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In scenario analysis, collinearity is a big issue in analyzing such relationship
as between the response variable and several explanatory variables. As for
these difficulties, the linear regression model, often traditionally, offers a
range of shrinkage estimators. One such estimator is the ridge estimator.
Thus, in order to fit count data with over-dispersion, for the bell regression
model, this paper presents an improvement of the new Ridge-type estimator.
Judging from the Monte Carlo simulation and the application of the Bell
regression model, it was noted that the proposed estimate yields on average
a smaller mean squared error than the other candidate estimators.

keywords: Collinearity; ridge-type estimator; Bell regression model; count
data; Over-dispersion; Monte Carlo simulation.

1 Introduction

Since statistical modeling helps in explaining the gradient of the functionality between
the response variable of interest and a number of explanatory variables, it is important
in many scientific study areas. The dependent variable in the linear regression model
is assumed to follow a normal distribution Further, it is assumed that observations
in the dependent variable are independent and identically distributed. However, this
assumption may not hold a lot of real-world applications particularly in day-to-day use
of these technologies. For instance, the response variable in the medical sciences refers
to an outcome that can be positive skewed. Consequently, using a linear regression
model to some extent might not be reasonable. Linear regression models of the GLM
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are gradually finding their way into other models as a statistical modeling tool applicable
for both continuous and discrete dependent variables(Algamal et al., 2023; Mahmood
et al., 2020; Algamal, 2019).
In real applications, the design data matrix X has multicollinearity between explana-

tory variables, and, therefore, XTX is singular or can be inflating the variance of the
maximum likelihood estimator (MLE). Because of this, the methods of estimation such
as the MLE often fail to generate good outcomes. In order to overcome multicollinear-
ity problem in the linear regression model, one different alternative method to MLE
is the ridge, Liu, Liu type and other estimators based on the other authors(Hoerl and
Kennard, 1970; Kejian, 1993; Algamal, 2020; Algamal and Lee, 2017; Aladeitan et al.,
2021; Algamal and Abonazel, 2022; Abonazel et al., 2022; Seifollahi et al., 2024). These
estimators have been extended to the GLMs (Akram et al., 2022; Kibria, 2003; Kibria
et al., 2012; Kurtoğlu and Özkale, 2016; Mackinnon and Puterman, 1989; Månsson and
Shukur, 2011; Nyquist, 1991; Segerstedt, 1992; Shamany et al., 2019).
The main objective stated in this paper is to construct the new ridge type estimator

to analyze the count data with over dispersion. It is very essential to know that the
above proposed estimator will perform efficiently better than some of the other existing
estimators in GLM. Existing comparative analyses within various simulated examples
and a real data application prove the advantage of our proposed estimator.

2 New Ridge estimator in Bell regression model

Assume that (yi, xi), i = 1, 2, ..., n is independent observed data with the predictor
vector xi ∈ Rp+1 and the response variable yi ∈ R which follows a distribution that
belongs to the Bell distribution. Then, the density function of yi can be expressed as

P (Y = y) =
θye−e

θ+1By
y!

, y = 0, 1, 2, ..., (1)

where θ > 0 and By = (1/e)
∑∞

d=0(d
y/d!) is the Bell numbers (Bell, 1934a,b; Castellares

et al., 2018; Seifollahi and Bevrani, 2023; Erkoç et al., 2023; Abonazel and Taha, 2023).
The mean and variance of the Bell distribution are respectively defined by

E (y) = θeθ, (2)

V ar (y) = θ (1 + θ) eθ. (3)

Assuming ψ = θeθ and θ = W◦ (ψ) where W◦ (.) is the Lambert function. Then Eq(1)
can be written in the new parameterization as

P (Y = y) = exp
(
1− eW◦(ψ)

)W◦ (ψ)
y By

y!
, y = 0, 1, 2, ..., (4)

In GLM, the mean of the response variable, µi = E(yi), is conditionally related to a
linear function of predictors through a link function. The linear function is stated as
ηi = β0+

∑p
j=1 xijβj = xTi β with xTi = (1, xi2, xi3, ..., xip) and β = (β0, β1, ..., βp)

T . The
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link function is providing the relation of the mean and the natural parameter as µi =
g−1(ηi) = g−1(xTi β). The Bell regression model (BRM) can be modeled by assuming
ψi = exp

(
xTi β

)
exp

(
exp

(
xTi β

))
and logψi = xTi β exp

(
xTi β

)
as yi ∼ Bell (W◦ (ψi)) .

The parameter estimation in the BRM is achieved through using the MLE based on the
iteratively reweighted least-squares algorithm. The log-likelihood is defined

ℓ(β, ψ) =
∑n

i=1 yi log
(
exp

(
xTi β

)
exp

(
e(x

T
i β)

))
+
∑n

i=1

1− ee
(xTi β) ee

(xTi β)


+ logBy − log (
∏n
i=1 yi!) .

(5)

Then, the MLE is derived by equaling the first derivative of Eq(5) to zero. This derivative
cannot be solved analytically because it is nonlinear in β. Fisher-scoring algorithm can
be used to obtain the MLE where in each iteration, the parameter is updated by

β(r+1) = β(r) + I−1(β(r))S(β(r)), (6)

where I−1(β) =
(
−E

(
∂2ℓ(β, ϕ)/∂β∂βT

))−1
. After that, the estimated coefficients are

defined as

β̂MLE = (XT ŴX)−1XT Ŵ û, (7)

where Ŵ = diag
[
(∂µi/∂ηi)

2/V (yi)
]
and û is a vector where ith element equals to ûi =

log ψ̂i + [(yi − µ̂i)/

√
var(ψ̂i). The MLE is distributed asymptotically normal with a

covariance matrix as

cov(β̂MLE) =

[
−E

(
∂2ℓ(β, ϕ)

∂β ∂βT

)]−1

= (XT ŴX)−1. (8)

In the presence of multicollinearity, the rank(XT ŴX) ≤ rank(X), and, therefore,
the near singularity of XT ŴX makes the estimation unstable and enlarges the variance
(Liu and Piantadosi, 2017). The ridge estimator (RE) (Hoerl and Kennard, 1970), Liu
estimator (Kejian, 1993) have been consistently demonstrated to be an attractive and
alternative to the MLE, when multicollinearity exists. In Bell regression model, the ridge
estimator and Liu estimator have been proposed by Majid et al. (2022)and Akram et al.
(2022), respectively. The Bell-Ridge estimator is defined as follows:

β̂k−BRM=

(
I+k

(
XTŴ

T
X
)−1

)−1

β̂MLE, (9)

where k > 0 is the shrinkage parameter. The Bell-Liu estimator is given as:

β̂k−BRM=

(
I+

(
XTŴ

T
X
)−1

)−1 (
XTŴ

T
X+dI

)
XTŴ

T
Xβ̂MLE, (10)

where d (0 < d < 1) is the shrinkage parameter.
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In this article, we propose a new one-parameter estimator in the class of ridge and
Liu estimators, which will carry most of the characteristics from both ridge and Liu
estimators.
The New One-Parameter Estimator. The proposed estimator is obtained by minimizing
the following objective function:

(y −Xβ)′(y −Xβ) + k[(β + β̂)′(β + β̂)−c], (11)

with respect to β, will yield the normal equations(
X́X + kIp

)
β = X́y − kβ̂, (12)

Where k is the nonnegative constant. The solution to (12) gives the new estimator as

β̂KL = (S + kIp)
−1 (S − kIp) β̂ =W (k)M(k) β̂, (13)

Where S= XX, W (k) = [Ip+kS
−1]−1 , and M(k) =

[
Ip − kS−1

]
. The new proposed

estimator will be called the Kibria-Lukman (KL) estimator and denoted by β̂KL

3 Properties of the New Estimator

E
(
β̂KL

)
=W (k)M (k)E

(
β̂
)
=W (k)M (k)β. (14)

The proposed estimator is a biased estimator unless k=0.

B
(
β̂KL

)
= [W (k)M(k)Ip]β, (15)

D
(
β̂KL

)
= σ2W (k)M (k)S−1M ′ (k)W ′ (k) , (16)

And the mean square error matrix (MSEM) is defined as

MSEM
(
β̂KL

)
= σ2W (k)M (k)S−1M ′ (k)W ′ (k)+[W (k)M (k)− Ip]ββ

′ [W (k)M (k)− Ip]
′ .

(17)
To compare the performance of the four estimators (OLS, RR, Liu, and KL), we

rewrite (1) in the canonical form which gives

y = Zα+ ε, (18)

Where Z = XQ and α = Q́β. Here, Q is an orthogonal matrix such that Z ′Z = QX ′XQ =
Λ = diag (λ1, λ2, . . . , λp) . The OLS estimator of α is

α̂ = Λ−1Źy, (19)

MSEM (α̂) = σ2Λ−1 (20)
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The ridge estimator (RE) of α is

α̂ (k) =W (k) α̂, (21)

Where W(k) = [Ip + kΛ−1 ]
−1

and k is the biasing parameter.

MSEM (α̂(K)) = σ2W (k) Λ−1W (k) + (W (k)− Ip)αα(W (k)− Ip)
′, (22)

Where (W (k)− Ip) = −k(Λ + kIp)
−1.The Liu estimator of α is

α̂ (d) = (Λ + Ip)
−1

(
ŹY + dα̂

)
= F (d) α̂, (23)

Where F(d) =[Λ + Ip]
−1 [Λ + dIp] .

MSEM(α̂(d)) = σ2FdΛ
−1Fd + (1− d)2(1− d)2(Λ + 1)−1.αα′(Λ + 1)−1, (24)

Where Fd = (Λ + I)−1 (Λ + dI) .
The proposed one-parameter estimator of α is

α̂KL = (Λ + kIp)
−1 (Λ− kIp) α̂ =W (k)M (k) α̂, (25)

Where W(k) =
[
Ip + kΛ−1

]−1
and M(k) =

[
Ip − kΛ−1

]
.

The following notations and lemmas are needful to prove the statistical property of α̂KL:
Lemma 1. Let n×n matrices M>0 and N>0 (or N≥ 0); then, M>N if and only if
λ1

(
NM−1

)
< 1, where λ1(NM

−1) is the largest eigenvalue of matrix NM−1 [28] .
Lemma 2. Let M be an n×n positive definite matrix, that is M>0 and α be some
vector; then, M-αα′ ≥ 0 if and only if α′M−1α ≤ 1 [29].
Lemma 3. Let α̂i = Aiy , i=1,2, be two linear estimators of α. Suppose that
D=Cov(α̂1) − Cov (α̂2) > 0, where Cov(α̂i) i=1,2 denotes the covariance matrix of α̂i
and bi = Bias (α̂i) = (AiX − I)α, i=1,2. Consequently,

∆ (α̂1 − α̂2) =MSEM (α̂1)−MSEM (α̂2) = σ2D + b1b
′
2 − b2b

′
2 > 0 (26)

If and only if b′2
[
σ2D + b1b1

]−1
b2 < 1, where MSEM(α̂i) = Cov(α̂i) + bib

′
i [30] .

The other parts of this article are as follows. The theoretical comparison among the
estimators and estimation of the biasing parameters are given in Section 3. We conducted
two numerical examples in Section 4. This paper ends up with concluding remarks in
Section 5.

4 Simulation Study

In this section, we simulate explanatory variables that are collinear and a response
variable y that follows a bell distribution. The explanatory variables are obtained in
line with the study of Lukman et al. (2019, 2022) as follows:

xij =
√

(1− ρ2)mij + ρmi(j+1), i = 1, . . . , n; j = 1, . . . p (27)
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where mij are independent standard normal pseudo-random numbers and ρ2 denotes
the correlation between the explanatory variables such that ρ = 0.7, 0.8, 0.9, and 0.999.
We assumed that yi ∼ bell (Wo (µi)) , where

log(µi) = ηi = β1xi1 + β2xi2 + · · ·+ βpxip (28)

The sample sizes are varied such that n=30, 50, and 100 while p is taken to be 4, 8,12
and 16. The true values of the regression parameter β are chosen such that

∑p
i=1 β̂

2
i = 1

Alkhateeb and Algamal (2022); Kibria and Lukman (2020). The simulation study is
conducted by adopting the RStudio programming language with the help of bellreg-
package. The experiment was replicated 1000 times and the mean squared error (MSE)
was employed to evaluate the estimators’ performance.

MSE(β∗) =
1

1000

100∑
j=1

(β∗ij − βi)
′(β∗ij − βi) (29)

where β∗ij is the estimator and βi is the parameter.

The MSE of the simulated data is provided in Tables 1-4 under different simulation
conditions. MLE performance is not satisfactory due to the presence of multicollinearity.
For instance, from Table 3 at sample size 30, ρ=0.9 and p=12, the MSE for MLE is
50.097. The MSEs for the other estimators are as follows: 14.221, 29.465, and 11.964.
This agrees with the literature that MLE suffers setback when the regressors are collinear.

We also observed that the MSE of each of the estimators increase when the level of
multicollinearity increases at a particular sample size. For instance, from Table 2 when
n=50 for p=8, the MSE values for the proposed estimator are 3.384, 4.39, 5.402 and
10.662, respectively. Also, the MSE of each of the estimators decreases as the sample
sizes increases when other factors are kept constant. From Table 1, the MSE for proposed
estimator for p=3 and ρ=0.99 are as follows: 1.961 (n=30), 1.571 (n=50), and 1.480
(n=100). It is very obvious that the MSE rise as the number of explanatory variables
(p) increase. The performances of the biased estimators and the proposed estimator
are competitive especially when the level of multicollinearity is moderate- say ρ=0.7.
However, the proposed estimator shows superiority when the level of multicollinearity
becomes high.
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Table 1: Mean squared error of simulated data when ( p = 3)

N Estimator

r=0.70 r=0.80 r=0.90 r=0.99

30 MLE 5.1548 5.3434 5.7976 13.7301

RIDGE 1.7183 1.7483 1.8673 2.0603

Liu 1.7607 1.7633 1.8826 9.5983

Proposed 1.5591 1.7211 1.8019 1.9612

50 MLE 1.9142 2.174 2.3065 7.4765

RIDGE 1.4788 1.5557 1.5769 1.5796

Liu 1.644 1.6796 1.7125 7.3127

Proposed 1.4777 1.5516 1.5621 1.5713

100 MLE 1.6162 1.6763 1.7735 3.4816

RIDGE 1.4033 1.4606 1.4728 1.4812

Liu 1.5873 1.5917 1.5954 1.6526

Proposed 1.3807 1.4576 1.4724 1.4804

Table 2: Mean squared error of simulated data when ( p = 8)

n Estimator

r=0.70 r=0.80 r=0.90 r=0.99

30 MLE 11.732 16.9209 25.212 57.352

RIDGE 5.0912 6.5025 8.046375 24.148

Liu 5.6934 12.9963 16.7967 27.159

Proposed 5.0609 5.499 6.792 22.0609

50 MLE 5.8046 9.0094 15.1376 36.2925

RIDGE 3.3884 5.4176 7.4287 12.6707

Liu 3.5951 6.3373 13.4532 28.3894

Proposed 3.3849 4.3937 5.4022 10.662

100 MLE 4.0996 5.0711 6.2723 7.5902

RIDGE 1.4688 2.4586 4.4377 6.3519

Liu 1.799 2.485 4.4723 6.5441

Proposed 1.4678 2.4408 3.4377 6.2921
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Table 3: Mean squared error of simulated data when ( p = 12)

n Estimator

r=0.70 r=0.80 r=0.90 r=0.99

30 MLE 19.9573 33.5149 50.097 91.567

RIDGE 6.9245 12.678 14.22188 33.6764

Liu 15.3437 16.1636 29.4657 43.2582

Proposed 6.5874 10.6709 11.964 32.1194

50 MLE 11.2081 19.428 24.8753 72.258

RIDGE 5.4148 7.584 11.5934 25.0145

Liu 5.4286 8.5835 12.2697 35.4257

Proposed 4.4143 6.5799 11.5459 20.6723

100 MLE 7.8722 12.9014 17.5684 36.6432

RIDGE 2.6106 4.5886 9.7817 13.2375

Liu 3.2709 4.409 9.8613 12.1961

Proposed 2.3804 4.3108 7.7927 9.7007

Table 4: Mean squared error of simulated data when ( p = 16)

n Estimator

r=0.70 r=0.80 r=0.90 r=0.99

30 MLE 37.627 58.537 126.757 283.357

RIDGE 12.867 21.987 37.067 103.777

Liu 28.857 28.107 75.177 133.497

Proposed 12.217 18.467 31.417 98.947

50 MLE 20.997 33.827 63.697 223.457

RIDGE 9.997 13.057 30.497 76.907

Liu 10.017 14.807 32.187 109.207

Proposed 8.097 11.297 30.377 63.437

100 MLE 14.667 22.387 45.427 112.977

RIDGE 4.667 7.797 25.967 40.377

Liu 5.917 7.487 26.167 37.147

Proposed 4.227 7.317 20.987 29.407
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5 Numerical Result

In this section, we will adopt two real-life data to evaluate the performance of the existing
estimators and the proposed. The Aircraft Data dataset is originally assumed to follow
the Poisson regression model (see Myers et al., 2012; Asar & Genc, 2017; Amin et al.
2020; Lukman et al., 2021a,b), among others. The response variable y represent the
number of locations with damage on the aircraft and it follows a Poisson distribution
Myers et al. (2012); Asar and Genç (2017); Lukman et al. (2022) . The explanatory
variables are described as follows: x1 denotes aircraft type (A-4 coded as 0 and A-6
coded as 1), x2 and x3 denote bomb load in tons and total months of aircrew experience,
respectively. Lukman et al. (2021a,b) diagnosed the model and conclude that the model
suffers from multicollinearity because the condition number is 219.3654. The output
of the Poisson regression model using the maximum likelihood method is presented in
Table 5.

Table 5: Poisson regression estimates using MLE

Coef. Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.4060 0.8775 -0.463 0.6436

x1 0.5688 0.5044 1.128 0.2595

x2 0.1654 0.0675 2.449 0.0143

x3 -0.0135 0.0083 -1.633 0.1025

However, the variance of the number of locations with damage on the aircraft is
more than twice the mean (2.0569). With this, it is evident that the data exhibit over-
dispersion. Bell Regression models account for over-dispersion in count data (Castellares
et al., 2018). Recently, This data was employed the bell regression model to model the
same dataset. Table 6 provides the regression estimates and the mean squared error
of each of the adopted estimators in this study. The biasing parameter k proposed by
Hoerl et al. (1975) was adopted as the biasing parameter for the Bell ridge and the Bell
KL estimators.

k̂ =
p∑p

j=1 υ̂
2
j

(30)

The Scalar mean squared error (MSE) for the other adopted method of estimation in
this study are as follows:

MSE
(
β̂MLE

)
=

p∑
j=1

1

λj
(31)

where λj is the eigenvalue of XTŴX.

MSE
(
β̂k−BRM

)
=

p∑
j=1

λj

(λj + k)2
+ k2

p∑
j=1

υ̂2
j

(λj + k)2
(32)
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where α̂2
j is the jth squared of the maximum likelihood estimate.

MSE
(
β̂d−BRM

)
=

p∑
j=1

(λj + d)2

λj (λj + 1)2
+ (1− d)2

p∑
j=1

υ̂2
j

(λj + 1)2
(33)

Table 6: Bell regression estimates for Aircraft Data

Coef. β̂MLE β̂k−BRM β̂d−BRM β̂proposed

Intercept -0.5422 -0.1509 -0.3006 -0.0211

x1 0.5990 0.3433 0.0034 0.3176

x2 0.1630 0.1665 0.0119 0.1513

x3 -0.0117 -0.0146 -0.0023 -0.0128

MSE 1.7447 0.1609 0.5327 0.1088

6 Conclusion

Count data are modelled by such GLMs as Poisson regression mentioned before or neg-
ative binomial regression. Nevertheless, it can be seen that utilization of the Poisson
regression model results into a strapping fit for count data which is over-dispersed. Some
models that have been put forward to handle over-dispersion in the context of count data
regression analysis are developed by McElreath and Peble named the Bell regression
model. When applying the frequentist approach, it is possible to estimate parameters
of the Bell regression model by the maximum likelihood method; the Fisher information
is calculated. Thus, in this work, it was proposed to apply the new estimation method
of parameters called the ridge-type estimator. To elaborate the proposed methodology,
the results of the simulation study conducted for this purpose, and the application of
the developed methodology to two empirical datasets are presented. Therefore, it can
be concluded that the employment of the Bell regression model is more appropriate than
the other models for count data displaying over-dispersion information. Moreover, it is
important when the model is not free from multicollinearity problem according to the
proposed estimator.
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