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In this article, the Exponentiated Poisson-power Lindley (EPPL) distri-
bution, an extension of the Poisson-power Lindley (PPL) distribution, is
introduced. Various properties of the EPPL distribution, including a linear
representation, are studied. The method of maximum likelihood is utilized
for parameter estimation, and its accuracy is validated through simulation
technique. The flexibility of the proposed distribution is illustrated by con-
sidering the survival time of gastric patients. Additionally, a time-truncated
acceptance sampling plan, based on the lifetime of products following the
EPPL distribution is proposed. Key metrics such as minimum sample sizes,
operating characteristic functions and the smallest ratios of mean life to spec-
ified are analyzed and presented. To illustrate the practical application of the
proposed sampling plan in survival time data, a real data set comprising the
survival times of cancer patients after a particular treatment is utilized and
the effect of the treatment in the lifetime of the patients is examined based
on the proposed sampling plan. In this article, both real datasets considered
are survival time data from the medical field, highlighting the applicability
of the newly introduced distribution in this context.
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1 Introduction

Developing new distributions from the existing ones has great importance in the sta-
tistical world. Addition of parameters is one of the prominent method of generating
new flexible distributions to handle the specific real world scenarios. Among them, ex-
ponentiating the base distribution is one of the simplest form of generalization, which
riches the properties of the former distribution. The expontiated distributions in the lit-
erature include, exponentiated Weibull distribution (Mudholkar and Srivastava, 1993),
exponentiated exponential distribution (Gupta et al., 1998), exponentiated Fr´echet dis-
tribution,(Nadarajah and Kotz, 2003), exponentiated Gumbel distribution (Nadarajah,
2006), exponentiated Lomax distribution (Abdul-Moniem and Abdel-Hameed, 2012),
exponentiated power Lindley distribution (Ashour and Eltehiwy, 2015), exponentiated
Chen distribution (Dey et al., 2017), exponentiated uniform distribution (Ramires et al.,
2019) and exponentiated power function distribution (Arshad et al., 2020).

Now a days, statisticians show great interest in dealing with new generalized forms of
Poisson distribution for modeling the scenario which are not equidispersed and Poisson-X
family is such a generalized family introduced by Tahir et al. (2016). Poisson-power Lind-
ley distribution is a new member of Poisson-X family introduced by George and George
(2023b) which is capable of handling continuous data, including data with skewed and
heavy-tailed nature, which the Poisson distribution cannot accommodate. Motivated by
this, we introduce exponentiated generalization of Poisson-power Lindley distribution
by considering Poisson-power Lindley distribution as the baseline distribution. Given
the relevance of the exponentiated class of distributions in applied sciences, the expo-
nentiated extension of the PPL distribution can be regarded as an advanced form of the
PPL distribution, offering enhanced statistical properties and broad applications across
various disciplines, including reliability, quality control, biology, industry, survival time
data, and others.

Acceptance sampling plan (ASP) is a core tool of statistical quality control, which
offers high quality products to the consumers by facilitates a reliable accept-reject de-
cision about the manufactured product. In the literature, there is an extensive study
on acceptance sampling plan based on different lifetime distributions, see Kantam et al.
(2001) for log-logistic distribution, Balakrishnan et al. (2007) and Aslam et al. (2010)
for generalized Birnbaum–Saunders distribution and generalized exponential distribu-
tion respectively. Rao (2013) used Marshall–Olkin extended exponential distribution.
Generalized inverted exponential distribution and new Weibull-Pareto distribution are
considered by Al-Omari (2015) and Al-Omari et al. (2016) respectively. Jose et al.
(2018) constructed ASP based on Harris extended Weibull distribution. Al-Omari and
Alomani (2022) used two-parameter Xgamma distribution. George and George (2023a)
used Poisson-exponentiated Weibull distribution. Zeghdudi distribution and Marshall-
Olkin Bilal distribution are considered respectively by AlSultan and Al-Omari (2023) and
İrhad et al. (2024). Al-Omari and Ismail (2024) developed ASP using gamma Lindley
distribution.

The rest of the article is organized as follows. Exponentiated Poisson-power Lindley
distribution and its properties are studied in Section 2. In Section 3, the flexibility of
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the new distribution is explored using real data. Acceptance sampling plan and its real
data application using survival time data is narrated in Section 4. Section 5 concludes
the article.

2 Exponentiated Poisson-Power Lindley distribution

The cumulative distribution function and corresponding probability density function of
the Poisson-power Lindley distribution are given as,

F (x) =
(
1− e−1

)−1
[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]
;x > 0 α, β, m > 0 (1)

and

f(x) =
m

(1− e−1)

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

]
[
1− (1 +

β

β + 1
xα)e−βxα

]m−1

e
−
[
1−(1+ β

β+1
xα)e−βxα

]m
;x > 0,

α, β,m > 0. (2)

Considering Poisson-power Lindley distribution as baseline distribution, we obtain the
cumulative distribution function of exponentiated Poisson-power Lindley distribution as,

G(x;α, β,m, γ) =
(
1− e−1

)−γ
[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]γ
, (3)

x > 0, α, β, m, γ > 0.

Corresponding probability density function is

g(x;α, β,m, γ) =
γm

(1− e−1)γ

[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m](γ−1)

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

] [
1− (1 +

β

β + 1
xα)e−βxα

]m−1

e
−
[
1−(1+ β

β+1
xα)e−βxα

]m
;x > 0, α, β, m, γ > 0. (4)

Figure 1 present the graphs of pdf of the EPPL distribution for varying parameter values.
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Figure 1: pdf plots of exponentiated Poisson-power Lindley distribution for different val-
ues of the parameters

A comparison of the pdf curves of EPPL distribution with PPL distribution is given
in Figure 2.

Figure 2: PPL vs EPPL
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As the additional parameter γ increases, the EPPL distribution becomes more neg-
atively skewed than the PPL distribution while keeping the other parameters constant
(α = 1.1, β = 1.5,m = 8.2). Therefore, the EPPL distribution can be considered as a
good model for the negatively skewed data.

2.1 Properties of Exponentiated Poisson-Power Lindley Distribution

The survival function of EPPL distribution is given as,

Q(x) = 1−
(
1− e−1

)−γ
[
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ

. (5)

Hazard rate function and cumulative hazard rate function of the EPPL distribution are
respectively,

h(x) =

γm

[
αβ2

β+1
(1+xα)xα−1e−βxα

]
e
−
[
1−(1+

β
β+1

xα)e−βxα
]m

[
1−e

−[1−(1+
β

β+1
xα)e−βxα ]

m]−(γ−1)[
1−(1+ β

β+1
xα)e−βxα

]−(m−1)

(1− e−1)γ −
[
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ (6)

and

H(x) = −log

[
1−

(
1− e−1

)−γ
[
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ]

. (7)

For the EPPL distribution, the reversed hazard rate function is

n(x) =

γm

[
αβ2

β+1
(1+xα)xα−1e−βxα

]
e
−
[
1−(1+

β
β+1

xα)e−βxα
]m

[
1−e

−[1−(1+
β

β+1
xα)e−βxα ]

m]−(γ−1)[
1−(1+ β

β+1
xα)e−βxα

]−(m−1)[
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ . (8)

Residual life time at time t and the survival function corresponding to it are given by,

rxt(x) =

γm

[
αβ2

β+1
(1+xα)xα−1e−βxα

]
e
−
[
1−(1+

β
β+1

xα)e−βxα
]m

[
1−e

−[1−(1+
β

β+1
xα)e−βxα ]

m]−(γ−1)[
1−(1+ β

β+1
xα)e−βxα

]−(m−1)

(1− e−1)γ −
[
1− e

−[1−(1+ β
β+1

tα)e−βtα ]m
]γ (9)

and

Rxt(x) =

(
1− e−1

)γ − [
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ

(1− e−1)γ −
[
1− e

−[1−(1+ β
β+1

tα)e−βtα ]m
]γ . (10)

The past life time and corresponding distribution function of the EPPL distribution are
respectively,
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dtx(x) =

γc

[
αβ2

β+1
(1+xα)xα−1e−βxα

]
e
−
[
1−(1+

β
β+1

xα)e−βxα
]m

[
1−e

−[1−(1+
β

β+1
xα)e−βxα ]

m]−(γ−1)[
1−(1+ β

β+1
xα)e−βxα

]−(m−1)[
1− e

−[1−(1+ β
β+1

tα)e−βtα ]m
]γ (11)

and

Dtx(x) =

(
1− e−1

)γ − [
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ

(1− e−1)γ −
[
1− e

−[1−(1+ β
β+1

tα)e−βtα ]m
]γ . (12)

The hrf plot of EPPL distribution for different parameter values are present in Figure
3

Figure 3: hrf plots of exponentiated Poisson-power Lindley distribution for different val-
ues of parameters

From the hrf graphs we can conclude that, For a fixed value of α and β with different
m and γ value we obtain increasing failure rate. On decreasing the values of α and on
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fixing other parameter values we obtain reverse U shaped curves. The U shaped curves
are found with constant α value in addition to varying remaining parameter values. If
we keep the value of α, m, γ fixed, and allow the values of β to change, we obtain J
shaped curves.

2.2 Lemma 1

The cumulative distribution function of the exponentiated Poisson-power Lindley distri-
bution can be represented as the distribution of the failure time of a series system with
independent units.
Proof
Let X1, X2...Xγ be the failure times of independent units of a series system having
Poisson-power Lindley distribution with cdf,

F (x) =
(
1− e−1

)−1
[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]
, (13)

x > 0, α, β,m > 0.

Now, the probability that the system will fail before time x is given by,

P [max (X1, X2...Xγ) ≤ x] = P (X1 ≤ x)P (X1 ≤ x) ...P (X1 ≤ x) (14)

= [F (x)]γ

=
(
1− e−1

)−γ
[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]γ
,

which is the cdf of exponentiated Poisson-power Lindley distribution.

2.3 Linear Representation

Consider the cdf of EPPL distribution given in (3). Let U(x) = 1− (1 + β
β+1x

α)e−βxα
.

On giving expansion to the exponential term of (3) and by simplification, the cdf of
EPPL distribution can be re written as,

G(x) =
∞∑
j=0

m(j, γ) [U(x)](j+1)mγ (15)

where m(j, γ) =
[

(−1)j

(j+1)!(1−e−1)

]γ
and [U(x)](j+1)mγ is the cdf of exponentiated power

Lindley distribution with power parameter (j+1)mγ. Thus, the exponentiated Poisson-
power Lindley distribution is a linear form of exponentiated power Lindley distribution.

In addition to exponential expansion, if we consider the series expansion of (1− z)τ−1

for | z |< 1 and τ > 0, we obtain another form of the pdf (4) of EPPL distribution as
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g(x) =
∞∑
i=0

∞∑
j=0

[
(−1)i

(i+ 1)!

]γ−1 [
(−1)j

j!

]
mγαβ2

(1 + β)(1− e−1)γ
xα−1(1 + xα)e−βxα

[
1− (1 +

β

β + 1
xα)e−βxα

]mj+m[γ(i+1)−i]−1

(16)

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

(
mj +m(γ(i+ 1)− i)− 1

k

)[
(−1)i

(i+ 1)!

]γ−1 [
(−1)j

j!

]
(−1)kxα−1

mγαβ2

(1 + β)k+1(1− e−1)γ
(1 + xα)e−(kβxα+βxα) [1 + β(1 + xα)]k (17)

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)[
(−1)i

(i+ 1)!

]γ−1 [
(−1)j

j!

]
mγαβ2+q

(1 + β)k+1(1− e−1)γ
(−1)kxα−1e−(kβxα+βxα)(1 + xα)q+1 (18)

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

q+1∑
n=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)(
q + 1

n

)[
(−1)i

(i+ 1)!

]γ−1

[
(−1)j

j!

]
mγαβ2+q

(1 + β)k+1(1− e−1)γ
(−1)kxαn+α−1e−(kβxα+βxα). (19)

2.4 Moment

The rth moment of EPPL distribution, from (19) is obtained as

E(Xr) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

q+1∑
n=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)(
q + 1

n

)[
(−1)i

(i+ 1)!

]γ−1

[
(−1)j

j!

]
mγβ2+q(−1)k

(1 + β)k+1(1− e−1)γ
Γ(n+ rα−1 + 1)

[β(k + 1)]n+rα−1+1
. (20)

Proof:

E(Xr) =

∫ ∞

0
xrg(x)dx. (21)

Using the expression for g(x) given in (19),

E(Xr) =

∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

q+1∑
n=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)(
q + 1

n

)[
(−1)i

(i+ 1)!

]γ−1

[
(−1)j

j!

]
mγαβ2+q

(1 + β)k+1(1− e−1)γ
(−1)k

∫ ∞

0
xαn+α+r−1e−βxα(k+1)dx. (22)
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Let v = βxα(k + 1), and on simplification,

E(Xr) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

q+1∑
n=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)(
q + 1

n

)[
(−1)i

(i+ 1)!

]γ−1

[
(−1)j

j!

]
mγαβ2+q

(1 + β)k+1(1− e−1)γ
(−1)k

∫ ∞

0

v(n+rα−1)e−v

α[β(k + 1)]n+rα−1+1
dv

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

q+1∑
n=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)(
q + 1

n

)[
(−1)i

(i+ 1)!

]γ−1

[
(−1)j

j!

]
mγβ2+q

(1 + β)k+1(1− e−1)γ
(−1)k

Γ(n+ rα−1 + 1)

[β(k + 1)]n+rα−1+1
. (23)

2.5 Moment Generating Function

For the EPPL distribution, the moment generating function is

MX(t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

k∑
q=0

q+1∑
n=0

∞∑
p=0

(
mj +m(γ(i+ 1)− i)− 1

k

)(
k

q

)(
q + 1

n

)[
(−1)i

(i+ 1)!

]γ−1

[
(−1)j

j!

]
mγαβ2+q(−1)k

(1 + β)k+1(1− e−1)γ
tp

p!

Γ(n+ pα−1 + 1)

[β(k + 1)]n+pα−1+1
. (24)

2.6 Quantile Function

The quantile function of EPPL distribution is given by

X =

[
−1− 1

β
− 1

β
W−1

(
−β + 1

eβ+1

[
1−

{
−log

(
1− u

1
γ
(
1− e−1

))} 1
m

])] 1
α

. (25)

where W−1(.) denotes the negative branch of the Lambert W function.

2.7 Order Statistics

For the EPPL distribution, the pdf of rth order statistics, X(r) is given as

gr(x) =
r!

(i− 1)! (r − i)!

r−i∑
j=0

(−1)j
(
r − i

j

)(
1− e−1

)−γ(i+j)

[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]γ(i+j)−1

mγ

[
αβ2

β + 1
(1 + xα)xα−1e−βxα

]
[
1− (1 +

β

β + 1
xα)e−βxα

]m−1

e
−
[
1−(1+ β

β+1
xα)e−βxα

]m
. (26)
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Now, the cdf for the largest order statistic X(n) and smallest order statistic X(1) are
respectively,

Gn(x) =
(
1− e−1

)−nγ
[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]nγ
(27)

and

G1(x) = 1−
[
1−

(
1− e−1

)−γ
[
1− e

−[1−(1+ β
β+1

xα)e−βxα ]m
]γ]n

(28)

2.8 Parameter Estimation

We estimate the parameters using method of maximum likelihood. Let X1, X2,...,Xn be
independent and identically distributed exponentiated Poisson-power Lindley random
variables, then the log likelihood function is given by,

logL(α, β,m, γ;x) = nlog

(
m

(1− e−1)γ

)
+ nlog

(
αβ2

β + 1

)
+

n∑
i=1

log(1 + xαi ) +

(α− 1)
n∑

i=1

log(xi)− β
n∑

i=1

xαi −
n∑

i=1

[
1−

(
1 +

βxαi
β + 1

)
e−βxα

i

]
+

(m− 1)
n∑

i=1

log

[
1−

(
1 +

βxαi
β + 1

)
e−βxα

i

]
+ (γ − 1)

n∑
i=1

log

[
1− e

−
[
1−(1+ β

β+1
xα)e−βxα

]m]
. (29)

On solving ∂logL
∂α = 0, ∂logL

∂β = 0, ∂logL
∂m = 0, ∂logL

∂γ = 0 we get the maximum likelihood
estimators of α, β,m, γ respectively. Since we cannot solve it analytically, we use the
nlm package of R software for the further computations.

2.9 Simulation

To check the performance of the maximum likelihood estimators of the EPPL distribu-
tion, Monte Carlo simulation study is conducted. Here we consider two sets of parameter
values, Set I: α = 0.152, β = 2.6,m = 0.85, γ = 1.7 and Set II: α = 1.2, β = 0.68,m =
1.4, γ = 0.95. Using the quantile function of EPPL distribution we simulate data for
different sample sizes n=20, 30, 50 and 100 and obtain the maximum likelihood estimate
(MLE) of the parameters for a repeated times of 10000. Table 1 provide the results.
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Table 1: Simulation result

Set I Set II

n MLE Bias MSE MLE Bias MSE

0.3754 0.2234 0.1272 1.3121 0.1121 0.1251

2.3971 -0.2028 0.1547 0.7528 0.0728 0.0840

20 0.9607 0.1107 0.0949 1.5499 0.1499 0.0915

1.9138 0.2138 0.1017 0.7992 -0.1507 0.0898

0.3546 0.2026 0.0661 1.2835 0.0835 0.0458

2.4374 -0.1625 0.0993 0.7451 0.0651 0.0295

30 0.8910 0.0410 0.0250 1.5081 0.1081 0.0283

1.8544 0.1544 0.0409 0.8348 -0.1151 0.0227

0.2132 0.0612 0.0075 1.2402 0.0402 0.0062

2.5282 -0.0717 0.0196 0.6977 0.0177 0.0051

50 0.8685 0.0185 0.0053 1.4685 0.0685 0.0074

1.7688 0.0688 0.0068 0.9118 -0.0381 0.0028

0.1546 0.0026 0.0003 1.2077 0.0077 0.0001

2.5924 -0.0075 0.0007 0.6864 0.0064 0.0001

100 0.8535 0.0035 0.0002 1.4154 0.0154 0.0002

1.7149 0.0149 0.0003 0.9467 -0.0032 0.0001

Above study shows that, on increasing the sample size, there is notable decrease in
bias and the MSE which indicates the exactness of the maximum likelihood estimates
of EPPL distribution.

3 Application

Here, the flexibility of the EPPL distribution is illustrated using the survival time data
of gastric patients who taken chemotherapy and radiation given by Bekker et al. (2000)
0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458,
0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219,
1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830,
3.578, 3.658, 3.743, 3.9781.341 , 4.003, 4.033.
The descriptive statistics of the given data are; minimum=0.047, first quartile=0.395,
median=0.841, mean=1.341, third quartile=2.178, maximum=4.033.

To find the MLEs of the parameters, we use the nlm function of R software. The
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significant statistics are calculated for establishing the goodness of fit of the distribution.
For comparison study, histogram of the data with embedded pdf plots of exponentiated
Poisson-power Lindley (EPPL) distribution along with Poisson-power Lindley (PPL)
(George and George (2023b)), exponentiated power Lindley Poisson (EPLP) (Pararai
et al. (2017)) and exponentiated generalized power Lindley (EG-PL) (MirMostafaee et al.
(2019)) distributions are depicted in Figure 4. It is seen that the EPPL distribution yields
a better fit for the considered data than the compared models.

Figure 4: Fitted pdf plot for gastric patients data

Now, from Table 2 we can see that, EPPL distribution has the smallest value of -logL,
Akaike information criterion (AIC), Bayesian information criterion (BIC), Kolmogorov-
Smirov (K-S) statistic, and highest p-value as compared to Poisson-power Lindley, ex-
ponentiated power Lindley Poisson and exponentiated generalized power Lindley distri-
butions. Therefore EPPL distribution seems to be a better model for the given survival
time data.
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Table 2: MLE, -logL, AIC, BIC, K-S and p-value of the fitted models

Distribution Parameters -logl AIC BIC K-S p-value

α = 1.1308

β = 0.682

EPPL m = 1.784 183.6929 375.3858 382.6124 0.085228 0.8718

γ = 0.3612

α = 0.548

PPL β = 1.359 207.1517 420.3034 425.7234 0.1193 0.5059

m = 1.581

α = 1.22

EPLP β = 0.725

ω = 0.228 192.2496 392.4991 399.7258 0.13093 0.3896

θ = 3.12

λ = 4.503

EG-PL β = 1.55 254.6221 517.2442 524.4709 0.13134 0.3858

a = 0.177

b = 1.05

4 Acceptance Sampling Plan

An acceptance sampling plan, makes the selection procedure of a lot of product more
reliable and easier. Let the lot have N products. If N is a large quantity, it is not
convenint to inspect each unit, as it make the test procedure so hard in terms of time
and money. In a time truncated life test, we consider a sample of size n and allow the
test to terminate at a prefixed time t. If (a+ 1)th failure happened before or at t for a
prefixed acceptance number a, the lot is decided as rejected. If the number of failures is
not more than a, at t, the lot is termed as acceptable. The life time of the product have
EPPL distribution with mean life time τ is given by

G(x;α, β,m, γ, τ) =
(
1− e−1

)−γ
[
1− e

−
[
1−(1+ β

β+1(
x
τ )

α
)e−β(xτ )

α]m]γ
(30)

x > 0, α, β,m, γ, τ > 0

If τ0 be the specified average life time, then G(α, β,m, γ, τ) ≤ G(α, β,m, γ, τ0) ⇔ τ ≥ τ0.
As the selection of the lot is based on the sample units, there may arise risks. Probability
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of selecting a bad lot by the consumer is the consumer’s risk and producer’s risk is the
probability associated with rejecting a good lot. Thus, the life testing based on EPPL

distribution is characterized by
(
n, a, t

τ0

)
. We have to select the smallest value of n for

which (31) holds. As N is large enough, we consider the binomial distribution.

L (p0) =
b∑

i=0

(
n

i

)
pi0 (1− p0)

n−i ≤ 1− p∗. (31)

By choosing α = 1, β = 2,m = 2 and γ = 0.98 with p∗ set to 0.75, 0.90, 0.95 and 0.99
and t

τ0
assigned the values 0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927 and 4.712, the

obtained values of n is illustrated in Table 3. If we make a comparison, it can be seen that
these obtained n values is less than the n values obtained by two parameter Quasi Lindley
distribution by Al-Omari and Al-Nasser (2019) and three parameter Lindley distribution
by Al-Omari et al. (2019) under same p∗ and t

ζ0
. Again, for the same sampling scenario,

the n values are almost same or less than the n values obtained by Poisson-power Lindley
distribution by George and George (2023b). The Poisson approach, given in (32) is opted
instead of binomial, if p0 is small with large n. Here λ = np0.

L (p0) =
b∑

i=0

λi

i!
e−λ ≤ 1− p∗. (32)

The values of operating characteristic function of the sampling plan (n, a, t
τ0
) with

p = G
(

t
τ0
/ τ
τ0

)
is given in (33) and Table 4 yields the corresponding results. From

the table it is seen that, the OC values increases as τ
τ0

increases which revels that, the
consumer’s risk is decreases on the increase of τ

τ0
.

L(p) =

a∑
i=0

(
n

i

)
pi (1− p)n−i . (33)

b∑
i=0

(
n

i

)
pi0 (1− p0)

n−i ≥ 0.95 (34)

Table 5 gives the minimum ratio of τ
τ0

which holds (34). That is, we find the values of
τ
τ0

which promises the producer’s risk (α) less than or equal to 0.05. For example, when

a = 3, t
τ0

= 4.712, p∗ = 0.75 then τ
τ0

= 2.3144 (Table 5). That means, being satisfied
with (34), the average life of the product is 2.3144 times the specified.
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Table 3: Minimum sample sizes using binomial probabilities

t/τ0

p∗ a 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0 3 2 1 1 1 1 1 1

1 5 3 3 2 2 2 2 2

2 8 5 4 4 3 3 3 3

3 10 7 5 5 4 4 4 4

4 12 8 7 6 5 5 5 5

0.75 5 15 10 8 7 6 6 6 6

6 17 11 9 8 7 7 7 7

7 19 13 11 9 8 8 8 8

8 22 15 12 11 9 9 9 9

9 24 16 13 12 10 10 10 10

10 26 18 14 13 12 11 11 11

0 4 2 2 2 1 1 1 1

1 7 4 3 3 2 2 2 2

2 10 6 5 4 3 3 3 3

3 12 8 6 5 5 4 4 4

4 15 10 8 7 6 5 5 5

0.90 5 17 11 9 8 7 6 6 6

6 20 13 10 9 8 7 7 7

7 22 15 12 10 9 8 8 8

8 25 16 13 12 10 9 9 9

9 27 18 14 13 11 10 10 10

10 30 20 16 14 12 11 11 11

0 5 3 2 2 1 1 1 1

1 8 5 4 3 3 2 2 2

2 11 7 5 5 4 3 3 3

3 14 9 7 6 5 4 4 4

4 17 11 8 7 6 5 5 5

0.95 5 19 12 10 8 7 6 6 6

6 22 14 11 10 8 7 7 7

7 24 16 13 11 9 9 8 8

8 27 17 14 12 10 10 9 9

9 29 19 15 13 11 11 10 10

10 32 21 17 15 12 12 11 11

0 8 4 3 3 2 1 1 1

1 11 7 5 4 3 2 2 2

2 14 9 7 5 4 3 3 3

3 18 11 8 7 5 4 4 4

4 21 13 10 8 6 5 5 5

0.99 5 24 15 11 9 8 6 6 6

6 26 16 13 11 9 7 7 7

7 29 18 14 12 10 9 8 8

8 32 20 16 13 11 10 9 9

9 34 22 17 15 12 11 10 10

10 37 23 18 16 13 12 11 11
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Table 4: OC values for the plan (n, a, t/τ0)

p⋆ n a t
τ0

τ/τ0

2 4 6 8 10 12

8 2 0.628 0.8342 0.9938 0.9989 0.9998 0.9999 0.9999

5 2 0.942 0.7897 0.9887 0.9989 0.9997 0.9999 0.9999

4 2 1.257 0.7983 0.9874 0.9986 0.9995 0.9998 0.9999

4 2 1.571 0.5856 0.9657 0.9932 0.9979 0.9995 0.9997

3 2 2.356 0.5495 0.9585 0.9856 0.9971 0.9985 0.9996

0.75 3 2 3.141 0.2895 0.7985 0.9478 0.9845 0.9957 0.9978

3 2 3.927 0.1558 0.6532 0.8798 0.95699 0.9853 0.9941

3 2 4.712 0.0991 0.5398 0.7969 0.9175 0.9683 0.9842

10 2 0.628 0.7253 0.9849 0.9981 0.9997 0.9998 0.9999

6 2 0.942 0.6862 0.9768 0.9978 0.9994 0.9998 0.9999

5 2 1.257 0.5591 0.9584 0.9951 0.9986 0.9996 0.9999

4 2 1.571 0.5856 0.9657 0.9932 0.9979 0.9995 0.9997

3 2 2.356 0.5495 0.9585 0.9856 0.9971 0.9985 0.9996

0.90 3 2 3.141 0.2895 0.7985 0.9478 0.9845 0.9957 0.9978

3 2 3.927 0.1558 0.6532 0.8798 0.95699 0.9853 0.9941

3 2 4.712 0.0991 0.5398 0.7969 0.9175 0.9683 0.9842

11 2 0.628 0.6656 0.9795 0.9975 0.9995 0.9998 0.9999

7 2 0.942 0.5689 0.9659 0.9963 0.9989 0.9997 0.9998

5 2 1.257 0.5591 0.9584 0.9951 0.9986 0.9996 0.9999

5 2 1.571 0.3375 0.8863 0.9790 0.9964 0.9985 0.9995

4 2 2.356 0.1998 0.7761 0.9457 0.9864 0.9958 0.9998

0.95 3 2 3.141 0.2895 0.7985 0.9478 0.9845 0.9957 0.9978

3 2 3.927 0.1558 0.6532 0.8798 0.95699 0.9853 0.9941

3 2 4.712 0.0991 0.5398 0.7969 0.9175 0.9683 0.9842

14 2 0.628 0.4498 0.9489 0.9946 0.9988 0.9998 0.9999

9 2 0.942 0.3758 0.9281 0.9885 0.9982 0.9994 0.9997

7 2 1.257 0.2758 0.8765 0.9782 0.9962 0.9989 0.9996

5 2 1.571 0.3375 0.8863 0.9790 0.9964 0.9985 0.9995

4 2 2.356 0.1998 0.7761 0.9457 0.9864 0.9958 0.9998

0.99 3 2 3.141 0.2895 0.7985 0.9478 0.9845 0.9957 0.9978

3 2 3.927 0.1558 0.6532 0.8798 0.95699 0.9853 0.9941

3 2 4.712 0.0991 0.5398 0.7969 0.9175 0.9683 0.9842
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Table 5: Minimum ratio of true and specified mean life for the acceptability of a lot with
α = 0.05

t/τ0

p∗ a 0.628 0.942 01.257 1.571 2.356 3.141 3.927 4.712

0 0.31411 0.46989 0.6293 0.7865 1.1795 1.5724 1.9659 2.3589

1 0.3113 0.4709 0.6284 0.7832 1.1746 1.5659 1.9578 2.3492

2 0.3100 0.4672 0.6220 0.7774 1.1701 1.5600 1.9504 2.3403

3 0.3085 0.4584 0.6151 0.7687 1.1572 1.5427 1.9288 2.3144

4 0.2782 0.4598 0.6176 0.7717 1.1543 1.5389 1.9241 2.3087

0.75 5 0.3046 0.4603 0.6175 0.7709 1.1500 1.5332 1.9169 2.300

6 0.3005 0.4559 0.6105 0.7576 1.1377 1.5167 1.8963 2.2754

7 0.2987 0.4547 0.6029 0.7706 1.1314 1.5083 1.886 2.2627

8 0.2977 0.4546 0.6022 0.7511 1.1229 1.4971 1.8717 2.2459

9 0.2960 0.4508 0.5973 0.7498 1.1178 1.4903 1.8633 2.2358

10 0.2959 0.4494 0.5963 0.7484 1.1132 1.4881 1.8605 2.2324

0 0.3144 0.4703 0.6276 0.7844 1.1795 1.5724 1.9659 2.3589

1 0.3135 0.4700 0.6288 0.7859 1.1746 1.5659 1.9578 2.3492

2 0.3111 0.4666 0.6235 0.7799 1.1701 1.5600 1.9504 2.3403

3 0.30850 0.4649 0.6216 0.7756 1.1632 1.5427 1.9288 2.3144

4 0.3081 0.4611 0.6161 0.7719 1.1573 1.5389 1.9241 2.3087

0.90 5 0.3022 0.4598 0.6122 0.7663 1.1453 1.5332 1.9169 2.300

6 0.3042 0.4571 0.6087 0.7597 1.1399 1.5167 1.8963 2.2754

7 0.2817 0.4545 0.6055 0.7545 1.1319 1.5083 1.886 2.2627

8 0.3012 0.4513 0.6012 0.7526 1.1296 1.4971 1.8717 2.2459

9 0.2982 0.4473 0.5964 0.7465 1.1193 1.4903 1.8633 2.2358

10 0.2965 0.4454 0.5951 0.7421 1.1132 1.4881 1.8605 2.2324

0 0.3152 0.4719 0.6298 0.7872 1.1795 1.5724 1.9659 2.3589

1 0.3148 0.4701 0.6292 0.7863 1.1746 1.5659 1.9578 2.3492

2 0.3146 0.4689 0.6286 0.7856 1.1772 1.5600 1.9504 2.3403

3 0.3143 0.4686 0.6284 0.7826 1.1738 1.5427 1.9288 2.3144

4 0.3123 0.4669 0.6248 0.7788 1.1679 1.5389 1.9241 2.3087

0.95 5 0.3106 0.4665 0.6223 0.7786 1.1672 1.5332 1.9169 2.300

6 0.3106 0.4650 0.6219 0.7759 1.1627 1.5167 1.8963 2.2754

7 0.3103 0.4647 0.6211 0.7750 1.1596 1.5460 1.886 2.2627

8 0.3097 0.4158 0.6164 0.7683 1.1545 1.5391 1.8717 2.2459

9 0.3077 0.4618 0.6158 0.7665 1.1495 1.5326 1.8633 2.2358

10 0.3070 0.4600 0.6145 0.7663 1.1132 1.5325 1.8605 2.2324

0 0.3158 0.4743 0.6328 0.7909 1.1818 1.5724 1.9659 2.3589

1 0.3153 0.4722 0.6317 0.7903 1.1795 1.5725 1.9578 2.349

2 0.3147 0.4717 0.6302 0.6783 1.1794 1.5724 1.9504 2.3403

3 0.3126 0.4716 0.6298 0.7854 1.1763 1.5682 1.9288 2.3144

4 0.3126 0.4714 0.6278 0.7825 1.1733 1.5643 1.92411 2.3087

0.99 5 0.3124 0.4689 0.6255 0.7774 1.1698 1.5032 1.9169 2.3002

6 0.3119 0.4667 0.6228 0.7803 1.1694 1.5552 1.9444 2.2754

7 0.3118 0.4658 0.6220 0.7801 1.1658 1.5568 1.9464 2.2627

8 0.3104 0.4636 0.6198 0.7731 1.1616 1.5504 1.9384 2.2459

9 0.2929 0.4629 0.6194 0.7715 1.1611 1.5415 1.9272 2.2358

10 0.3079 0.4682 0.6254 0.7709 1.1554 1.5325 1.9238 2.2324
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4.1 Real Data Application

In this section, we consider a real data set to demonstrate the application of acceptance
sampling plan. The data which represents the survival time of head and neck cancer
patients after radiation and chemotherapy, studied by Sule et al. (2020) is considered
and it is given below. 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36,
63.47, 68.46, 74.47, 78.26, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155,
159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.
The descriptive statistics of the given data are; minimum=12.2, first quartile=67.21,
median=128.5, mean=223.48, third quartile=219, maximum=1776.

The ML estimates of the parameters of the EPPL distribution obtained from the above
data are α = 1.148, β = 0.002, m = 0.442 and γ = 0.98. The corresponding p-value and
K-S statistics are respectively 0.5201 and 0.11927, which ensures the fitness of EPPL
distribution to the given data. Figure 5 shows the embedded pdf curve of the data set.

Figure 5: Fitted pdf plot for the survival time of head and neck cancer patients data

Here, for the data the mean survival time τ0 is 223 and in order to develop ASP,
we consider three truncation periods 875, 1050 and 1600 so that the respective values
obtained for t

τ0
are 3.924, 4.71, 7.175.

Using the obtained ML estimates of EPPL distribution for the given data, we construct
an ASP for p∗ = 0.75 and Table 6 gives the minimum values of n satisfies (31).
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Table 6: Minimum sample sizes using Binomial probabilities

t/τ0

p∗ a 3.924 4.71 7.175

0 43 37 26

1 83 71 51

2 122 105 74

3 158 137 97

4 194 168 119

0.75 5 230 199 141

6 265 229 163

7 300 259 184

8 334 290 206

9 369 319 228

10 402 349 249

The inference obtained from the table is that the selected sampling plan is(
n = 37, a = 0, t

τ0
= 0.4.71

)
and the treatment is effective if among the first 37 observa-

tions no failures occur, which means all the 37 survive in an opted truncation period of
1050. Since for the selected ASP, there is only 1 survival within the truncation period, we
cannot support the treatment as an effective one. In order to support the performance
of Table 6, we find the OC values and is provided in Table 7.

Table 7: OC values for the plan (n, a, t/τ0)

p⋆ n a t
τ0

τ/τ0

2 4 6 8 10 12

43 0 3.924 0.4319 0.5873 0.6579 0.7000 0.7288 0.7501

37 0 4.71 0.4392 0.5986 0.6700 0.7122 0.7407 0.7617

24 0 7.175 0.4519 0.6208 0.6947 0.7373 0.7656 0.7861

122 2 3.924 0.5797 0.8095 0.8842 0.9190 0.9387 0.9512

105 2 4.71 0.5927 0.8232 0.8952 0.9279 0.9461 0.9574

74 2 7.175 0.6148 0.8481 0.9155 0.9443 0.9595 0.9687

Thus here we try to shows the adaptability of the constructed sampling plan based on
EPPL distribtion in providing information regarding the effectiveness of the treatment
in the survival time of the patients.
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5 Conclusion

Exponentiated Poisson-power Lindley distribution is introduced here by generalizing the
Poisson-power Lindley distribution and discussed its properties. The accuracy of the
maximum likelihood estimators are studied by simulation technique. A survival time
data of gastric patients, is taken to compare the performance of the EPPL distribution
with some other well related distributions like Poisson-power Lindley, exponentiated
power Lindley Poisson and exponentiated generalized power Lindley distributions. For
the data, EPPL distribution seems to be a better model than the others. A time trun-
cated sampling scheme is also developed and its application using the survival time data
set following the newly proposed distribution is also illustrated.
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