises (W*), and Anderson-Darling (A*). The best model is the one with
the lowest GoF values, highest p-value for the K-S statistic and smallest sum of squares
(SS) from the probability plots. Fitted density plots and probability plots are presented
for each application to determine which model provides the best fit. Empirical cumu-
lative distribution function (ECDF) plots provide visual comparisons of the empirical
distribution of the data with fitted distributions. Furthermore, Kaplan-Meier (K-M)
survival plots are provided to visualize the survival probabilities over time for each ap-
plication. Plots for the hrf and total time on test transform (TTT) plots are presented
to describe the hazard rate function geometry. In order to verify that the maximum
likelihood estimates are global maximums, profile log-likelihood plots are given.

The models considered are the Zubair-Weibull (Z-W) distribution by Ahmad (2020),
the type I heavy-tailed Weibull (TIHT-W) distribution by Ahmad et al. (2018), new
heavy-tailed beta-power transformed (HTBPT) distribution by Zhao et al. (2021), new
heavy-tailed Weibull (NEHTW) distribution by Arif et al. (2021), Weibull-Loss (W-
Loss) model Ahmad et al. (2019) and the alpha power Weibull (APW) distribution by
Nassar et al. (2017). The pdfs of these distributions are provided in the appendix.

7.1 Hospital Bills Data

This data set represents the hospital cost in the state of Wisconsin. It was also used by
Alfaer et al. (2023). The data is provided in the appendix.

Table 7: Estimates and GoF Statistics for EHL-TIHT-W and other distributions for
Hospital Bills Data

Estimates Goodness-of-fit Statistics

Model α θ ϖ −2 log (L) AIC AICC BIC W ∗ A∗ K − S p− value SS

EHL− TIHT −W 0.7313 0.0472 0.5678 7393.0900 7399.09 7399.137 7411.8810 0.0842 0.5814 0.0350 0.5407 0.0848

(0.1023) (0.0228) (0.0581)

α β γ

Z-W 0.7213 1.3906×103 1.8529×10−3 7398.2820 7404.2820 7417.0720 0.1436 0.9463 0.0418 0.3176 0.0940 0.1310

(0.0250) (9.8667×10−8) (3.0439×10−4)

θ α γ

TIHTW 1.0090 0.6700 0.0186 7401.649 7407.6490 7420.6850 7420.4390 0.1147 0.9396 0.0372 0.4619 0.0976

(0.0439) (0.0232) (0.0035)

α β γ

HTBPT 0.3203 0.0018 0.4105 7407.6710 7413.6710 7413.7170 7426.4610 0.3078 1.7674 0.0477 0.1837 0.2937

(0.0351) (0.0025) (0.1199)

α γ σ

NEHTW 0.6712 0.0187 2.5082×10−9 7401.708 7407.7080 7407.7540 7420.4980 0.1151 0.9468 0.0392 0.3940 0.1075

(0.0220) (2.8253×10−3) (2.8440×10−3)

α β δ

APW 0.1788 0.7608 6.4404×10−3 7397.4830 7403.4830 7403.5290 7416.2730 0.1600 0.9995 0.0410 0.3393 0.7628

(1.4708×10−14) (5.7764×10−3) (0.0465)

α γ σ

W − LOSS 0.7782 0.4659 4.115×10−3 7396.8570 7402.8570 7402.9030 7415.6470 0.1565 0.9704 0.0401 0.3683 0.1503

(0.0569) ( 0.3129) (2.7015×10−3)

For the EHL-TIHT-W distribution, the estimated variance-covariance (var-cov) matrix
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is provided by  0.0105 0.0022 −0.0054

0.0022 0.00052 −0.0013

−0.0054 −0.0013 0.0034

 ,

and the 95% asymptotic confidence intervals (ACI) for the parameters of the EHL-TIHT-
W distribution are α ∈ [0.7313±0.2005], θ ∈ [0.0472±0.0447], and ϖ ∈ [0.5678±0.1139],
respectively.

(i) (ii) (iii)

Figure 9: Profiles plots of the EHL-TIHT-W distribution on the hospital bills data.

These profiles plots reveal that the log-likelihood reaches its maximum value for the
estimated parameter values of α, θ, and ϖ. Thus, the figures demonstrate that the
values of these three estimated parameters represent the global maximums of the log-
likelihood function.

(i) (ii)

Figure 10: Fitted densities and probability plots for the data on hospital bills.
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The fitted density plot and probability plots show that among the six specified models,
the EHL-TIHT-W distribution offers the best fit for the hospital bills data.

Figure 11: ECDF plot and K-M survival curve of the EHL-TIHT-W model for the hos-
pital bills data.

Figure 12: Plots for the hrf and TTT of the EHL-TIHT-W distribution for the hospital
bills data.

The results presented in Table 7 support the assertion that the EHL-TIHT-W model is
preferable because it has the lowest GoF statistics values and the K-S statistic with the
largest p-value among the non-nested models investigated in this study. We conclude
that the EHL-TIHT-W model better explains the hospital bills data when compared to
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the other models. The EHL-TIHT-W distribution outperforms the various non-nested
models on the hospital bills data, as shown by the plots in Figures 10, 11 and 12.

7.2 Bladder Cancer Data

The data is about the remission times (in months) of a 128 patients suffering from
bladder cancer. The data was also used by Klakattawi (2022). The data is presented in
the appendix. According on data on bladder cancer, the estimated var-cov matrix for

Table 8: MLEs and GoF Statistics for Bladder Cancer Data
Estimates GoF Statistics

Model α θ ϖ −2 log (L) AIC AICC BIC W ∗ A∗ K − S p− value SS

EHL− TIHT −W 2.5629 0.7987 0.5408 820.0285 826.0285 826.2221 834.5846 0.0310 0.2002 0.0393 0.9890 0.0351

(1.0734) (0.2161) (0.0762)

α β γ

ZW 1.2415 1.6158 0.0193 820.9724 826.9724 827.1659 835.5284 0.0511 0.3056 0.0484 0.9248 0.0541

(0.0839) (2.7932×10−5) (4.3426×10−3)

θ α γ

TIHTW 1.0151 1.0514 0.0909 828.1454 834.1454 834.339 842.7015 0.1304 0.7813 0.0700 0.5579 0.1774

(0.0901) (0.0710) (0.0255)

α β γ

HTBPT 1.0478 1.0000 0.0939 828.1738 834.1738 834.3673 842.7298 0.1314 0.7865 0.07002 0.5570 0.1779

(0.0676) (0.7280) (0.0191)

α γ σ

NEHTW 1.0815 0.0813 3.0091×10−9 828.7594 834.7594 834.9530 843.3155 0.8214 0.1373 0.0959 0.1900 0.3796

(0.0630) (0.0151) (4.8508×10−3)

α β δ

APW 1.0647×1011 0.3072 2.0943 843.8078 835.2691 835.4626 843.8252 0.1171 0.7922 0.0533 0.8605 0.0549

(3.6786×10−14) (0.0203) (0.0959)

α γ σ

W − Loss 1.0479 100.30 0.0929 828.1689 834.1689 834.3624 842.7250 0.1313 0.7861 0.0700 0.5568 0.2114

(0.0676) (2.9627×10−7) (0.0189)

the EHL-TIHT-W model is

 1.15227 0.2259 −0.07512

0.2259 0.04671 −0.0159

−0.07512 −0.0159 0.0058

 ,

and the 95% ACI for the model parameters are given by
α ∈ [2.5629± 2.10394], θ ∈ [0.7987± 0.4236] and ϖ ∈ [0.5408± 0.1494].
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(i) (ii) (iii)

Figure 13: Profiles plots against the parameters of EHL-TIHT-W distribution on the
blood cancer data.

These profile plots demonstrate that the log-likelihood achieves its maximum value at
specific parameter values of α, θ, and ϖ. This indicates that these estimated parameter
values constitute the global maximums of the log-likelihood function for the blood cancer
data.

(i) (ii)

Figure 14: Fitted densities and probability plots for the data on bladder cancer
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Figure 15: Plots for empirical cdf and the Kaplan–Meier survival curve of the EHL-
TIHT-W model for the bladder cancer data

Figure 16: Plots for the hrf function and TTT plot of the EHL-TIHT-W distribution for
the bladder cancer data

Table 8 shows that the EHL-TIHT-W model is preferable because it has the lowest GoF
statistics values and the K-S statistic with the largest p-value among the non-nested
models used in this study. We conclude that the EHL-TIHT-W distribution better
explains the bladder cancer data when compared to the other no-nested models.



130 Gwazane, Oluyede, and Chipepa

8 Conclusions

In our work, we provide essential mathematical properties of the EHL-TIHT-Π distribu-
tion, including a linear representation of its density function. We also derive key actuarial
measures. To estimate the model parameters, we employ several estimation techniques,
including the MLE, MPSE, and RADE, among others. Monte Carlo simulations are
utilized to assess the accuracy of parameter estimates obtained through these methods.
The research findings indicate that among the seven estimation techniques evaluated,
the MLE method yielded the most accurate parameter estimates for the EHL-TIHT-W
distribution, followed closely by the WLSE and ADE methods as shown in Tables 2, 3,
4, and 5. This is also supported by Figures 7 and 9 in our analysis of two real datasets.
We compare the performance of the special case of the EHL-TIHT-W distribution with
several other known distributions. The results in Tables 7 and 8 reveal that the EHL-
TIHT-W distribution outperforms other non-nested distributions in terms of the GoF. In
conclusion, the EHL-TIHT-Π distribution offers enhanced flexibility and exhibits excel-
lent performance compared to several existing distributions. Future work could further
investigate its applications across diverse fields, comparing its efficacy against a broader
range of distributions to solidify its standing in statistical modeling.

To access the appendix, kindly click on the link provided hereunder:
https://drive.google.com/file/d/1_t4K01R43Bzb2gAw9SMF11T7EtJUtyrY/view?usp=

drive_link.
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Rényi, A. (1961). On measures of entropy and information. In Proceedings of the fourth
Berkeley symposium on mathematical statistics and probability, volume 1: contribu-
tions to the theory of statistics, volume 4, pages 547–562. University of California
Press.

Shannon, C. E. (1951). Prediction and entropy of printed english. Bell system technical
journal, 30(1):50–64.

Yu, Y. (2009). Stochastic ordering of exponential family distributions and their mix-
turesxk. Journal of Applied Probability, 46(1):244–254.

Zhao, J., Ahmad, Z., Mahmoudi, E., Hafez, E. H., and Mohie El-Din, M. M. (2021). A
new class of heavy-tailed distributions: Modeling and simulating actuarial measures.



132 Gwazane, Oluyede, and Chipepa

Complexity, 2021(1):5580228.

Zhao, W., Khosa, S. K., Ahmad, Z., Aslam, M., and Afify, A. Z. (2020). Type-i heavy
tailed family with applications in medicine, engineering and insurance. PloS one,
15(8):e0237462.


