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1 Introduction

Statistical distributions serve as powerful tools for explaining diverse real-life events, en-
abling us to uncover underlying patterns, trends and behaviors of data. Researchers have
been motivated to extend classical distributions so as to come up with flexible distribu-
tions that can better accommodate various data fitting requirements. This drive arises
from the limitations in most standard distributions such as logistic, Lindley, gamma,
exponential, and Burr XII distributions. Some notable examples of new generalizations
with wide applications include the Topp-Leone-Marshall-Olkin-G family of distributions
(Chipepa et al., 2020), odd Weibull Topp-Leone-G power series class of distributions
(Oluyede et al., 2021), Marshall Olkin Pranav distribution (Alsultan, 2023), odd power
generalized Weibull-G power series class of distributions (Oluyede et al., 2022a) and the
Topp-Leone-Harris-G family of distributions (Oluyede et al., 2023) among others. These
extensions provide versatile and adaptable models with diverse applications.

The gamma transformation has emerged as a valuable tool for extending and enrich-
ing a wide range of distributions available literature. By leveraging the flexibility and
versatility of the gamma transformation, researchers have been able to generate novel
distributions that offer unique characteristics and broader applicability. These new dis-
tributions provide valuable alternatives for modeling various real-life phenomena and
addressing specific modeling challenges. The following are recent distributions gener-
ated by the gamma transformation: gamma odd power generalized Weibull-G family
of distributions (Gabanakgosi et al., 2021), gamma odd Burr III-G family of distribu-
tions (Peter et al., 2021) and the gamma Topp-Leone type II exponentiated half logistic
Weibull distribution (Oluyede et al., 2023).

Different methods of estimation are essential in developing new generalized distribu-
tions, as each approach offers unique strengths for parameter estimation. For instance,
the maximum likelihood estimation provides efficient and consistent estimates, particu-
larly beneficial for large samples. The least squares technique minimizes the sum of the
squared differences between observed and predicted values, ensuring a close fit to the
data. Evaluating the best method for estimating parameters in a new family of distri-
butions is crucial, especially for the applications of the model. For further insights into
various estimation methods, refer to Dey et al. (2015), Ali et al. (2021), and Warahena-
Liyanage et al. (2023) among others.

The Topp-Leone distribution (Topp and Leone, 1955) is a bounded distribution with
domain between 0 and 1, and possesses a J-shaped probability density function, hence
it is not flexible. However, its subsequent extensions have exhibited greater flexibility.

Moakofi et al. (2021) developed the type II exponentiated half logistic-Topp-Leone-G
(TII-EHL-TL-G) family of distributions with cumulative distribution function (cdf)

FTII−EHL−TL(z;α, ϑ, ζ) = 1 −WG(z;α, ϑ, ζ) (1)
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and probability density function (pdf)

fTII−EHL−TL(z;α, ϑ, ζ) = 4αϑg(z; ζ)[1 − Ḡ2(z; ζ)]ϑ−1Ḡ(z; ζ)

×
(
1 − [1 − Ḡ2(z; ζ)]ϑ

)α−1(
1 + [1 − Ḡ2(z; ζ)]ϑ

)α+1 , (2)

for α, ϑ > 0, where WG(z;α, ϑ, ζ) =

[
1−[1−Ḡ2(z;ζ)]ϑ

1+[1−Ḡ2(z;ζ)]ϑ

]α
and ζ is the parent parameter

vector.

The gamma generator has cdf

FRB(z;σ, ζ) = 1 − 1

Γ(σ)

∫ − log[G(z;ζ)]

0
tσ−1e−tdt

= 1 −
γ(σ,− log[G(z; ζ)])

Γ(σ)
. (3)

and pdf

fRB(z;σ, ζ) =
1

Γ(σ)
(− log[G(z; ζ)])σ−1g(z; ζ), (4)

for σ > 0, and parent parameter vector ζ (Ristić and Balakrishnan, 2012).

The motivations for introducing the RB-TII-EHL-TL-G family of distributions include:

� Addressing limitations of earlier families: The new family of distributions addresses
the shortcomings of the Topp-Leone-G and TII-EHL-G families. It provides im-
proved tail behavior and increased flexibility through the incorporation of an ad-
ditional shape parameter σ. This improvement allows for more effective modeling
of complex data patterns and provides better data fitting compared to some of its
nested models.

� Flexibility in data fitting: The RB-TII-EHL-TL-G family of distributions offers
enhanced flexibility for accurately fitting various types of data. It can effectively
handle datasets with both monotonic and non-monotonic hazard rate functions.

� Comparison of estimation methods: Comparing different estimation techniques
via Monte Carlo simulations helps to identify the best method for estimating the
parameters of the RB-TII-EHL-TL-G family of distributions. This helps to ensure
accurate parameter estimation and reliable inference.

� Wide applicability: The RB-TII-EHL-TL-G family of distributions finds applica-
tions in diverse fields like biology, finance, physics, and economics. Its versatility
makes it a valuable tool for analyzing data in various domains.
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Structure of the paper: The new family of distributions, its subfamilies, series expan-
sion and representation and the quantile function are presented in Section 2. Section 3
contains a selection of the new family’s special cases. Section 4 consists of additional
statistical properties of the new family of distributions including order statistics, uncer-
tainty measure, moments and stochastic orders. Section 5 focuses on various estimation
techniques for the new family of distributions while Section 6 dwells on the Monte Carlo
simulations. Section 7 showcases applications of the RB-TIIEHL-TL-W distribution a
special case of the RB-TII-EHL-TL-G family of distributions to real-world data. Section
8 presents a summary of the main findings and conclusions drawn from the study.

2 The New Family and Statistical Properties

Section 2 introduces the new RB-TII-EHL-TL-G family of distributions, along with its
subfamilies and some statistical properties, including the quantile function and series
expansion and representation.

2.1 The New Family

Taking Equation (1) to be the parent cdf of Equation (3), we get the RB-TII-EHL-TL-G
family of distributions with cdf

F (z;σ, α, ϑ, ζ) = 1 − 1

Γ(σ)

∫ − log[1−WG(z;α,ϑ,ζ)]

0
tσ−1e−tdt

= 1 −
γ
(
σ,− log

[
1 −WG(z;α, ϑ, ζ)

])
Γ(σ)

, (5)

and pdf

f(z;σ, α, ϑ, ζ) =
4αϑ

Γ(σ)

(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ−1
g(z; ζ)

×
[1 − Ḡ2(z; ζ)]ϑ−1Ḡ(z; ζ)

(
1 − [1 − Ḡ2(z; ζ)]ϑ

)α−1

(1 + [1 − Ḡ2(z; ζ)]ϑ)α+1
, (6)

for σ, α, ϑ > 0 and parent parameter vector ζ.

2.2 Sub-Families

We present sub-familes of the RB-TII-EHL-TL-G family of distributions in this sub-
section.

� If σ = 1, we get the TII-EHL-TL-G family of distributions with cdf

F (z;α, ϑ, ζ) = 1 −WG(z;α, ϑ, ζ),

for α, ϑ > 0, and ζ is the parent parameter vector (Moakofi et al., 2021).
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� If we set α = 1, we get a reduced family of distributions with cdf

F (z;σ, ϑ, ζ) = 1 −
γ

(
σ,− log

[
1 −

[
1−[1−Ḡ2(z;ζ)]ϑ

1+[1−Ḡ2(z;ζ)]ϑ

]])
Γ(σ)

,

for ϑ, σ > 0, and parent parameter vector ζ.

� If ϑ = 1, we get a reduced family with cdf

F (z;σ, α, ζ) = 1 −
γ

(
σ,− log

[
1 −

[
1−[1−Ḡ2(z;ζ)]

1+[1−Ḡ2(z;ζ)]

]α])
Γ(σ)

,

for α, σ > 0, and parent parameter vector ζ.

� If α = ϑ = 1, we get a reduced family with cdf

F (z;σ, ζ) = 1 −
γ
(
σ,− log

[
1 −

[
1−[1−Ḡ2(z;ζ)]

1+[1−Ḡ2(z;ζ)]

]])
Γ(σ)

,

for σ > 0, and parent parameter vector ζ.

� If α = σ = 1, we get a new family of distributions with cdf

F (z; b, ζ) = 1 −

[
1 − [1 − Ḡ2(z; ζ)]ϑ

1 + [1 − Ḡ2(z; ζ)]ϑ

]
,

for ϑ > 0, and parent parameter vector ζ.

� If α = ϑ = σ = 1, we get a new family of distributions with cdf

F (z; ζ) = 1 −

[
1 − [1 − Ḡ2(z; ζ)]

1 + [1 − Ḡ2(z; ζ)]

]
,

where ζ is the parent parameter vector.

2.3 Quantile Function

The quantile function is a fundamental statistical tool with a wide range of applications.
It can be used to generate random numbers, compute extreme quantiles and evaluate
skewness and kurtosis. The RB-TII-EHL-TL-G family of distribution’s quantile function
is

QZ(p) = G−1

1 −

1 −

1 −
(
1 − exp{γ−1[σ,Γ(σ)(1 − p)]}

) 1
α

1 + (1 − exp{γ−1[σ,Γ(σ)(1 − p)]})
1
α

 1
ϑ


0.5
 ,

for σ, α, ϑ > 0, where 0 ≤ p ≤ 1 and G is the parent distribution.
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2.4 Series Expansion and Representation

This subsection presents the expansion of the density of our proposed model. We can
express the RB-TII-EHL-TL-G pdf as

f(z;σ, α, ϑ, ζ) =
∞∑
p=0

ηp+1gp+1(z; ζ), (7)

where

ηp+1 =
4αϑ

Γ(σ)

∞∑
m,s,j,k,l=0

(−1)j+l+mbs,m

(σ−1

m

)(
α(m+s+σ)−1

j

)
×

(
−α(m+s+σ)−1

k

)(
ϑ(j+k+1)−1

l

)(
2l+1
p

)( 1

p+ 1

)
, (8)

and gp+1(z; ζ) = (p+1)Gp(z; ζ)g(z; ζ) is the exponentiated-G (Expo-G) pdf with param-
eter (p+ 1). Equation (7) and the accompanying properties of the Expo-G distribution
make it possible to obtain the various mathematical properties of our proposed family
of distributions. For derivations, please refer to the Web Appendix.

3 Special Cases

In this part we provide two special cases of the RB-TII-EHL-TL-G family of distribu-
tions.

Table 1: Special Cases

Baseline Special Case

Weibull(W) Gamma-Type II Exponentiated Half Logistic-Topp-Leone-Weibull (RB-TII-EHL-TL-W)

Log-logistic(LLoG) Gamma-Type II Exponentiated Half Logistic-Topp-Leone-Log-logistic (RB-TII-EHL-TL-LLoG)

Table 1 presents special cases for the RB-TII-EHL-TL-G family of distributions.

3.1 RB-TII-EHL-TL-W Distribution

Graphs of the pdfs (Figure 1) show several shapes including left-skewed, reverse-J, right-
skewed and almost symmetric shapes. The graphs of hrfs illustrate bathtub, inverted
bathtub, increasing and decreasing patterns.

Figure 2 displays 3D graphs illustrating the skewness and kurtosis of the RB-TL-TII-
EHL-W distribution. The graphs show that if we fix α and σ, both skewness and and
kurtosis are high for low values of ϑ and λ. This is an indication of pronounced asymme-
try and heavy tails. Conversely, as ϑ and λ increase, both skewness and kurtosis decrease,
suggesting that the distribution approaches a more symmetrical and light-tailed form.
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Figure 1: RB-TII-EHL-TL-W pdf and hrf plots

Figure 2: 3D Graphs of the RB-TL-TII-EHL-W Skewness and Kurtosis

3.2 RB-TII-EHL-TL-LLoG Distribution

Plots of the pdf on Figure 3 show different shapes including unimodal, J, reverse-J, al-
most symmetric and positive-skewed geometry. The plots of the hrfs exhibit decreasing,
increasing, inverted bathtub and bathtub shapes followed by an inverted bathtub.

Figure 4 presents 3D graphs illustrating the skewness and kurtosis of the RB-TL-TII-
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Figure 3: RB-TII-EHL-TL-LLoG pdf and hrf plots

EHL-LLoG distribution. The graphs show that if we fix ϑ and λ, both skewness and
and kurtosis are low for low values of α and σ. This is an indication of symmetrical and
light tailed form. Conversely, as α and σ, increase, both skewness and kurtosis increase,
suggesting that the distribution approaches a more asymmetrical and heavy-tailed form.

Figure 4: RB-TII-EHL-TL-LLoG: 3D Graphs of Skewness and Kurtosis
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4 Additional Statistical Properties

We provide additional statistical properties of the new family of distributions including
order statistics, uncertainty measure, moments and stochastic orders.

4.1 Order Statistics

Order statistics has wide applications including modeling auctions, analyzing insurance
policies, optimizing production processes and estimating distribution parameters, among
others.

Let Z1, ..., Zn be independent and identically distributed RB-TII-EHL-TL-G random
variables, the pdf of the ith order statistics is

fi:n(z) =
Γ(n+ 1)

Γ(i)Γ(n− i+ 1)

∞∑
q=0

n−i∑
r=0

(−1)r
(
n−i
r

)
aq+1gq+1(z; ζ), (9)

where gq+1(z; ζ) = (q + 1)g(z; ζ)Gq(z; ζ) is the Expo-G distribution with parameter
(q + 1) and

aq+1 =
∞∑

j,m,s,k,l,t=0

bs,m(−1)j+k+t+q

 ∞∑
p=0

(−1)p

(p+ σ)p!

j

4αϑ

[Γ(σ)]j+1

(
r+i−1
j

)
×

(j(p+σ)+σ−1

m

)(
α[m+s+j(p+σ)+σ]−1

k

)(
−α[m+s+j(p+σ)+σ]−1

l

)
×

(
ϑ(k+l+1)−1

t

) (
2t+1
q

) 1

(q + 1)
.

Consequently, the Expo-G distribution may be used to directly determine the distri-
bution of the ith OS of theRB-TII-EHL-TL-G family of distributions. For derivations,
please refer to the Web Appendix.

4.2 Uncertainty Measure

A statistical distribution’s level of uncertainty can be measured by the Rényi entropy
(Rényi, 1961). If Z ∼ RB-TII-EHL-TL-G family of distributions, the Rényi entropy of
order v is

IR(v) = (1 − v)−1 log

( ∞∑
r=0

ψr+1e
{(1−v)IREG}

)
, (10)

for v ≥ 0 and v ̸= 1, where

ψr+1 =

(
4αϑ

Γ(σ)

)v ∞∑
m,s,i,j,k=0

bs,m(−1)i+k+r
(v(σ−1)

m

)(
α(m+s+vσ)−v

i

)
×

(
−α(m+s+vσ)−v

j

)(
ϑ(i+j)+v(ϑ−1

k

)(
2k+v
r

) 1[
m
v + 1

]v ,
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and

IREG = (1 − v)−1 log

[∫ ∞

0

([m
v

+ 1
]
g(z; ζ)G

m
v (z; ζ)

)v
dz

]
(11)

is the Rényi entropy of the Expo-G distribution with parameter
[
m
v + 1

]
. Consequently,

the Rényi of the RB-TII-EHL-TL-G family of distributions can be found directly from the
R Rényi of the Expo-G distribution. For derivations, please refer to the Web Appendix.

4.3 Moments

This subsection presents moments, moment generating functions (mgfs) and conditional
moments of the RB-TII-EHL-TL-G family of distributions.

4.3.1 Moments and Moment Generating Functions

Let f(z) = fRB−TII−EHL−TL−G(z;σ, α, ϑ, ζ). If Z ∼ RB-TII-EHL-TL-G(σ, α, ϑ, ζ) dis-

tribution and Y ∼ Expo-G(p+ 1), the kth moment µ
′
k is

µ
′
k = E(Zk) =

∫ ∞

0
zkf(z)dz =

∞∑
p=0

ηp+1E(Y k),

where E(Y k) is the kth moment of the Expo-G distribution with parameter (p+ 1) and
ηp+1 is as given in equation (8). The mgf of RB-TII-EHL-TL-G family of distributions
is obtained as follows:

MZ(t) =
∞∑
p=0

ηp+1MY (t),

where MY (t) is the mgf of the Expo-G distribution and ηp+1 is given by equation (8).

4.3.2 Conditional Moments

The kth conditional moment for RB-TII-EHL-TL-G family of distributions is obtained
as follows:

E(Zk|Z > t) =
1

F̄ (t)

∫ ∞

t
zkf(z)dz

=

∞∑
p=0

ηp+1E(Y kI{Y k>t}),

where E(Y kI{Y k>t}) =
∫∞
t ykgp+1(y; ζ)dy and ηp+1 is given by equation (8).
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4.4 Stochastic Orders

Stochastic ordering has wide applications in statistics and statistical decision theory. It
is useful in deducing probability inequalities, comparing stochastic models, establishing
bounds and inequalities in reliability. It is very useful in hypothesis testing, simultaneous
comparisons and multiple decision problems. Stochastic ordering is also useful in eco-
nomics in the area of decisions under risk, particularly in the context of multi-attribute
utility theory.

In this subsection, we present stochastic orders for the RB-TII-EHL-TL-G family of
distributions. Let Z1 and Z2 be two random variables with cdfs FZ1(u) and FZ2(u).
We say that Z1 is stochastically smaller than Z2 if F 1(u) ≤ F 2(u) or equivalently
FZ1(u) ≥ FZ2(u) ∀u, where F 1(u) and F 2(u) are survival functions of Z1 and Z2, re-
spectively. The hazard rate (hr) order and the likelihood ratio (lr) order are Z1 <hr Z2

if hZ1(u) ≥ hZ2(u) and Z1 <lr Z2 if
fZ1

(u)

fZ2
(u) is decreasing in u. It is also well known that

Z1 <lr Z2 ⇒ Z1 <hr Z2 ⇒ Z1 <st Z2, (Shaked and Shanthikumar, 2007).

Theorem 1. Let Z1 ∼ RB-TII-EHL-TL-G (σ1, α, ϑ; ζ) and Z2 ∼ RB-TII-EHL-TL-G

(σ2, α, ϑ; ζ), if σ1 ≤ σ2, then
f(z;σ1,α,ϑ,ζ)

f(z;σ2,α,ϑ,ζ)
is decreasing in z.

Proof of Theorem 1: Consider two independent random variables Z1 and Z2 with pdfs

f(z;σ1, α, ϑ, ζ) =
4αϑ

Γ(σ1)

(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ1−1

×
g(z; ζ)[1 − Ḡ2(z; ζ)]ϑ−1Ḡ(z; ζ)

(
1 − [1 − Ḡ2(z; ζ)]ϑ

)α−1

(1 + [1 − Ḡ2(z; ζ)]ϑ)α+1
,

and

f(z;σ2, α, ϑ, ζ) =
4αϑ

Γ(σ2)

(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ2−1

×
g(z; ζ)[1 − Ḡ2(z; ζ)]ϑ−1Ḡ(z; ζ)

(
1 − [1 − Ḡ2(z; ζ)]ϑ

)α−1

(1 + [1 − Ḡ2(z; ζ)]ϑ)α+1
.

Then,

f(z;σ1, α, ϑ, ζ)

f(z;σ2, α, ϑ, ζ)
=

Γ(σ2)

Γ(σ1)

(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ1−1(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ2−1

=
Γ(σ2)

Γ(σ1)

(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ1−σ2 . (12)
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The derivative of Equation (12) with respect to z is

d

dz

(
f(z;σ1, α, ϑ, ζ)

f(z;σ2, α, ϑ, ζ)

)
= 4abg(z; ζ)(σ2 − σ1)

Γ(σ2)

Γ(σ1)

×
(
− log

[
1 −WG(z;α, ϑ, ζ)

])σ1−σ2−1

×
[1 − Ḡ2(z; ζ)]b−1Ḡ(z; ζ)[

1 −WG(z;α, ϑ, ζ)
]

×
(
1 − [1 − Ḡ2(z; ζ)]ϑ

)α−1(
1 + [1 − Ḡ2(z; ζ)]ϑ

)α+1 .

Now, d
dz

(
f(z;σ1,α,ϑ,ζ)

f(z;σ2,α,ϑ,ζ)

)
< 0 if σ2 < σ1. Therefore, Z1 <lr Z2 and consequently, Z1 <hr Z2

and Z1 <st Z2. We can conclude that the random variables Z1 and Z2 are stochastically
ordered.

5 Parameter Estimation

We examine various approaches used to estimate the parameters of RB-TII-EHL-TL-G
family of distributions. These include the Anderson-Darling (AD), least squares (LS),
Cramér-von-Mises (CVM) and maximum likelihood (ML) method.

5.1 ML Estimation

Let Z ∼RB-TII-EHL-TL-G(σ, α, ϑ, ζ) and Λ = (σ, α, ϑ, ζ)T be the vector of model
parameters, the log-likelihood function ℓ = ℓ(Λ) is

ℓ(Λ) = n ln(4αϑ) + (σ − 1)
n∑

i=1

ln
(
− log

[
1 −WG(z;α, ϑ, ζ)

])
− n ln[Γ(σ)] +

n∑
i=1

ln[g(zi; ζ)] + (ϑ− 1)
n∑

i=1

ln[1 − Ḡ2(zi; ζ)]

+
n∑

i=1

ln[Ḡ(zi; ζ)] + (α− 1)
n∑

i=1

ln
(

1 − [1 − Ḡ2(zi; ζ)]ϑ
)

− (α+ 1)
n∑

i=1

ln(1 + [1 − Ḡ2(zi; ζ)]α). (13)

The ML parameter estimates are found by solving the nonlinear system of equations[
∂ℓ(Λ)
∂σ , ∂ℓ(Λ)

∂α , ∂ℓ(Λ)
∂ϑ , ∂ℓ(Λ)

∂ζ
k

]T
= 0, using numerical methods like Newton-Raphson proce-

dure. See the Web Appendix for the elements of the score vector.
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5.2 LS Estimation

The LS (Swain et al., 1988) method can be categorized into two methods: ordinary least
squares (OLS) and weighted least squares (WLS). The OLS parameter estimates are
obtained by minimizing

OLS(Λ) =
n∑

i=1

([
1 −

γ
(
σ,− log

[
1 −WG(z(i);α, ϑ, ζ)

])
Γ(σ)

]
− pi

)2

,

with respect to σ, a, ϑ, and ζ, where pi = i
n+1 . To find the OLS parameter estimates,

we solve the nonlinear system of equations[
∂OLS(Λ)

∂σ
,
∂OLS(Λ)

∂α
,
∂OLS(Λ)

∂ϑ
,
∂OLS(Λ)

∂ζ
k

]T
= 0,

using numerical methods like Newton-Raphson procedure. The WLS parameter esti-
mates are obtained by minimizing

WLS(Λ) =
n∑

i=1

ωi

([
1 −

γ
(
σ,− log

[
1 −WG(z(i);α, ϑ, ζ)

])
Γ(σ)

]
− pi

)2

,

with respect to σ, a, ϑ, ζ, where ωi = (n+1)2(n+2)
i(n−i+1) . To find the WLS parameter estimates,

we solve the nonlinear system of equations[
∂WLS(Λ)

∂σ
,
∂WLS(Λ)

∂α
,
∂WLS(Λ)

∂ϑ
,
∂WLS(Λ)

∂ζ
k

]T
= 0,

using numerical methods like Newton-Raphson procedure.

5.3 CVM Estimation

The CVM estimation technique was proposed by Macdonald (1971). The CVM param-
eter estimates are obtained by minimizing

CVM(Λ) =
1

12n
+

n∑
i=1

([
1 −

γ
(
σ,− log

[
1 −WG(z(i);α, ϑ, ζ)

])
Γ(σ)

]
− qi

)2

,

with respect to σ, a, ϑ, and ζ, where qi = 2i−1
2n . To find the CVM parameter estimates,

we solve the nonlinear system of equations[
∂CVM(Λ)

∂σ
,
∂CVM(Λ)

∂α
,
∂CVM(Λ)

∂ϑ
,
∂CVM(Λ)

∂ζ
k

]T
= 0,

using numerical methods like Newton-Raphson procedure.
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5.4 AD Estimation

The AD method of estimation was developed by Anderson and Darling (1952). The AD
parameter estimates are obtained by minimizing

AD(Λ) = −n− n−1
n∑

i=1

[
rilog

(
1 −

γ
(
σ,− log

[
1 −WG(z(i);α, ϑ, ζ)

])
Γ(σ)

)]

− n−1
n∑

i=1

[
ri

(
γ
(
σ,− log

[
1 −WG(z(i);α, ϑ, ζ)

])
Γ(σ)

)]
,

with respect to σ, a, ϑ, and ζ, where ri = (2i − 1). The AD parameter estimates are
found by solving the nonlinear system of equations[

∂AD(Λ)

∂σ
,
∂AD(Λ)

∂α
,
∂AD(Λ)

∂ϑ
,
∂AD(Λ)

∂ζ
k

]T
= 0,

using numerical methods like Newton-Raphson procedure.

6 Simulation Study

We present simulation results for the various estimation techniques. Several simulations
were run for different sample sizes in order to assess the performance of the estimators
of RB-TII-EHL-TL-W distribution, a special case of the RB-TII-EHL-TL-G family of
distributions. The root mean square error (RMSE) and average bias (ABias) were used
as metrics to assess the estimators’ performance. The expressions for RMSE and ABias
for the estimated parameter, say, Ω̂ are

RMSE(Ω̂) =

√∑N
i=1(Ω̂i−Ω)2

N , and ABias(Ω̂) =
∑N

i=1 Ω̂i

N − Ω.

Tables 2 and 3 show Abias and RMSE simulation results for different estimation meth-
ods for some selected parameter values. The superscript in both tables indicates the
rank of each estimator. For instance, the Abias of σ̂ computed using the ML estimation
technique for n = 30 ranks 5th among all the other estimators in Table 2. The cumula-
tive sum of the ranks is indicated by the row

∑
ranks. Table 4 presents the combined

rankings for RMSE and Abias. The superscript denotes the combined rank for each esti-
mation method. The partial sum of the ranks is shown by the row with the label

∑
ranks.

From Tables 2 and 3, we can conclude that, generally, the RMSE decreases as sam-
ple size (n) increases. However, the Abias occasionally decreases with increasing n.
Based on the results in Table 4, the ML estimation method ranks the highest, followed
by OLS method. According to the rankings, the AD method is the lowest.

Figures 5 and 6 display the RMSE plots which illustrate how the RMSEs of the RB-
TII-EHL-TL-W parameters change with increasing n for different estimation techniques.
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For all the five estimation techniques examined, the graphs show that as n increases, the
RMSE consistently decrease, indicating improved accuracy in parameter estimation.

Figure 5: RB-TII-EHL-TL-W RMSE Graphs for σ, α, ϑ, λ from Table 2
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Table 2: RB-TII-EHL-TL-W Simulation Results for σ = 0.3, α = 0.7, ϑ = 0.7, λ = 0.8

RMSE Abias

Parameter n ML AD CVM OLS WLS MLE AD CVM OLS WLS

σ 30 0.8339 (5) 0.2647 (4) 0.1308 (1) 0.1787 (3) 0.1413 (2) 0.3093 (5) 0.1263 (4) 0.1031 (2) 0.1100 (3) 0.0487 (1)

α 30 0.6901 (5) 0.3986 (4) 0.3831 (3) 0.3785 (2) 0.3730 (1) 0.0713 (1) 0.1585 (5) 0.0752 (3) 0.0766 (4) 0.0713 (2)

ϑ 30 0.4140 (1) 0.4389 (2) 0.5269 (5) 0.5107 (3) 0.5266 (4) 0.3618 (5) -0.0431 (4) -0.0128 (1) -0.0158 (2) -0.0260 (3)

λ 30 0.1778 (1) 0.4280 (2) 1.3700 (4) 1.3887 (5) 1.3246 (3) -0.0283 (1) -0.2389 (2) -0.7784 (5) -0.7779 (4) -0.7107 (3)∑
ranks 12 12 13 13 10 12 15 11 13 9

σ 50 0.6089 (5) 0.2257 (4) 0.1091 (1) 0.1178 (2) 0.1195 (3) 0.2028 (5) 0.1333 (4) 0.0548 (2) 0.0605 (3) 0.0425 (1)

α 50 0.4659 (5) 0.3318 (4) 0.2647 (1) 0.2702 (2) 0.3268 (3) 0.0524 (1) 0.1298 (5) 0.0588 (3) 0.0572 (2) 0.0689 (4)

ϑ 50 0.3405 (1) 0.4129 (4) 0.3722 (3) 0.3427 (2) 0.4643 (5) 0.1717 (5) -0.0884 (4) -0.0276 (3) -0.0072 (1) -0.0241 (2)

λ 50 0.1110 (1) 0.3316 (2) 1.0967 (5) 1.0966 (4) 0.9802 (3) -0.0278 (1) -0.2331 (2) -0.7763 (5) -0.7741 (4) -0.6709 (3)∑
ranks 12 14 10 10 14 12 15 13 10 10

σ 100 0.3949 (5) 0.1343 (4) 0.0827 (1) 0.0883 (2) 0.0979 (3) 0.1202 (4) 0.1231 (5) 0.0583 (3) 0.0578 (2) 0.0488 (1)

α 100 0.3352 (5) 0.2025 (3) 0.1949 (2) 0.1853 (1) 0.2331 (4) 0.0236 (1) 0.1544 (5) 0.0575 (3) 0.0573 (2) 0.0913 (4)

ϑ 100 0.2600 (1) 0.2769 (4) 0.2671 (2) 0.2695 (3) 0.3151 (5) 0.0909 (4) -0.0962 (5) -0.0038 (2) -0.0026 (1) 0.0183 (3)

λ 100 0.0707 (1) 0.2417 (2) 0.7776 (4) 0.7790 (5) 0.7126 (3) -0.0273 (1) -0.2414 (2) -0.7763 (4) -0.7774 (5) -0.7002 (3)∑
ranks 12 13 9 11 15 10 17 12 10 11

σ 200 0.2751 (5) 0.0904 (4) 0.0716 (2) 0.0720 (3) 0.0508 (1) 0.0461 (1) 0.1139 (5) 0.0768 (3) 0.0796 (4) 0.0463 (2)

α 200 0.2869 (5) 0.1482 (3) 0.1189 (1) 0.1279 (2) 0.1560 (4) 0.0118 (1) 0.1266 (5) 0.0272 (2) 0.0388 (3) 0.0992 (4)

ϑ 200 0.1704 (1) 0.2124 (5) 0.1738 (2) 0.1557 (3) 0.2032 (4) 0.0664 (4) -0.1066 (5) -0.0036 (1) 0.0041 (3) 0.0304 (2)

λ 200 0.0572 (1) 0.1726 (2) 0.5568 (5) 0.5563 (4) 0.5153 (3) -0.0207 (1) -0.2439 (2) -0.7718 (4) -0.7765 (5) -0.7198 (3)∑
ranks 12 14 10 12 12 7 17 10 15 11

σ 400 0.1650 (5) 0.0613 (4) 0.0538 (3) 0.0509 (2) 0.0364 (1) 0.0299 (1) 0.1097 (5) 0.0951 (4) 0.0755 (3) 0.0399 (2)

α 400 0.1795 (5) 0.1001 (3) 0.0685 (1) 0.0802 (2) 0.1146 (4) 0.0026 (1) 0.1244 (5) -0.0036 (2) 0.0222 (3) 0.1116 (4)

ϑ 400 0.1026 (1) 0.1606 (5) 0.1060 (2) 0.1314 (3) 0.1505 (4) 0.0084 (1) -0.1477 (5) 0.0213 (3) 0.0088 (2) 0.0405 (4)

λ 400 0.0394 (1) 0.1233 (2) 0.3964 (5) 0.3960 (4) 0.3723 (3) -0.0173 (1) -0.2465 (2) -0.7927 (5) -0.7918 (4) -0.7370 (3)∑
ranks 12 14 11 11 12 4 17 14 12 13

σ 800 0.1049 (5) 0.0277 (1) 0.0372 (3) 0.0360 (2) 0.0387 (4) 0.0123 (1) 0.0599 (3) 0.0910 (5) 0.0803 (4) 0.0523 (2)

α 800 0.0401 (1) 0.0653 (4) 0.0411 (2) 0.0417 (3) 0.0755 (5) 0.0026 (1) 0.0447 (4) -0.0092 (2) 0.0100 (3) 0.0941 (5)

ϑ 800 0.0691 (1) 0.0935 (4) 0.0773 (2) 0.0828 (3) 0.1007 (5) 0.0089 (1) -0.1123 (5) 0.0090 (1) 0.0138 (3) 0.0386 (4)

λ 800 0.0323 (1) 0.1046 (2) 0.2811 (5) 0.2806 (4) 0.2649 (3) -0.0135 (1) -0.2329 (2) -0.7950 (5) -0.7937 (4) -0.7439 (3)∑
ranks 8 11 12 12 17 4 14 13 16 13

σ 1000 0.0103 (1) 0.0135 (2) 0.0327 (4) 0.0333 (5) 0.0277 (3) 0.0070 (1) 0.0413 (2) 0.0885 (4) 0.0975 (5) 0.0599 (3)

α 1000 0.0110 (1) 0.0594 (4) 0.0371 (3) 0.0325 (2) 0.0653 (5) 0.0012 (1) 0.0332 (3) -0.007323468 (2) -0.0115 (4) 0.0447 (5)

ϑ 1000 0.0503 (1) 0.0765 (3) 0.0639 (4) 0.0547 (2) 0.0935 (5) 0.0081 (2) -0.1010 (5) 0.0300 (4) 0.0213 (3) 0.0011 (1)

λ 1000 0.0217 (1) 0.0654 (2) 0.2513 (3) 0.2516 (4) 0.2346 (5) -0.0097 (1) -0.2235 (2) -0.7947 (5) -0.7906 (4) -0.7329 (3)∑
ranks 4 11 14 13 18 5 12 15 16 12
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Table 3: RB-TII-EHL-TL-W Simulation Results for σ = 0.2, α = 0.8, ϑ = 0.8, λ = 0.8

RMSE Abias

Parameter n ML AD CVM LSE WLSE MLE AD CVM LSE WLSE

σ 30 0.3890 (5) 0.2558 (4) 0.2376 (3) 0.1510 (1) 0.2163 (2) 0.1270 (4) 0.1272 (5) 0.1158 (3) 0.1077 (2) 0.1039 (1)

α 30 0.3993 (5) 0.3060 (3) 0.2884 (2) 0.2090 (1) 0.3331 (4) 0.0810 (5) 0.0559 (2) 0.0269 (1) 0.0674 (4) 0.0646 (3)

ϑ 30 0.6882 (5) 0.4565 (2) 0.5302 (4) 0.3461 (1) 0.5291 (3) 0.2544 (5) -0.0520 (3) -0.1094 (4) -0.0487 (2) -0.0381 (1)

λ 30 0.1157 (1) 0.4303 (2) 1.3797 (5) 0.9575 (3) 1.2923 (4) -0.0552 (1) -0.2344 (2) -0.7479 (5) -0.7365 (4) -0.6874 (3)∑
ranks 16 11 14 6 13 15 12 13 12 8

σ 50 0.1269 (1) 0.1767 (4) 0.1865 (5) 0.1311 (2) 0.1583 (3) 0.0550 (1) 0.1149 (3) 0.1198 (5) 0.1150 (4) 0.1003 (2)

α 50 0.2177 (2) 0.2440 (5) 0.2229 (3) 0.1570 (1) 0.2350 (4) 0.0729 (4) 0.0759 (5) 0.0463 (2) 0.0335 (1) 0.0712 (3)

ϑ 50 0.4744 (5) 0.3794 (2) 0.3887 (3) 0.3036 (1) 0.4265 (4) 0.1740 (5) -0.0680 (3) -0.0554 (2) -0.1094 (4) -0.0486 (1)

λ 50 0.1008 (1) 0.3342 (2) 1.0857 (5) 0.7602 (4) 0.6972 (3) -0.0532 (1) -0.2347 (2) -0.7657 (5) -0.7516 (4) -0.6874 (3)∑
ranks 9 13 16 8 14 11 13 14 13 9

σ 100 0.0464 (1) 0.1279 (4) 0.1321 (5) 0.1025 (2) 0.1127 (3) 0.0056 (1) 0.1155 (3) 0.1213 (4) 0.1258 (5) 0.1035 (2)

α 100 0.1204 (1) 0.1563 (3) 0.1647 (4) 0.1219 (2) 0.1900 (5) 0.0221 (2) 0.0721 (5) 0.0311 (3) -0.0017 (1) 0.0383 (4)

ϑ 100 0.2215 (1) 0.2878 (3) 0.2893 (4) 0.2330 (2) 0.3349 (5) 0.0757 (2) -0.0991 (4) -0.0726 (1) -0.1198 (5) -0.0839 (3)

λ 100 0.0468 (1) 0.2394 (2) 0.7748 (5) 0.5491 (3) 0.6946 (4) -0.0274 (1) -0.2382 (2) -0.7736 (3) -0.7750 (4) -0.6777 (5)∑
ranks 4 12 18 9 17 6 14 11 15 14

σ 200 0.0293 (1) 0.0899 (4) 0.0910 (5) 0.0610 (2) 0.0866 (3) 0.0005 (1) 0.1163 (4) 0.1208 (5) 0.1064 (2) 0.1138 (3)

α 200 0.0597 (1) 0.1101 (4) 0.0992 (3) 0.0709 (2) 0.1287 (5) 0.0083 (1) 0.1027 (5) 0.0518 (2) 0.0648 (3) 0.0667 (4)

ϑ 200 0.1408 (1) 0.1605 (3) 0.1849 (4) 0.1498 (2) 0.1949 (5) 0.0161 (2) -0.0284 (3) -0.0380 (4) -0.0533 (5) -0.0027 (1)

λ 200 0.0372 (1) 0.1716 (2) 0.5541 (5) 0.3904 (3) 0.5146 (4) -0.0189 (1) -0.2421 (2) -0.7831 (5) -0.7802 (3) -0.7183 (4)∑
ranks 4 13 17 9 17 5 14 16 13 12

σ 400 0.0084 (1) 0.0615 (4) 0.0626 (5) 0.0449 (2) 0.0562 (3) -0.0004 (1) 0.1079 (4) 0.1064 (3) 0.1086 (5) 0.1003 (2)

α 400 0.0253 (1) 0.0637 (3) 0.0709 (4) 0.0406 (2) 0.0820 (5) 0.0033 (1) 0.0905 (4) 0.0888 (3) 0.0156 (2) 0.0996 (5)

ϑ 400 0.0666 (1) 0.1443 (5) 0.1414 (4) 0.1300 (2) 0.1345 (3) 0.0146 (3) -0.1108 (4) -0.0068 (2) -0.1673 (5) -0.0003 (1)

λ 400 0.0228 (1) 0.1236 (2) 0.3931 (5) 0.2802 (3) 0.3668 (4) -0.0123 (1) -0.2471 (2) -0.7849 (4) -0.7924 (5) -0.7273 (3)∑
ranks 4 14 18 9 15 6 14 12 17 11

σ 800 0.0035 (1) 0.0428 (3) 0.0446 (5) 0.0332 (2) 0.0432 (4 0.0001 (1) 0.1144 (4) 0.1006 (2) 0.1038 (3) 0.1158 (5)

α 800 0.0046 (1) 0.0414 (3) 0.0488 (4) 0.0326 (2) 0.0587 (5) -0.0015 (1) 0.0840 (5) 0.0197 (2) 0.0415 (3) 0.0689 (4)

ϑ 800 0.0821 (1) 0.0838 (2) 0.1442 (5) 0.0938 (4) 0.0935 (3) 0.0129 (2) -0.1088 (3) -0.1924 (5) -0.1115 (4) 0.0016 (1)

λ 800 0.0116 (1) 0.0876 (2) 0.2806 (5) 0.1985 (4) 0.2642 (3) -0.0084 (1) -0.2476 (2) -0.7934 (4) -0.7939 (5) -0.7416 (3)∑
ranks 4 10 19 12 15 5 14 13 15 13

σ 1000 0.0010 (1) 0.0381 (4) 0.0373 (3) 0.0268 (2) 0.0385 (5) 0.0001 (1) 0.1141 (4) 0.0995 (3) 0.0870 (2) 0.1152 (5)

α 1000 0.0045 (1) 0.0357 (3) 0.0460 (4) 0.0323 (2) 0.0520 (5) 0.0015 (1) 0.0848 (5) 0.0691 (4) 0.0661 (3) 0.0637 (2)

ϑ 1000 0.0517 (1) 0.0754 (2) 0.1128 (5) 0.0901 (4) 0.0849 (3) 0.0079 (2) -0.1130 (4) -0.1034 (3) -0.1324 (5) -0.0068 (1)

λ 1000 0.0011 (1) 0.0786 (2) 0.2504 (5) 0.1777 (3) 0.2334 (4) -0.0082 (1) -0.2485 (2) -0.7915 (4) -0.7947 (5) -0.7314 (3)∑
ranks 4 11 17 11 17 5 15 14 15 11
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Figure 6: RB-TII-EHL-TL-W RMSE Graphs for σ, α, ϑ, λ from Table 3

7 Applications

Two examples are presented to showcase the applicability, flexibility and versatility of
the RB-TII-EHL-TL-W distribution. From the Monte Carlo simulation results, the ML
estimation technique showed superiority performance compared to other estimation tech-
niques, hence we employ it in estimate the model parameters. To evaluate the model,
several goodness-of-fit (GoF) measures are utilized. We employ the following GoF tests:
BIC, AIC, −2 log  L, W ∗ and A∗ to evaluate model performance. A high p-value and
small GoF values is an indication of a good fit. We also employ the following graphs
to evaluate our proposed model: empirical cumulative distribution function (ECDF)
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Table 4: Partial Rank, Total Rank and Overall Rank

Parameters n ML AD CVM LS WLS

30 24 (2.5) 27 (5) 24 (2.5) 26 (4) 19 (1)

50 24 (3.5) 29 (5) 23 (2) 20 (1) 24 (3.5)

σ = 0.3, α = 0.7, ϑ = 0.7, λ = 0.8 100 22 (3) 30 (5) 21 (1.5) 21 (1.5) 26 (4)

200 19 (1) 31 (5) 20 (2) 27 (4) 23 (3)

400 16 (1) 31 (5) 25 (3.5) 23 (2) 25 (3.5)

800 12 (1) 25 (2.5) 25 (2.5) 28 (4) 30 (5)

1000 9 (1) 23(2) 29 (3.5) 29 (3.5) 30(5)

30 31 (5) 23 (3) 27 (4) 18 (1) 21 (2)

50 20 (1) 26 (4) 30 (5) 21 (2) 23 (3)

σ = 0.2, α = 0.8, ϑ = 0.8, λ = 0.8 100 10 (1) 26 (3) 29 (4) 24 (2) 31 (5)

200 9 (1) 27 (3) 33 (5) 22 (2) 29 (4)

400 10 (1) 28 (4) 30 (5) 26 (2.5) 26 (2.5)

800 9 (1) 24 (2) 32 (5) 27 (3) 28 (4)

1000 9 (1) 26 (2.5) 31 (5) 26 (2.5) 28 (4)∑
ranks 24 51 45.5 35 49.5

Overall rank 1 5 3 2 4

plots, Total Time on Test (TTT) plots, Profile plots, probability-probability (PP) plots,
Kaplan-Meier (K-M) survival plots, density plots and hrf plots.

We compare our proposed model with the nested and non-nested models. The fol-
lowing are the for parameter non-nested models: gamma Topp-Leone type II exponenti-
ated half logistic Weibull (RBTLTIIEHLW) distribution (Oluyede and Moakofi, 2023),
gamma-generalized inverse Weibull (GGIW) distribution (Oluyede et al., 2017), expo-
nentiated half logistic odd Burr III-log-logistic (EHLOBIIILLoG) distribution (Oluyede
et al., 2022b), odd Weibull-Topp-Leone-log-logistic Poisson (OWTLLLoGP) distribution
(Oluyede et al., 2021), exponentiated odd Weibull-Topp-Leone-log logistic (EOWTLL-
LoG) distribution (Chamunorwa et al., 2021), type II exponentiated half-logistic-Gompertz-
Topp-Leone-Weibull (TIIEHLGomTLW) distribution (Oluyede and Moakofi, 2022). See
Web Appendix for the pdfs of the non-nested models.

7.1 Italy COVID-19 Data

The COVID-19 dataset from Italy spans for 61 days and covers the period between June
13th and August 12th, 2021. It consists of the daily count of newly reported COVID-19
cases. The dataset was analyzed by Almetwally et al. (2022). The dataset is provided
in the Web Appendix.
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Results from Table 5 show that RB-TII-EHL-TL-W out performs the nested and non-
nested models selected since it has the highest p-value of the K-S statistic and smallest
values of all the GoF statistics. Profile plots of the ML estimates for σ, α, ϑ and λ are
presented in the Web Appendix. The plots demonstrate that the parameters reached
their global maximum for Italy COVID-19 data. Figure 7 illustrates the fitted density
plot and the PP plot Italy COVID-19 data. From the figure, it can be observed that the
RB-TII-EHL-TL-W distribution’s fitted density closely aligns with the sample histogram
and its fitted PP plot is closer to the empirical line. This means that our proposed model
is a good fit.

Table 5: Italy COVID-19 Data: Parameter Estimates and GoF Statistics
Estimates Statistics

Distribution σ α ϑ λ -2logL AIC CAIC BIC W ∗ A∗ K−S p−value

RB-TII-EHL-TL-W 7.0205×10−01 1.8798×10+02 9.2451×10+01 1.1072×10−01 468.9076 476.9076 477.6219 485.3511 0.0436 0.2618 0.0770 0.8627

(3.5814×10−01) (4.0054×10−04) (1.6887×10−02) (1.1021×10−02)

RB-TII-EHL-TL-W 0.9056 0.0836 - 0.6100 554.8248 560.8249 561.2459 567.1575 0.0582 0.3258 0.3607 2.556×10−07

(0.6830) (0.0847) (-) (0.0731)

RB-TII-EHL-TL-W 0.0782 - - 0.6008 553.8684 557.8684 558.0753 562.0902 0.0623 0.3473 0.3568 3.61×10−07

(0.0196) (-) (-) (0.0703)

RB-TII-EHL-TL-W - 0.07171 - 0.6352 552.2675 556.2678 556.4747 560.4896 0.0569 0.3192 0.3730 8.542×10−08

(-) (0.0198) (-) (0.0768)

RB-TII-EHL-TL-W - - - 0.1473 913.7705 915.7705 915.8383 917.8814 0.0948 0.5270 0.95 2.2×10−16

(-) (-) (-) (0.0150)

δ a b λ

RBTLTIIEHLW 4.8381 0.0383 7.7882 0.7695 469.2757 477.2757 477.9899 485.7191 0.0534 0.3015 0.0885 0.7262

(11.3379) (0.0846) (12.6571) ( 0.5415)

k β λ δ

GGIW 5.3680×10−04 2.9387 2.1490×10−01 7.5370×10+01 476.6245 484.6245 485.3387 493.068 0.1655 0.9434 0.1345 0.2199

(6.3413×10−04) (1.0087×10−03) (1.5921×10−02) (2.9031×10−05)

a b α c

EHLOBIIILLoG 1.8052×10+01 2.6030×10+01 1.8991 9.2964×10−02 488.3327 496.3327 497.0470 504.7762 0.3058 1.7760 0.1395 0.1859

(3.7591×10−05) (2.3938×10+01) (1.2858) ( 8.0475×10−03)

α λ γ θ

OWTLLLoGP 1.9076 3.4083×10−01 1.0065×10+01 2.6363×10−09 478.8511 486.8511 487.5654 495.2946 0.0470 0.2826 0.1691 0.0610

(2.6406×10−01) (3.1629×10−02) (1.5017) (7.6817×10−03)

α b ϑ c

EOWTLLLoG 1.2889 24.5939 1.2906 0.5252 469.4652 477.4652 478.1795 485.9087 0.0591 0.3401 0.0989 0.5895

(0.7040) (12.4521) (0.4312) (0.0914)

α γ b β

TIIEHLGomTLW 0.0054 1.0484 1.7102 0.3122 477.7649 485.7649 486.4792 494.2084 1.3453 7.8119 0.1113 0.4371

(0.0039) ( 0.4696) (0.0354) (0.0678)

Figure 8 presents the K-M Survival plot and the ECDF plot for the Italy COVID-19
data. Upon examination of both graphs, it can be observed that the RB-TII-EHL-
TL-W distribution serves as a good model, since the observed and fitted values closely
align with each other. Figure 9 displays the TTT scaled plot and the hrf plot for Italy
COVID-19 data. The TTT scaled plot suggests an increasing hrf.

7.2 Earthquake Data

The dataset corresponds to the time intervals between consecutive earthquakes observed
in the North Anatolia fault zone over the course of the past century. The data set can
be accessed at the following URL: https://www.academia.edu/ 4022532/. The dataset
is provided in the Web Appendix.
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Figure 7: Fitted Densities and PP Plots for Italy COVID-19 Data

Figure 8: Fitted K-M Survival and ECDF Plots for Italy COVID-19 Data

Results of the GoF and p-values presented in Table 6 show that RB-TII-EHL-TL-W
distribution demonstrates superior performance compared to the selected competing
models under consideration. Profile plots of the ML estimates for σ, α, ϑ and λ are pre-
sented at the Web Appendix. The plots show that the parameters are identifiable for the
earthquake data.
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Figure 9: Fitted TTT scaled Plot and hrf Plots for Italy COVID-19 Data

Table 6: Earthquake Data: Parameter Estimates and GoF Statistics
Estimates Statistics

Distribution σ α ϑ λ -2logL AIC CAIC BIC W ∗ A∗ K−S p−value

RB-TII-EHL-TL-W 2.5945 4.9008×1005 1.6549×1002 2.6527×10−02 393.5490 401.5490 403.6542 406.2612 0.03687 0.2219 0.0917 0.9765

(6.4721×10−01) (5.0011×10−07) (3.8547×10−02) (1.9746×10−03)

RB-TII-EHL-TL-W 0.9950 0.0676 - 0.2809 423.3365 429.3365 430.5365 432.8707 0.0222 0.1595 0.3609 0.0026

(0.4701) (0.0420) (-) (0.0475)

RB-TII-EHL-TL-W 0.0800 - - 0.2710 422.9488 426.9488 427.5202 429.3049 0.0220 0.1630 0.3832 0.0011

(0.0316) (-) (-) (0.0501)

RB-TII-EHL-TL-W - 0.0751 - 0.2919 421.8254 425.8254 426.3968 428.1815 0.0225 0.1593 0.4159 0.0003

(-) (0.0375) (-) (0.0613)

RB-TII-EHL-TL-W - - - 0.0675 563.1342 565.1342 566.3123 566.3123 0.9123 0.5432 0.8722 2.2000×10−16

() () () (0.0110)

σ a b λ

RBTLTIIEHLW 8.4086×1001 4.7906×10−03 2.2081×1001 9.5945×10−02 424.3662 432.3662 434.4713 437.0783 0.0259 0.4203 0.2425 0.051

(4.0572×10−06) (6.4579×10−04) (2.1614×10−05) (1.9437×10−02)

k ϑ λ σ

GGIW 0.0826 2.3766 0.9615 18.4605 398.7646 406.7646 408.8699 411.4768 0.0664 0.528 0.1386 0.6948

(0.4279) (5.5545) (2.3891) (9.9598)

a b α c

EHLOBIIILLoG 0.6669 12.9832 2.1367 1.0230 401.1430 409.1430 411.2483 413.8552 0.0909 0.6901 0.1385 0.6961

(0.0624) (16.6590) (2.1110) (0.0407)

α λ γ θ

OWTLLLoGP 1.9014 1.5361×10−01 1.0067×10+01 3.4462×10−08 395.4174 403.4174 405.5227 408.1297 0.0286 0.1843 0.1662 0.4712

(4.6049×10−01) (2.6460×10−02) (2.7955) (7.5868×10−02)

α b ϑ c

EOWTLLLoG 38.6703 0.0187 0.0741 1.1644 396.3042 404.3042 406.4095 409.0164 0.0364 0.3075 0.1164 0.8641

(18.7070) (0.0497) (0.0393) (0.6806)

α γ b β

TIIEHLGomTLW 0.0020 1.5556 1.1730 0.1110 396.1103 404.1103 406.2156 408.8226 0.89681 4.846129 0.16667 0.4678

(0.0034) (0.9412) (0.0186) (0.0382)

Figure 10 shows that the RB-TII-EHL-TL-W’s fitted density is closer to the sample
histogram and its fitted PP plot is closer to the empirical line. This means that our
proposed model is an adequate fit for earthquake data. The earthquake data’s K-M
survival plot and ECDF plot are shown in Figure 11. We conclude that our model fits
the data well because the fitted and observed distributions for both graphs are fairly close
to each other. Figure 12 shows concave TTT scaled plot and hrf plot for earthquake
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Figure 10: Fitted Densities and PP Plots for Earthquake Data

Figure 11: Fitted K-M Survival and ECDF Graphs for Earthquake Data

data. The TTT scaled plot suggests an decreasing hrf.

7.3 Likelihood Ratio (LR) Test

Table 7 presents the LR test results for Italy COVID-19 data and earthquake data. The
table demonstrates the RB-TII-EHL-TL-W model outperforms the nested models at 5%
significance level since all p-values for both datasets are below 0.05.
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Figure 12: Earthquake Data: Fitted TTT and hrf Plots

Table 7: Likelihood Ratio Test Results

Model df Italy COVID-19 Data Earthquake Data

χ2 (p-value) χ2 (p-value)

RB-TII-EHL-TL-W(δ, α, 1, λ) 1 85.9172 (< 0.001) 29.7875 (< 0.001)

RB-TII-EHL-TL-W(δ, 1, 1, λ) 2 84.9608(< 0.001) 29.3998(< 0.001)

RB-TII-EHL-TL-W(1, α, 1, λ) 2 183.0756 (< 0.001) 177.8930 (< 0.001)

RB-TII-EHL-TL-W(1, 1, 1, λ) 3 444.8533(< 0.001) 169.5852(< 0.001)

8 Conclusions

We developed a novel family of distributions called the RB-TII-EHL-TL-G distribution.
We derived and established several mathematical properties of this family. A Monte
Carlo simulation study was conducted using different estimation techniques, including
AD, ML, CVM, AD, OLS and WLS via RMSE and Abias to assess the performance
of the estimators. Based on the simulation results, it was found that ML estimation
performed the best among the estimation methods considered. Consequently, it was
employed to estimate the model parameters. We used two datasets to demonstrate the
dominance of the new distribution over nested and several non-nested models. The
results demonstrate that our newly developed model exhibit superior performance in
terms of model fit and accuracy. We recommend that future researchers undertake a
comparative analysis between Bayesian estimation methods and frequentist estimation
techniques. This would provide valuable insights into the strengths and limitations of
different estimation approaches and contribute to a deeper understanding of the RB-
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TII-EHL-TL-G family of distributions and its applications.
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