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In this paper, we introduce a new two-parameter extension of the Teisisier
distribution using the Topp-Leone distribution as a generator, namely Topp-
Leone Teissier distribution. The new model exhibits increasing, decreasing
and bathtub shaped hazard rate functions. Several properties of the model
are derived utilizing the Lambert W, the generalized integro-exponential and
the incomplete generalized integro-exponential functions. Maximum like-
lihood and Bayesian procedures are used to estimate the model parame-
ters. Lindley’s approximation under squared error loss function is utilized
for Bayesian computations. Moreover, a simulation study is carried out to
analyze the performance of these estimators on the basis of mean squared er-
ror. The applicability of the proposed model is evaluated using two real data
sets. Also, we highlight the neutrosophic approach on Topp-Leone Teissier
distribution as a pathway to address issues related to indeterminate, vague,
or uncertain data set. This enhancement integrates neutrosophic logic into
the model parameters, providing a robust framework for addressing the in-
herent challenges of ambiguous data and thereby broadening the model’s
applicability to real-world scenarios involving incomplete or imprecise infor-
mation.
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1 Introduction

The Teissier distribution (TD) was introduced by Teissier (1934) for modeling mortality
data of animal species due to pure ageing. Laurent (1975) showed the Teissier model as
a generalization of the negative exponential distribution and highlighted its applications
in demographic areas, biometric and failure theory. Leemis and McQueston (2008) called
the extended Teissier model as Muth distribution and used its pdf to show the properties
and relationships between several univariate distributions via a graph. Jodra et al.
(2015) derived the mathematical properties of the Muth in terms of integro-exponential
and Lambert W function. Kolev et al. (2017) introduced the symmetric and asymmetric
versions of bivariate Teissier model. Further extension include the Exponentiated Teissier
distribution by Sharma et al. (2022) and the Unit Teissier distribution by Krishna et al.
(2022), studied its various statistical properties. Recently, Poonia and Azad (2022)
developed the alpha power exponentiated Teissier distribution, while Singh et al. (2022)
introduced the discrete Teissier distribution. Alsadat et al. (2023) contributed to the
literature by introducing the Inverse Unit Teissier distribution.
If X follows Teissier distribution with parameter θ, then its pdf and cdf are respectively
given by

gT (x) = θ(eθx − 1)e(θx−eθx+1); x > 0, θ > 0 (1)

and

GT (x) = 1− e(θx−eθx+1); x > 0, θ > 0 (2)

where θ is the scale parameter.

The Teissier distribution possesses a heavier tail than some of the noted life time dis-
tributions like Weibull, gamma and lognormal, see Muth (1977). This property makes
it a better model for heavy-tailed data sets encountered in fields such as financial, actu-
arial, public health, industrial reliability, survival data etc. However, a major limitation
of the Teissier distribution is its inability to model data sets with non-monotonic hazard
rate functions; it is restricted to increasing hazard rate functions. This limitation signif-
icantly reduces its flexibility for real-world applications, especially in scenarios requiring
the modeling of data with decreasing or bathtub-shaped hazard rate functions. Moti-
vated by the practical challenges of the Teissier distribution in capturing complex hazard
rate behaviors, we propose a novel two-parameter extension of the Teissier distribution,
termed the Topp-Leone Teissier (TL-T) distribution. The new model, derived from the
Topp-Leone generated (TL-G) family of distributions pioneered by Al-Shomrani et al.
(2016), addresses the limitations of the original Teissier distribution by accommodating
increasing, decreasing, and bathtub-shaped hazard rate functions. As a generalization of
the Teissier distribution, the TL-T model is more flexible than the Teissier distribution
to model heavy tailed data sets. The cdf and pdf of the TL-G family are defined by

FTL−G(x) = [1− [1−G(x)]2]λ (3)

and

fTL−G(x) = 2λg(x)[1−G(x)][1− [1−G(x)]2]λ−1 (4)
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respectively, where x ∈ R, λ > 0 is the shape parameter and G(x) is a baseline cdf.
Beyond addressing the limitations of the Teissier distribution, the applicability of the
TL-T distribution is showcased through the analysis of March precipitation and tensile
strength of carbon fibres data sets. It demonstrate the efficacy of proposed distribution
in modeling the variability of precipitation patterns crucial for applications in hydrology
and climate science, as well as its ability to capture the distribution of material proper-
ties with precision.
Furthermore, within the conventional statistical paradigm, the representation of vari-
ability in data typically overlooks considerations of fuzziness. Neutrosophic logic, intro-
duced by Smarandache (1998) as an extension of fuzzy logic, addresses this limitation
by specifically addressing uncertainties associated with studied variables. Additionally,
Smarandache (2014) introduced the concepts of neutrosophic statistics, extending clas-
sical statistical procedures to accommodate these nuanced uncertainties. In our reality,
the prevalence of indeterminate data surpasses that of determinate data, necessitating
a greater reliance on neutrosophic statistical methods as opposed to classical ones. In
the practical realm, when faced with ambiguous scenarios, assigning a specific precise
value may not be feasible, leading to inaccurate outcomes. Neutrosophic statistics, on
the other hand, utilize precise numbers to depict data within intervals. For example,
assessing melting points is typically a complex task, leading to indeterministic obser-
vations that are often expressed in intervals. In this context, the distribution for alloy
metal melting point data relies on an interval set of values for uncertain parameters.
Neutrosophic statistics emerges as a more suitable framework for addressing alloy metal
melting points based on interval data (see Rao (2023)).
The utilization of conventional classical distributions is not appropriate for situations
where data is frequently imprecise, uncertain, and lacks precision. Several authors
recently developed neutrosophic distributions viz., Neutrosophic Uniform and Neutro-
sophic Poisson (Alhabib et al., 2018), Neutrosophic Weibull (Hamza Alhasan and Smaran-
dache, 2019), Neutrosophic exponential (Duan et al., 2021), Neutrosophic Rayleigh, Neu-
trosphic Beta (Khan Sherwani et al., 2021), Neutrosophic Kumaraswamy (Ahsan-ul Haq,
2022), Neutrosophic Log-Logistic (Rao, 2023), Neutrosophic generalized Pareto (Eassa
et al., 2023) and Neutrosophic Laplace (Thakur et al., 2023) distributions. Considering
the wide applications and feasible properties of TL-T distribution, here also, we intro-
duce a new neutrosophic distribution based on Topp-Leone Teissier distribution namely,
Neutrosophic Topp-Leone Teissier (NTL-T) distribution.
The remaining part of the article is laid out into eight sections. The next section presents
the development of the TL-T distribution. Section 3 discuss some of its mathematical
and statistical properties. The method of maximum likelihood and Bayesian estimation
to estimate the model parameters are given in Section 4. A simulation study is addressed
in Section 5. Two real-life data sets are analyzed in Section 6. In the penultimate section,
we introduce the Neutrosophic Topp-Leone Teissier distribution, some of its properties
and applications. Finally, the article is concluded in Section 8.
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2 Topp-Leone Teissier Distribution

Inserting equation (2) in equation (3) yields the cdf of the proposed two parameter TL-T
distribution as

F (x; θ, λ) = [1− eA(x,θ)]λ; x, θ λ,> 0, (5)

thereby the probability density function corresponding to equation (5) becomes

f(x; θ, λ) = 2λθ(eθx − 1)eA(x,θ)[1− eA(x,θ)]λ−1; x, θ, λ > 0 (6)

where A(x, θ) = 2θx− 2(eθx − 1).
The reliability function, hazard rate function and reverse hazard rate function of the

Figure 1: Density plots of TL-T distribution for certain values of θ and λ.

TL-T distribution are respectively given by

R(x; θ, λ) = 1− (1− eA(x,θ))λ,

h(x; θ, λ) =
2λθ(eθx − 1)eA(x,θ)(1− eA(x,θ))λ−1

1− (1− eA(x,θ))λ

and

hr(x; θ, λ) =
2λθ(eθx − 1)eA(x,θ)

1− eA(x,θ)
.

Figures 1 and 2, respectively, shows the behavior of pdf and hazard rate function of
TL-T distribution for various parametric values. In Figure 1, it is clear that the pdf of
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Figure 2: Hazard rate plots of TL-T distribution for certain values of θ and λ.

TL-T model can be unimodal, positively skewed, approximately symmetric and mono-
tonically decreasing forms. Figure 2 illustrates the flexibility of the TL-T distribution
in modeling a wide variety of hazard rate behaviors, including increasing, decreasing,
and bathtub-shaped patterns. These characteristics enhance the model’s applicability
to real-world datasets encountered in fields such as reliability analysis, survival studies,
and risk assessment. By accommodating diverse hazard rate shapes, the TL-T model
is particularly suitable for modeling the complexities of data where hazard rates vary
under different conditions.

3 Statistical Properties

Here, we discuss some statistical properties of the proposed TL-T distribution.

3.1 Linear Representation

Al-Shomrani et al. (2016) showed that the pdf of TL-G family has the following mixture
representation

f(x) =
∞∑
k=0

2k+1∑
i=0

a(k, i)ci+1(x)
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where ci+1(x) = (i+1)g(x)[G(x)]i is the exp-G distribution with power parameter i and

a(k, i) =
(−1)k+i2Γ(λ+ 1)

k!Γ(λ− k)(i+ 1)

(
2k + 1

i

)
.

Using the above expression, TL-T density function in equation (6) can be expressed as

f(x; θ, λ) = 2λθ(eθx − 1)eθx−eθx+1
∞∑
k=0

2k+1∑
i=0

(−1)k+i

(
λ− 1

k

)(
2k + 1

i

)
[1− eθx−eθx+1]i.

3.2 Quantile Function

By inverting equation (5), the quantile function of the TL-T distribution can be obtained
as

x =
−1

θ
W−1

(
−
√

1− p1/λ

e

)
+

1

2θ
log(1− p1/λ)− 1

θ
(7)

where p ∈ (0, 1) and W−1 refers the negative branch of Lambert W function, for more
details, see Corless et al. (1996).

3.3 Probability Weighted Moments

In order to derive the probability weighted moments (PWMs), we rely on the generalized
integro-exponential function mentioned in Milgram (1985) and it is

Eq
s (z) =

1

q!

∫ ∞

1
(log u)qu−se−zudu,

where s ∈ R, q > −1.
The (r,s)th PWMs of the TL-T model is defined by

Mr,s(x; θ, λ) = E[XrF (X; θ, λ)s] =

∫ ∞

0
xrF (x; θ, λ)sf(x; θ, λ)dx

= 2λθ

∫ ∞

0
xr(eθx − 1)eA(x,θ)[1− eA(x,θ)](s+1)λ−1dx.

By employing the binomial expansion in the above equation, we have

Mr,s(x; θ, λ) = 2λθ
∞∑
j=0

(−1)j
(
(s+ 1)λ− 1

j

)∫ ∞

0
xr(eθx − 1)e(j+1)A(x,θ)dx

= 2λθ
∞∑
j=0

(−1)j
(
(s+ 1)λ− 1

j

)[∫ ∞

0
xreθx+(j+1)A(x,θ)dx−

∫ ∞

0
xre(j+1)A(x,θ)dx

]
.

Assuming v = eθx and using some algebra, we obtain the (r, s)th PWMs of the TL-T
model as

Mr,s(x; θ, λ) = 2λ
∞∑
j=0

(−1)j
(
(s+ 1)λ− 1

j

)
e2(j+1)

θr
r!
[
Er

−2j−2(2(j + 1))− Er
−2j−1(2(j + 1))

]
.

(8)
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Putting s = 0 in equation (8), we get the rth moment of the TL-T distribution and it is

E[Xr] = 2λ
∞∑
j=0

(−1)j
(
λ− 1

j

)
e2(j+1)

θr
r!
[
Er

−2j−2(2(j + 1))− Er
−2j−1(2(j + 1))

]
. (9)

The mean, variance and higher order moments of the TL-T distribution are obtained
from equation (9) by putting r = 1, 2, 3, ....

3.4 Moment Generating Function

The moment generating function is formally defined as

MX(t) =
∞∑
r=0

tr

r!
E[Xr]. (10)

Therefore, the moment generating function of TL-T distribution easily follows from
equations (9) and (10) as

MX(t) = 2λ
∞∑
r=0

∞∑
j=0

(
t

θ

)r

(−1)j
(
λ− 1

j

)
e2(j+1)

[
Er

−2j−2(2(j + 1))− Er
−2j−1(2(j + 1))

]
.

(11)

3.5 Incomplete Moments

The rth incomplete moment of the TL-T distribution is defined by

ϕr(t) =

∫ t

0
xrf(x; θ, λ)dx

= 2λθ

∫ t

0
xr(eθx − 1)eA(x,θ)(1− eA(x,θ))λ−1dx.

On applying the binomial expansion and the transformation v = eθx in the above equa-
tion, we obtain

ϕr(t) =
2λ

θr

∞∑
j=0

(−1)j
(
λ− 1

j

)
×[∫ eθt

1
(log v)rv2(j+1)e2(j+1)(1−v)dv −

∫ eθt

1
(log v)rv2(j+1)−1e2(j+1)(1−v)dv

]
.

Using the incomplete generalized integro-exponential function

Eq
s (t; z) =

1

q!

∫ z

1
(log u)qu−se−tudu, t ∈ (−∞,∞)



Electronic Journal of Applied Statistical Analysis 55

where lim
z→∞

Eq
s (t; z) = Eq

s (t), we can express the rth incomplete moment of the TL-T

distribution as

ϕr(t) =
2λ

θr

∞∑
j=0

(−1)j
(
λ− 1

j

)
e2(j+1)r!

[
Er

−2j−2(2(j + 1); eθt)− Er
−2j−1(2(j + 1); eθt)

]
.

(12)
The first incomplete moment, ϕ1(t) is determined by inserting r = 1 in equation (12)
and it is

ϕ1(t) =
2λ

θ

∞∑
j=0

(−1)j
(
λ− 1

j

)
e2(j+1)

[
E1

−2j−2(2(j + 1); eθt)− E1
−2j−1(2(j + 1); eθt)

]
.

(13)

3.6 Mean Residual Life Function

One of the important application of the ϕ1(t) is related to the mean residual life function
which is the expected remaining life given the survival to a fixed time t. The MRL is
defined as

m(t) =
E[X]− ϕ1(t)

1− F (t; θ, λ)
− t. (14)

Using equations (5), (9) and (13), the MRL of the TL-T distribution is obtained as
follows

m(t) =
∞∑
j=0

D
[
E1

−2j−2(2(j + 1))− E1
−2j−1(2(j + 1))− E1

−2j−2(2(j + 1); v) + E1
−2j−1(2(j + 1); v)

]
−t,

where D =
2λ(−1)j

(
λ−1
j

)
e2(j+1)

θ[1− (1− eA(t,θ))λ]
.

3.7 Entropies

Rényi entropy and Tsallis entropy of the TL-T distribution are respectively defined as

Ientropy(ξ) =
1

1− ξ
log[I(ξ)] and (15)

Tentropy(ξ) =
1

ξ − 1
[1− I(ξ)] (16)

where I(ξ) =
∫∞
0 f ξ(x; θ, λ)dx, ξ > 0 and ξ ̸= 1.
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Based on equation (6), we can write

I(ξ) =

∫ ∞

0
(2λθ)ξ(eθx − 1)ξeξA(x,θ)(1− eA(x,θ))(λ−1)ξdx

= (2λθ)ξ
∞∑

u1=0

∞∑
u2=0

(−1)u1+u2+ξ

(
(λ− 1)ξ

u1

)(
ξ

u2

)∫ ∞

0
eθu2xe(u1+ξ)A(x,θ) dx.

Let v = eθx and integrating, I(ξ) becomes

I(ξ) = (2λ)ξθξ−1
∞∑

u1=0

∞∑
u2=0

(−1)u1+u2+ξ

(
(λ− 1)ξ

u1

)(
ξ

u2

)
e2(u1+ξ)E0

2ξ−2u1−u2+1(2(u1 + ξ)).

(17)
Hence, the Rényi entropy and Tsallis entropy of TL-T model are immediately derived
from equations (15) and (16) respectively.

3.8 Order Statistics

SupposeX1, X2, ..., Xn be a random sample from TL-T distribution andX(1), X(2), ...X(n)

be the corresponding order statistics. The pdf fd:n(x; θ, λ) of the d
th order statistic Xd:n

is

fd:n(x; θ, λ) =
n!

(d− 1)!(n− d)!
f(x; θ, λ)F (x; θ, λ)d−1[1− F (x; θ, λ)]n−d. (18)

Substituting equations (5) and (6) in equation (18) and using binomial expansion, we
get

fd:n(x; θ, λ) =
2λθn!

(d− 1)!(n− d)!

∞∑
u1=0

∞∑
u2

(−1)u1+u2

(
n− d

u1

)(
λ(u1 + d)− 1

u2

)
(eθx−1)e(1+u2)A(x,θ).

(19)
and the corresponding cdf is

Fd:n(x; θ, λ) =
n∑

l=u1

l∑
u2=0

(−1)u2

(
n

l

)(
l

u2

)
[1− (1− eA(x,θ))λ]n−l+u2 . (20)

The pdf of the smallest and largest order statistics are obtained, respectively, by putting
d = 1 and d = n in equation (19).

The rth moment of the dth order statistic Xd:n is computed using equation(19) as

E[Xr
d ] =

2λθn!

(d− 1)!(n− d)!

∞∑
u1=0

∞∑
u2

(−1)u1+u2

(
n− d

u1

)(
λ(u1 + d)− 1

u2

)
∫ ∞

0
xrd(e

θxd − 1)e(1+u2)A(xd,θ)dxd.

(21)
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After some simplifications and also by applying generalised integro-exponential function,
we have

E[Xr
d ] =

∞∑
u1=0

∞∑
u2=0

D1e
2(1+u2)[Er

−(2u2+2)(2(u2 + 1))− Er
−(2u2+1)(2(u2 + 1))]

where D1 = (−1)u1+u2
2λn!

(d− 1)!(n− d)!

r!

θr

(
n− d

u1

)(
λ(u1 + d)− 1

u2

)
.

4 Parameter Estimation

Here, by using the method of maximum likelihood and Bayesian estimation method, we
estimate the parameter vector γ = (θ, λ)T of Topp-Leone Teissier distribution.

4.1 Maximum Likelihood Estimation

Let X1, X2, ..., Xn be a random sample taken from the TL-T distribution with pdf equa-
tion (6). The likelihood function is

L(γ|x) = (2λθ)n
n∏

i=1

(eθxi − 1)e
∑n

i=1(2θxi−2(eθxi−1))
n∏

i=1

(1− e2θxi − 2(eθxi − 1))λ−1 (22)

and the corresponding log-likelihood function is

l(γ) = nlog(2λθ)+
n∑

i=1

log(eθxi−1)+2θ
n∑

i=1

xi−2
n∑

i=1

(eθxi−1)+(λ−1)
n∑

i=1

log(1−eA(x,θ)).

(23)
The first partial derivatives of l(γ) with respect to θ and λ are:

∂l(γ)

∂θ
=
n

θ
+

n∑
i=1

xie
θxi

(eθxi − 1)
+2

n∑
i=1

xi−2
n∑

i=1

xie
θxi+(λ−1)

n∑
i=1

2xie
2θxi+2(eθxi − 1)

e2e
θxi − e2θxi+2

(24)

and
∂l(γ)

∂λ
=
n

λ
+

n∑
i=1

log(1− eA(xi,θ)). (25)

The ML estimates of the model parameters are obtained by equating both the above
equations to zero and solving them simultaneously. For that, we use the maxLik package
in the R software.

4.2 Bayesian Estimation

In this section, our main objective is to obtain the Bayes estimates for the model pa-
rameter θ and λ of the TL-T distribution under squared error loss function (SELF).
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Let X1, X2, ..., Xn be a random sample drawn from TL-T distribution. Assume that
the prior distributions for θ and λ follow independent Gamma(ai, bi), i=1, 2 distributions
respectively. The joint prior distribution of θ and λ is

π(γ) = π(θ)π(λ) ∝ θa1−1e−b1θλa2−1e−b2λ, (26)

where ai, bi > 0; i=1, 2 denote the hyper parameters. In addition, the non-informative
priors are obtained by setting ai = bi = 0 in equation (26).

Now, using the equations (23) and (26), we have the posterior distribution of θ and λ
as

π(γ|x) = 1

K
(2λθ)nθa1−1λa2−1e−(b1θ+b2λ)

n∏
i=1

(eθxi − 1)e
∑n

i=1(2θxi−2(eθxi−1))

n∏
i=1

(
1− e2θxi−2(eθxi−1)

)λ−1
(27)

where

K =

∫ ∞

0

∫ ∞

0
(2λθ)nθa1−1λa2−1e−(b1θ+b2λ)

n∏
i=1

(eθxi − 1)e
∑n

i=1(2θxi−2(eθxi−1))

n∏
i=1

(
1− e2θxi−2(eθxi−1)

)λ−1
dθdλ.

The corresponding Bayes estimate of θ under SELF is obtained as

θ̂B =
1

K

∫ ∞

0

∫ ∞

0
(2λ)nθn+a1λa2−1e−(b1θ+b2λ)

n∏
i=1

(eθxi − 1)e
∑n

i=1(2θxi−2(eθxi−1))

n∏
i=1

(
1− e2θxi−2(eθxi−1)

)λ−1
dθdλ (28)

and that of λ as

λ̂B =
1

K

∫ ∞

0

∫ ∞

0
(2θ)nθa1−1λn+a2e−(b1θ+b2λ)

n∏
i=1

(eθxi − 1)e
∑n

i=1(2θxi−2(eθxi−1))

n∏
i=1

(
1− e2θxi−2(eθxi−1)

)λ−1
dθdλ. (29)

From equations (28) and (29), it is apparent that the Bayes estimators are in the form
of the ratio of two integrals and hence no analytical solutions are available. Therefore,
we use Lindley approximation method proposed by Lindley (1980) for the computation
of Bayes estimators.
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4.2.1 Lindley approximation method

For sufficiently large n, as stated in Lindley (1980), if the ratio of the integrals is in the
form

I(x) = E[ψ(θ, λ|x)] =

∫
γ
ψ(γ)el(γ|x)+ρ(γ) d(γ)∫
γ
el(γ|x)+ρ(γ) d(γ)

(30)

where ψ(γ)= a function of θ and λ only, l(γ|x) is the log-likelihood function and ρ(γ)
is the log of joint prior of π(γ|x), using Lindley’s method it can be approximated to

I(x) ≈ ψ(θ̂, λ̂)

+
1

2
[(ψ̂θθ + 2ψ̂θρ̂θ)σ̂θθ + (ψ̂λθ + 2ψ̂λρ̂θ)σ̂λθ + (ψ̂θλ + 2ψ̂θρ̂λ)σ̂θλ + (ψ̂λλ + 2ψ̂λρ̂λ)σ̂λλ]

+
1

2
[(ψ̂θσ̂θθ + ψ̂λσ̂θλ)(l̂θθθσ̂θθ + l̂θλθσ̂θλ + l̂λθθσ̂λθ + l̂λλθσ̂λλ)

+ (ψ̂θσ̂λθ + ψ̂λσ̂λλ)(l̂λθθσ̂θθ + l̂θλλσ̂θλ + l̂λθλσ̂λθ + l̂λλλσ̂λλ)], (31)

where θ̂ and λ̂ are the MLE of θ and λ respectively. The details of the terms within I(x)
are as follows:

ρ(γ) = (a1 − 1)log(θ)− b1θ + (a2 − 1)log(λ)− b2λ,

ρ̂θ =
∂ρ(γ)

∂θ
=

(a1 − 1)

θ̂
− b1 and

ρ̂λ =
∂ρ(γ)

∂λ
=

(a2 − 1)

λ̂
− b2.
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Also,

l̂θθ =
∂2l(γ)

∂θ2
= − n

θ̂2
−

n∑
i=1

x2i e
θ̂xi

(eθ̂xi − 1)2
− 2

n∑
i=1

x2i e
θ̂xi

− 2(λ̂− 1)
n∑

i=1

x2i e2θ̂xi + 2((2e2θ̂xi − 5eθ̂xi + 2)e2e
θ̂xi + e3θ̂xi+2)

(e2e
θ̂xi − e2θ̂xi+2)2

,

l̂θθθ =
∂3l(γ)

∂θ3
=

2n

θ̂3
+

n∑
i=1

x3i e
θ̂xi(eθ̂xi + 1)

(eθ̂xi − 1)3
−

n∑
i=1

2x3i e
θ̂xi + 2(λ̂− 1)

n∑
i=1

2x3i e
2θ̂xi+2

(e2e
θ̂xi − e2θ̂xi+2)3

[(4e3θ̂xi − 18e2θ̂xi + 19eθ̂xi − 4)e4e
θ̂xi + (4e5θ̂xi+2 − 6e4θ̂xi+2 + 4e3θ̂xi+2 − 4e2θ̂xi+2)e2e

θ̂xi ],

l̂λλ =
∂2l(γ)

∂λ2
=

−n
λ̂2

,

l̂λλλ =
∂3l(γ)

∂λ3
=

2n

λ̂3
,

l̂θλ =
∂2l(γ)

∂θ∂λ
= 2

n∑
i=1

xi(1− eθ̂xi)e2θ̂xi+2

e2θ̂xi+2 − e2e
θ̂xi

= l̂λθ,

l̂θθλ =
∂3l(γ)

∂θθλ
= 2λ

n∑
i=1

x2i e
2θ̂xi+2((2e2θ̂xi − 5eθ̂xi + 2)e2e

θ̂xi + e3θ̂xi+2)

(e2θ̂xi+2 − e2e
θ̂xi )2

= l̂θλθ = l̂λθθ and

l̂λλθ =
∂3l(γ)

∂λλθ
= 0 = l̂λθλ = l̂θλλ.

For estimating θ, we took ψ(θ, λ) = θ, thereby ψθ = 1 and ψθθ = ψλ = ψλλ = ψθλ = 0.
Thus, the approximate Bayes estimator of θ under SELF is obtained as

θ̂B = θ̂ + 0.5[2ρ̂θσ̂θθ + 2ρ̂λσ̂θλ + σ̂2θθL̂θθθ + 2σ̂θθσ̂θλL̂θλθ + σ̂λθσ̂λλL̂λλλ]. (32)

Similarly, for estimating λ, we took ψ(θ, λ) = λ, thereby ψλ = 1 and ψλλ = ψθ = ψθθ =
ψθλ = 0.
Hence, the approximate Bayes estimator of λ under SELF is obtained as

λ̂B = λ̂+ 0.5[2ρ̂θσ̂λθ + 2ρ̂λσ̂λλ + σ̂θθσ̂θλL̂θθθ + 2σ̂2θλσ̂θλL̂θλθ + σ̂λθσ̂λλL̂λλλ]. (33)

5 Simulation Study

Here, we conducted an extensive simulation study to illustrate the behaviour of proposed
estimators in terms of their mean squared error (MSE) of the parameters θ and λ.
We use Monte Carlo simulation method to obtain the average estimates for different
combination of parameters and various sample sizes of n= 10, 20, 50 and 100. The
experiment is repeated 10,000 times using R software. Table 1 displays the MLEs and
their corresponding bias and MSE of the model parameters.
In the case of Bayesian estimation, both non-informative and informative priors under
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SELF have been considered for θ and λ. In the case of the non-informative prior (Prior
1), the hyperparameters chosen are zeroes and of informative gamma prior (Prior 2), the
hyper parameters considered are (a1 = 0.5, b1 = 1, a2 = 1.5, b2 = 1) and (a1 = 2, b1 =
0.8, a2 = 1, b2 = 2) respectively for the true parameter values (θ = 0.5, λ = 1.5) and
(θ = 2.5, λ = 0.5). Tables 2 and 3 reports the Bayes estimates and their corresponding
MSEs of the model parameters.
From Tables 1, 2 and 3, it is evident that the MSE of the parameter estimates of the
TL-T distribution decreases as the sample size increases, which confirms the consistency
property of both MLE and Bayes estimators. But from Tables 2 and 3, it is inferred
that the performance of Bayes estimators are better than MLE for both the parameters
on the basis of MSEs. It is also revealed that Bayes estimators with informative prior
(Prior 2) outperforms non-informative prior (Prior 1), in terms of their smaller MSEs.

6 Applications

In this section, we analyse two data sets for illustrating the applicability and potentiality
of the TL-T distribution and to compare the efficacy of different estimation procedures
discussed in Section 4.
The first data set, from Hinkley (1977) which consists of 30 successive values of March
precipitation (in inches) in Minneapolis/St. Paul and it is
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.
The second data set is also a secondary data obtained from Nichols and Padgett (2006)
and it consists of 100 observations on tensile strength of carbon fibres (in Gba). The
data set is given below.
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28,
3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81,
4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17,
2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56,
1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38,
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88, 2.82, 2.05, 3.65.
In order to detect the shape of the hazard rate function of the data sets, we employ
an empirical approach of TTT plot proposed by Barlow and Davis (1977) and they are
illustrated in Figure 3. These plots show a concave upward trend, indicating increas-
ing hazard rates for both data sets. Therefore, the TL-T distribution which exhibits
increasing hazard function also, it is considered as an appropriate model to fit both the
data sets.
We fit the TL-T model to the above two data sets and compare the results with respect
to the Exponentiated Teissier (ET) (Sharma et al., 2022), Topp-Leone Frechet (TL-F)
(Sapkota, 2021), Exponential transformed inverse Rayleigh (ETIR) (Banerjee and Bhu-
nia, 2022) and Teissier (Teissier, 1934) distributions. The pdfs (for x > 0) corresponding
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Table 1: The mles and their MSEs of the parameters

n θ λ θ̂M Bias(θ) MSE(θ) λ̂M Bias(λ) MSE(λ)

10 0.5 0.5 0.5602 0.0602 0.0206 0.6362 0.1362 0.1173

1.5 0.5329 0.0329 0.0079 2.2357 0.7357 0.9371

1.5 0.5 1.6889 0.1889 0.1847 0.6377 0.1377 0.1064

1.5 1.6027 0.1027 0.0661 2.1261 0.6261 2.6429

2.5 0.5 2.9458 0.4458 0.5818 0.6436 0.1436 0.1366

1.5 2.8773 0.1773 0.2052 2.1551 0.6551 3.4603

20 0.5 0.5 0.5281 0.0281 0.0079 0.5654 0.0654 0.0359

1.5 0.5182 0.0182 0.0033 1.7330 0.2343 0.4226

1.5 0.5 1.5941 0.0941 0.0737 0.5691 0.0691 0.0331

1.5 1.5503 0.0503 0.0286 1.7564 0.2564 0.4889

2.5 0.5 2.7588 0.2588 0.2144 0.5627 0.0627 0.0342

1.5 2.5811 0.0811 0.0743 1.7195 0.2195 0.4643

50 0.5 0.5 0.5099 0.0090 0.0023 0.5193 0.0193 0.0075

1.5 0.5056 0.0056 0.0009 1.5764 0.0764 0.0608

1.5 0.5 1.5364 0.0363 0.0216 0.5221 0.0221 0.0077

1.5 1.5197 0.0197 0.0094 1.5874 0.0874 0.1050

2.5 0.5 2.6629 0.1629 0.0752 0.5265 0.0265 0.0094

1.5 2.5313 0.0313 0.0276 1.5886 0.0886 01054

100 0.5 0.5 0.5055 0.0055 0.0011 0.5105 0.0105 0.0036

1.5 0.5031 0.0031 0.0004 1.5332 0.0432 0.0127

1.5 0.5 1.5193 0.0193 0.0105 0.5118 0.0118 0.0038

1.5 1.5095 0.0095 0.0048 1.5382 0.0382 0.0453

2.5 0.5 2.5276 0.0276 0.0362 0.5095 0.0095 0.0037

1.5 2.5110 0.0110 0.0136 1.5348 0.0348 0.0263

to the competitive distributions are respectively, given by

ET : f(x;λ, θ) = λθ(eθx − 1)eθx−eθx+1(1− eθx−eθx+1)λ−1;

TLF : f(x;λ, θ) = 2λθx−(1+θ)e−x−θ
(1− e−x−θ

)[1− (1− e−x−θ
)2]λ−1;

ETIR : f(x; θ) =
2θ2

x3(e− 1)
ee

−( θx )2

e−( θ
x
)2 ;

Teissier : f(x, θ) = θ(eθx − 1)eθx−eθx+1.



Electronic Journal of Applied Statistical Analysis 63

Table 2: Average values of estimates and MSEs (in parentheses) for θ = 0.5 and λ = 1.5.

n θ̂M λ̂M θ̂B1 λ̂B1 θ̂B2 λ̂B2

10 0.5329 2.2357 0.5279 2.0614 0.5267 1.9287

(0.0079) (0.9371) (0.0034) (0.3153) (0.0012) (0.1839)

20 0.5182 1.7330 0.5157 1.7177 0.5141 1.6975

(0.0033) (0.4226) (0.0008) (0.0974) (0.0005) ( 0.0790)

50 0.5056 1.5764 0.5045 1.5620 0.5029 1.5596

(0.0009) (0.0608) (8.0509 ×10−5) (0.0252) (6.0433 ×10−5) (0.0105)

100 0.5031 1.5332 0.5021 1.5212 0.5013 1.5105

(0.0004) (0.0127) (6.5162 ×10−5) (0.0097) (5.5068 ×10−5) (0.0076)

Table 3: Average values of estimates and MSEs (in parentheses) for θ = 2.5 and λ = 0.5.

n θ̂M λ̂M θ̂B1 λ̂B1 θ̂B2 λ̂B2

10 2.9458 0.6436 2.7728 0.6385 2.7508 0.6297

(0.5818) (0.1366) (0.2452) (0.0919) (0.0942) (0.0618)

20 2.7588 0.5627 2.6176 0.5551 2.6026 0.5516

(0.2144) (0.0342) (0.0538) (0.0142) (0.0327) (0.0093)

50 2.6629 0.5265 2.5455 0.5247 2.5347 0.5209

(0.0752) (0.0094) (0.0081) (0.0035) (0.0039) (0.0007)

100 2.5276 0.5095 2.5167 0.5059 2.5085 0.5036

(0.0362) (0.0037) (0.0004) (0.0003) (0.0002) (0.0001)

For comparing the models, we compute the values of four goodness of fit measures:
AIC (Akaike information criterion), BIC (Bayesian information criterion), Hannan-
Quinn Information Criterion (HQIC), Consistent Akaike Information Criterion (CAIC),
Kolmogorov-Smirnov (KS) statistic and its associated p-value via MLEs. The model
with the smallest values of AIC, BIC, HQIC, CAIC, and KS, alongside the largest p-
value indicate a best fit for the given data sets. Table 4 provides the MLEs, AIC, BIC,
HQIC, CAIC, KS and its respective p-values of the fitted models for the data sets 1 and
2. Those results are achieved using R software. Furthermore, the fitted pdfs along with
the estimated cdfs (ecdf) plots of the TL-T and other competitive models for data sets
1 and 2 are displayed in Figures 4 and 5 respectively. Table 4 and those graphical tools
reveal that the TL-T distribution provides a better fit than other distributions to both
the data sets.
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Figure 3: TTT plot for (a) March precipitation data and (b) Glass fibre data.

Table 4: Modal comparison for data sets 1 and 2.

Data set Models Estimates AIC BIC HQIC CAIC KS p-value

Data 1 TL-T θ =0.3984, λ =0.7316 84.6082 87.4106 85.5047 85.0527 0.0697 0.9986

ET θ =0.4708, λ =0.6548 84.8408 87.6432 85.7373 85.2852 0.1302 0.6896

TL-F θ =1.0545, λ =2.1104 85.1979 88.0004 86.0945 85.6424 0.1392 0.6065

ETIR θ =0.8293 86.0526 87.4538 86.5009 86.1955 0.1894 0.2323

Teissier θ =0.5643 84.9402 90.3414 89.3885 89.0831 0.1503 0.5069

Data 2 TL-T θ =0.3222, λ =1.4002 287.1496 292.3599 289.2583 287.2733 0.0610 0.8502

ET θ =0.4143, λ =1.2813 287.9556 293.1659 290.0643 288.0793 0.0647 0.7959

TL-F θ =1.1460, λ =6.5325 335.8710 341.0813 337.9797 335.9947 0.1991 0.0007

ETIR θ =1.5771 333.4762 336.4762 334.9254 333.9118 0.1568 0.0147

Teissier θ =0.3927 289.5540 292.1592 290.6084 289.5948 0.0805 0.5359

We further compare the maximum likelihood and Bayesian estimation method uti-
lizing the concept of Pradhan and Kundu (2011) on the basis of KS statistic and its
p-value. Due to the absence of prior information, here we consider only Prior 1 for
both the parameters. Table 5 presents the MLE, Bayes estimates, KS statistics and the
corresponding p-values for both the data sets. It is noted that for considered data sets,
Bayes estimates outperforms MLEs in terms of smaller KS and larger p-values.

7 Neutrosophic Topp-Leone Teissier (NTL-T) Distribution

A neutrosophic random variable YN = YL+YUIN is considered to be NTL-T distributed
if its probability density function is

f(yN ; θN , λN ) = 2λNθN (eθNyN − 1)eA(yN ,θN )[1− eA(yN ,θN )]λN−1; yN , θN , λN > 0 (34)
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(a) (b)

Figure 4: (a) Fitted densities and (b) empirical and theoretical cdfs for the data set 1.

(a) (b)

Figure 5: (a) Fitted densities and (b) empirical and theoretical cdfs for the data set 2.
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Table 5: Parameter estimates, KS and p-values for both data sets

Data set Method λ θ KS p-value

Data 1 (n=30) MLE 0.7316 0.3984 0.0697 0.9986

Bayes 0.7212 0.3973 0.0684 0.9990

Data 2 (n=100) MLE 1.4002 0.3222 0.0610 0.8502

Bayes 1.3851 0.3219 0.0603 0.8605

Figure 6: Pdf plot of NTL-T distribution

where A(yN , θN ) = 2θNyN − 2(eθNyN − 1).

Here, θN = θL + θUIN is the neutrosophic scale parameter, λN = λL + λUIN is the
neutrosophic shape parameter, and L and U denote the lower and upper values of the
indeterminate parameters respectively.

Also, the cdf of NTL-T distribution is

F (yN ; θN , λN ) = [1− eA(yN ,θN )]λN ; yN , θN , λN > 0. (35)

Sketches of the pdf of NTL-T distribution for selected values of θN and λN are given in
Figure 6.

7.1 Reliability and Statistical Properties

Some reliability and statistical properties of NTL-T distribution are discussed below.

1. Survival Function
Survival function of NTL-T distribution is given by

S(yN ; θN , λN ) = 1− F (yN ; θN , λN ) = 1− [1− eA(yN ,θN )]λN .
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Figure 7: Hazard rate curve for NTL-T distribution.

2. Hazard rate function
Hazard rate function of NTL-T distribution is expressed as

h(yN ; θN , λN ) =
2λNθN (eθNyN − 1)eA(yN ,θN )(1− eA(yN ,θN ))λN−1

1− (1− eA(yN ,θN ))λN
.

The hazard rate plot of NTL-T distribution is displayed in Figure 7. and it is
notable that the hazard rate of NTL-T distribution has a bathtub shape, which is
useful to analyze data sets possess the pattern of bathtub hazard rate.

3. Quantile function
The quantile function of NTL-T distribution is given by

QN (p) =
−1

θ
W−1

(
−
√

1− p1/λN

e

)
+

1

2θN
log(1− p1/λN )− 1

θN
.

4. Moment
The rth moment of the NTL-T distribution is given by

E(y
r
N ) = 2λN

∞∑
j=0

(−1)j
(
λN − 1

j

)
e2(j+1)

θrN
r!
[
Er

−2j−2(2(j + 1))− Er
−2j−1(2(j + 1))

]
.

7.2 Application

Though a lot many continuous distributions have been introduced in the literature
so far. They cannot accommodate data from various circumstances, especially with
some degree of inexactness. Moreover, there are scenarios where accurate measure-
ments are not available due to the irregular nature of the considered variables. For
example, here our newly proposed TL-T distribution is illustrated as a well-suited
model for the March precipitation data. But we know that there is a direct re-
lationship between rainfall density and precipitation, viz. the higher the rainfall
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density, the more precipitation. Besides rainfall density, there are several factors
like air temperature, humidity, the presence of mountains, and other topographic
features that affect the precipitation. i.e., when the air temperature is warm, the
water droplets in the clouds will evaporate more quickly, which will result in a
reduced amount of precipitation, and similar is the case with high humidity. So,
the precipitation patterns are considered unpredictable, and it is impossible to pre-
dict correctly how much precipitation will fall in a specified area over a particular
period. So, the precipitation is considered as uncertain data and it is to be treated
as such.
If we consider the precipitation data as interval data, the study can be extended
to identify the track changes of precipitation patterns concerning time and hence
to identify the drought period. Also, it is to be noted that precipitation data
involving uncertainties cannot be modeled and analyzed using the TL-T distribu-
tion. However, our newly proposed NTL-T distribution will be a suitable model
for such precipitation data.

8 Conclusion

In this paper, we proposed a two-parameter lifetime distribution called the Topp-Leone
Teissier distribution which is an extension of the Teissier distribution. Being a distribu-
tion exhibiting increasing, decreasing and bathtub hazard rate functions, it is capable
to model data possessing such hazard rate functions. The explicit expressions for quan-
tile, probability weighted moments, incomplete moments, mean residual life functions,
Rényi and Tsallis entropies and order statistics are obtained. The model parameters
are estimated via maximum likelihood and Bayesian estimation methods and their per-
formances were validated and compared through a Monte Carlo simulation study. The
Bayes estimators are computed under non-informative and informative priors using Lind-
ley approximation technique. The results from simulation study revealed that for both
the parameters Bayes estimators perform better than MLEs. The applicability of the
TL-T distribution is showcased through its superior performance on two real datasets,
outshining other competitive models, with promising applications in fields such as cli-
mate studies (e.g., precipitation modeling) and materials science (e.g., tensile strength
data modeling). Furthermore, a neutrosophic approach to the TL-T distribution, known
as the Neutrosophic Topp-Leone Teissier Distribution is developed and studied its chief
statistical properties. This distribution takes into account the indeterminancy and am-
biguity of precipitation data. We encourage further exploration of the TL-T distribution
to fully uncover its versatility and expand its application across different domains, un-
locking new possibilities for data analysis and modeling in diverse disciplines, due to its
flexibility in modeling diverse hazard rate functions.
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