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In recent years, many researchers have focused on forecasting financial
time series data, especially stock market data. Stock market data possesses so
many features that forecasting may be very challenging. In the present study,
a hybrid of two methodologies is proposed, which is the Empirical Mode
Decomposition (EMD) and the Random Walk (RW) to enhance the stock
market forecasting performance, denoted by (EMD-RW). The advantage of
EMD-RW is its ability to forecast nonlinear and nonstationary stock market
data without the need to use some transformation method or differencing
a time series technique. Moreover, the new proposed EMD-RW produced
high-accuracy results. Ten stock market time series for ten different countries
are used in this study to demonstrate the forecasting accuracy of the EMD-
RW. Results using four forecasting accuracy functions display that EMD-RW
forecasting accuracy is better than the four compared methods.

keywords: Nonstationary time series, EMD, forecasting.

1 Introduction

As Castle et al. (2019) described, forecasting is a statement about the future. This
future outcome is uncertain and needs an appropriate statistical approach to measure
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it correctly. However, mistakes can happen as the data has many statistical character-
istics so one statistical model cannot capture these attributes. Thus, many previous
researchers introduced some hybrid forecasting methods to accommodate these changes
to improve forecasting accuracy. Moreover, time series forecasting relies on recognizing
the historical and current data values and studying the general trend of data. Besides,
the next forecasting observations of the time series are usually determined by a specific
hypothesis based on the experience, knowledge, and judgment of researchers.

One of the crucial issues in financial time series analysis is the forecasting of financial
time data specifically in a stock market index Yang and Lin (2017). Lin et al. (2012)
suggested, 50 years ago, that forecasting the financial time series data is concerned as one
of the most difficult areas of research. Forecasting stock market data is difficult because
of several reasons, including this time series data, is nonlinear and nonstationary Wang
et al. (2015). Moreover, stock market data display high heteroscedasticity Kazem et al.
(2013) and behave in a random walk manner Patel et al. (2015). Nonetheless, most
forecasting techniques reviewed in the literature are based on the linear and stationary
attributes of data Oh et al. (2009). Usually, the transformation of an economic time
series data, instead of its original scale, is considered when describing its dynamics.
A suitable transformation is requisite to transform the non-stationary process into a
stationary process. When a process is stationary, most of its mathematical and statistical
properties can be utilized for modeling or forecasting purposes Mills (2019).

There are many methods to handle or remove the nonlinear and non-stationary be-
havior with heteroscedasticity features in the data series. Several of these methods are
applied to the transformation of data from the time domain into the frequency domain,
the difference of time series, and decomposition techniques (Awajan et al., 2024). Un-
luckily, there are some issues in using the transformation and the different techniques,
such as losing some statistical properties of the original data (Parsons et al., 2000). For
this reason, it is preferable to use the decomposition data technique. In the literature,
several decomposition techniques have been introduced. Based on the recent researchers’
comparison, one of the superior techniques in this field is known as the Empirical Mode
Decomposition (EMD) by Huang et al. (1998). EMD is a signal decomposition technique
to break down non-stationary and nonlinear time series data, such as economic data.
EMD is based on a simple set of mathematical processes and the local characteristic
time scale for the time series. Also, EMD is adaptive and highly efficient in keeping the
time domain. The EMD has been deeply employed in forecasting time series data in
many fields (Awajan et al., 2019; Le An et al., 2005).

Commonly, hybrid forecasting methods gain strengths from single forecasting methods
to obtain more accurate forecasting results (Ismail and Awajan, 2017). Lately, several
studies have combined the EMD with a traditional forecasting model. Such studies are
Nava et al. (2018); Awajan et al. (2018); Chowdhury et al. (2019); Wang et al. (2019);
Büyükşahin and Ertekin (2019). In all the studies, EMD decomposes the time series
data into Intrinsic Mode Functions (IMFs) and residual components. After that, each
decomposed component is forecasted using a time series model. Then all these forecasted
values were aggregated to generate the final forecasted value of the original time series.
In Nava et al. (2018), the EMD-SVR (a hybrid of EMD with support vector regression
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(SVR)) was applied to high-frequency data of the Standard & Poor’s 500 Index. The
EMD-SVR has gotten a significantly better result as compared to the benchmark meth-
ods. As contained in Awajan et al. (2018), a hybrid EMD with HW (Holt-Winter) and
the moving block bootstrap (bagging) forecasting method was proposed and applied to
the stock market in six countries. The results show that the EMD-HW bagging method
is better than the fourteen methods being compared using five error measurements. A
hybrid EMD with RF (Random Forest algorithm) forecasting model has been presented
in Chowdhury et al. (2019). The EMD-RF model has been applied on the daily Dhaka
Stock Exchange from January 2000 till December 2015. The results showed that the pro-
posed EMD-RF method performs better in forecasting than the RF, SVR, EMD-SVR,
PCA-SVR, ICASVR, and PCA-ICA-SVR. Meanwhile, Wang et al. (2019) introduced a
hybrid of EMD and multilayer perceptron (MLP) of Artificial Neural Network (ANN),
and Büyükşahin and Ertekin (2019) suggested EMD, ARIMA, and ANN hybrid method
to improve the forecasting performance. Their results also showed that hybrid methods
perform better than the traditional method.

Based on the previous literature, it seems that EMD combination with other methods
has improved the forecasting performance. Thus, this study will attempt to employ
a join of EMD-RW (random walk) to predict the stock market data. Then, to assess
the performance of forecasting, the proposed method is compared with the forecast of
ARIMA (Autoregressive Integrated Moving Average), STS (Structural Time Series),
single HW (Holt-Winter), and single RW models. Results showed that the proposed
method is better than these models in terms of RMSE, MAE, MAPE, and Theil U.
Section 2 introduces methods that are used in this study, which are EMD and RW
methods. Section 3 presented the proposed EMD-RW methodology with a flowchart.
Section 4 examines the data used in this study with a discussion of the results present
the strength of EMD-RW. In the last section, Section 5, some concluding comments are
made.

2 Methodology

This section describes various steps to implement the EMD-RW forecasting method.
The discussion focuses on the Empirical Mode Decomposition, Random Walk, and the
Fourier transform.

2.1 Empirical mode decomposition (EMD)

The EMD method was introduced in Huang et al. (1998). The EMD effective method for
processing and decomposing several types of non-stationary time series, the mode mixing
problem is a limitation of the standard EMD algorithm (Trybek et al., 2023). One of
our contributions to this study is that the EMD-RW methodology can overcome these
limitations. The EMD technique was employed in several areas as shown in Awajan
et al. (2019). The EMD method deals with the nonlinear and non-stationary time series
(Razif and Shabri, 2023), to decompose this time series into various simple time series
(Al-Jawarneh et al., 2022). Furthermore, the EMD decomposes the time series with a
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reserve for the time domain of the data. This attribute provides a powerful and adaptive
process for decomposing a time series into a set of time series known as intrinsic mode
functions (IMF) and residual (Al-Jawarneh et al., 2021). As a result, the original time
series can be built from the IMFs by using Equation (1).

x(t) =
n∑

i=1

IMFi(t) + r(t) (1)

where x(t) is the original time series, IMFi and r(t) are ith intrinsic mode function and
residue, respectively. Which is the result of decomposition for the original time series
by EMD. To evaluate the IMFs, the sifting process algorithm is applied to the original
data x(t) Awajan et al. (2017). This algorithm is presented in detail as follows:

1. Input the original time series data x(t) into the EMD algorithm, and let the iter-
ation value i be equal to 1.

2. Determine the local extrema values for the x(t).

3. Using the cubic spline line methods, the local maxima values are connected to-
gether, as a result, the local upper envelope function will be created, and it is
denoted by u(t).

4. Using the same last two processes, the local lower envelope function will be created
from the local minimum values of x(t), and it is denoted by l(t).

5. Then the mean function will be determined from u(t) and l(t) using the following
formula, and it is denoted by m(t);

m(t) =
u(t) + l(t)

2
(2)

6. A new function h(t) will be determined by using m(t) and the signal x(t) by
Equation (3)

h(t) = x(t) −m(t) (3)

7. In this step, we check the following conditions on the function h(t), which are
called IMF conditions Rilling et al. (2003); these are

�
|N.Ex−N.C.Z| < 1 (4)

�

|m(t)| =

∣∣∣∣u(t) + l(t)

2

∣∣∣∣ < ε (5)

where N.Ex means the number of local extreme points (local maxima and minima),
while N.C.Z means the number of cross-zero points, and ε is a too-small non-
negative value that approaches 0, sometimes equal to 0.
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8. If the function h(t) satisfies the above conditions, then move to the next step.
Otherwise, move to step 2 and we assume the function h(t) is the original data,
and apply steps 2 to 8 to the new original data.

9. As a result of the previous step; we have a new IMF; which is determined using
Equation (6). And then, update the iteration value (by moving to the next integer)
i = i + 1.

IMFi(t) = h(t) (6)

10. In this step; we will define a new function, which is called the residue function
ri(t); this function is evaluated by Equation (7).

ri+1(t) = x(t) − IMFi(t) (7)

11. Based on the result from the last step ri+1(t) we will tack one of the following
decisions.

a) If ri(t) is a monotonic or constant function, that concludes this is the last
process. Hence; we save the residue of the sifting process which is r(t) = ri(t),
and we save all the IMFs that have been obtained.

b) If the residue component does not satisfy the monotonic (or constant) condi-
tion, go back to the second step.

Figure 1 presents the flowchart of the empirical mode decomposition estimation pro-
cess.

The IMFs and the residual components of the original data (the Malaysian stock
market data as an example of the original time series) are presented in Figure 2.

2.2 Random Walk with Drift (RW)

The Random Walk (RW) method is defined as an algorithm to build the current obser-
vation according to the last observation considering the error part (white noise)) (Tyree
and Long, 1995). Mathematically, the RW is written as follows:

xt = xt−1 + εt (8)

where xt and xt−1 represent the observation’s value the observations value of the time
series at time t, and εt represents the error part at time t. The error part is known as the
white noise terms which are Independent and identically distributed has a mean equal to
zero and a fixed variance σ2. This technique assumes that the best time series prediction
for the current value is the previous value. The RW technique is not a stationary method
to ensure its variance is not fixed.

The drift in the random walk method is represented as a trend, and this model can
be represented mathematically in the following equation:
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Figure 1: Flowchart of empirical mode decomposition estimation process
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Figure 2: The IMFs and the residual components of the original data

xt = xt−1 + εt + α (9)

for α > 0, the technique will display a trend. This technique indicates both a deter-
ministic and a stochastic trend, as presented in Rowland Rowland (2003). Forecasting
values in the RW model are given by

xn+h = xn + α.h (10)

where h represents the number of the days-ahead forecast, and n represents the number
of observations in the time series.

2.3 Fourier Transform

The Fourier transform (FT) is a conversion of the signal of data from the original domain
to the frequency domain representation (Donoghue, 2014). The fast Fourier transform



Electronic Journal of Applied Statistical Analysis 179

(FFT) has been employed to estimate the spectral density of the IMFs time series com-
ponents. The FFT is a mathematical technique for computing the finite discrete FT of
signal data (Cooley et al., 1967; Bloomfield, 2004). The discrete FT of limited length
can be written as the following mathematical formula (Van Loan, 1992).

Given that Y0, Y1, ..., YN−1 be the N data points of a time series. Then, this time series
can be written by discrete FT as the following equation;

Yk =

N−1∑
n=0

yne
−i2πk n

N ; k = 0, . . . , N − 1. (11)

3 Comparison between statistical techniques

In this study, the performance of the proposal forecasting EMD-RW technique is assessed
with four forecasting models. The models are the Holt-Winter method by Holt (2004)
and Winters (1960), the ARIMA models discussed by Peiris and Perera (1988), the
structural time series model has been presented by Harvey and Koopman (2014); Harvey
(1990); Turner and Witt (2001), and the random walk method. These models were
selected according to their forecasting accuracy in the letterer. The structural time
series is implemented by Kurihara et al. (2018) on the Japanese stock market by using
the state space approach. They found that a state-space model is a useful tool for
analyzing stock market prices. ARIMA (autoregressive integrated moving average) or
Box-Jenkins models are commonly expressed as ARIMA(p, d, q). Here parameters p, d,
and q are non-negative integers. The p represents the rank of the Autoregressive part, d
denotes the number of differencing, and q means the rank of the Moving-average part.
The value of d is obtained using repeated KPSS tests by Kwiatkowski et al. (1992).
After finding the d, the p and q values are chosen from the minimum value of Akaike
information criterion with bias correction (AICC). Equation (12) presents the formula
of AICC , where n represents the sample size, k denotes the number of parameters and
L denotes the maximum value of the likelihood function for the mathematical formula.

AICc = 2k − 2 ln(L) +
2k2 + 2k

n− k − 1
(12)

The ARIMA was applied in a number of studies in forecasting financial data in the
letterer. Such as Badmus et al. (2011) employed the ARIMA forecasting method for
the cultivated area and production of maize in Nigeria. Then, Moroke (2014) used the
ARIMA method to estimate the model used for forecasting household debt in South
Africa. The Holt-Winters statistical technique is another form of exponential smoothing
statistical technique, which is much simpler. Moreover, in this technique, the current
values in time series affect more than elderly values in time series in forecasting future
value. There are two types of the Holt-Winter technique, which are the Multiplicative
and the Additive (Al-Gounmeein et al., 2023). Based on the seasonal part of this tech-
nique is determined the additive or multiplicative (Valakevicius and Brazenas, 2015).
Mathematically, the additive HW is presented as the following formula:



180 Awajan et al.

ŷt+h/t = at + h ∗ bt + st−p+1+(h−1)mod(p), (13)

where at, bt and st are given by

at = α(yt − st−p) + (1 − α)(at−1 + bt−1) (14)

bt = β(at − at−1) + (1 − β)bt−1 (15)

st = γ(yt − at) + (1 − γ)st−p (16)

And the multiplicative Holt-Winters forecasting function is defined by the following :

ŷt+h/t = (at + h ∗ bt) ∗ st−p+1+(h−1)mod(p), (17)

where at, bt and st are given by

at = α(yt/st−p) + (1 − α)(at−1 + bt−1) (18)

bt = β(at − at−1) + (1 − β)bt−1 (19)

st = γ(yt/at) + (1 − γ)st−p (20)

The at denoted the level of series at time t, bt denoted the slope (growth) at time t,
st denoted the seasonal component of the series at time t, and p denoted the number
of seasons in a period. The constants α, β, and γ are smoothing parameters in the
[0,1]-interval, h is the number of forecast values ahead. This algorithm employed the
maximum likelihood function to determine the initial parameters, and then it may de-
termine all the parameters iteratively to forecast future values of time series data. The
data are required to be non-zero for a multiplicative model, but it makes sense if time
series data are greater than zero.

Equations (21), (22), (23), and (24), show the formula of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Theil’s U-statistic (TheilU), respectively. These measurements will be used to evaluate
the forecasting performance of the forecasting models. Where ŷ is the forecast value of
the variable yi at step i from the actual series value.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (21)

MAE =
1

n

n∑
i=1

|yi − ŷi| (22)

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

.100% (23)

TheilU =

√∑h−1
i=1

(
ŷi+1−yi

yi
− yi+1−yi

yi

)2

√∑h−1
i=1

(
yi+1−yi

yi

)2
(24)
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4 Data and the proposed method

This section starts by presenting the data used to implement the proposed methodol-
ogy. Then details the discussion about the hybrid methodology of EMD-RW and finally
displays the algorithm of the proposed methodology.

Figure 3: Time Series Plots

4.1 Data

Table 1 presents basic statistics for ten countries’ stock market indexes and the number
of observations for each stock market data. The ten countries are selected based on
data availability without any specific preference. The stock market time series were ob-
tained from the Yahoo Finance website (https://finance.yahoo.com/). Whereas, Figure
3 presents plots of the daily time series of these data. The close prices are employed
as a general measure of the daily stock market data through the six years. These
data cover the period from 9 February 2010 to 7 January 2016. Figure 3 presents
the ten stock markets. The stationary and the linearity of these data are tested, and
the KPSS(Kwiatkowski-Phillips-Schmidt-Shin (Banerjee et al., 1993)), RESET (Ramsey
Regression Equation Specification Error Test (Ramsey, 1969)), BP (Breusch-Pagan test
(Breusch and Pagan, 1979)) has been applied on the original data. Based on these tests,
the time series is significantly non-linear and non-stationary, it has a high heteroscedas-
ticity attribute also. Moreover, the basic statistics in Table 1 reveal that all the series
are volatile, and display skewed and platykurtic distribution. To evaluate the proposed
forecasting method in this study, the time series is partitioned into two sets. The obser-
vations from day-1 into day-m will be the first set. This data set is employed to select
the suitable forecasting method. The second set is the observations from day-(m + 1)
into day-N (the last observation). This data set is reserved for out-of-sample evaluation,
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Table 1: Basic statistics

Country Mean Median Standard Skewness Kurtosis Number of

Deviation observations

France 3968.26 3939.82 557.54 0.21 -0.6 1516

Germany 8102.02 7637.87 1791.81 0.45 -0.91 1510

Iceland 348.33 326.35 101.33 1.07 0.23 1463

Italy 19025.28 19671.55 2937.37 -0.3 -1.14 1520

Malaysia 1638.2 1643.89 164.52 -0.4 -0.68 1459

Netherlands 370.77 355.92 56.19 0.65 -0.32 1516

New Zealand 4317.8 4340.73 1024.04 0.28 -1.47 1419

Norwegian 591.02 581.59 97.87 0.05 -0.99 1476

Spain 9537 9933.1 1297.48 -0.55 -0.67 1515

USSP500 1579.25 1493.69 344.31 0.2 -1.44 1490

which is employed to make a comparison of the accuracy with the selected forecasting
methods. In this study, Malaysia stock market data are taken as an example to explain
the partition of time series data. The number of observations is N = 1459, the first part
is m = 1453, 1279, and 1094 and the second part is h = 6 days, 180 days, and 365 days
respectively, are used.

4.2 Propose Methodology

The EMD-RW technical contains five steps as follows:

1. In the first step, the EMD method is used to decompose the original data. As a
result, we obtained several IMFs (assumed equal to n) with one residue (denoted
by r). These components can be written as the equation (1) Huang (2014).

2. The Fast Fourier Transformation (FFT) (Bloomfield, 2004) is employed to trans-
form the IMF’s components from the time domain into the frequency domain.

3. Based on the results from the previous step, the IMFs components are separated
into two sets of data, which are high-frequency (HF) and low-frequency (LF) sets of
data, with 0.02 threshold criteria (McAssey et al., 2013). Based on this threshold
criteria, we define a new integer number M, such that M is between 1 and the
number of IMFs (n). According to the M-value, the HF and LF are separated into
two sets as the following:

HF = {IMF1, IMF2, ..., IMFM} (25)

LF = {IMFM+1, IMFM2, ..., IMFn} (26)
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4. The Random Walk forecasting technique is employed for each IMF’s component
in HF set and the residue to forecast h-days in the future. The Random Walk
forecasting technique was given as Equation (27).

xt = xt−1 + εt + α (27)

Click here to enter text. for α > 0 the process will show an upward trend. Where
xt and xt−1 are the observations of the time series and εt is white noise. The white
noise terms are i.i.d.−normal variables, having zero mean and a constant standard
deviation. Now, for each IMFs in LF set and residue, we have h-forecasting values.

5. All the forecasted values from the last Step are aggregated in this step. As a
result, a path of the forecasting value with length h for the original time series x(t)
is obtained. The symbol denotes the forecasting value of x̂h. Mathematically, x̂h
is written as a formula (28).

x̂h = RWh(x(t)) +

n∑
i=M+1

RWh(IMFi(t)) (28)

Figure 4 presents the methodology of the EMD-RW technique as a flowchart. While
Figure 5 presents the scheme algorithm of the EMD-RW procedure.

Figure 4: Flowchart of a hybrid Empirical Mode Decomposition with Random walk with
drift model

5 Results and discussion

In this study, stock market data for ten countries are employed to display the forecasting
accuracy performance for short-term (h=6 days), medium-term (h=180 days), and long-
term (h=365 days) using the proposed method (EMD-RW). Besides, four traditional



184 Awajan et al.

Figure 5: Summarized of the EMD-RW forecasting process

models (ARIMA, STS, single HW, and single RW are employed to present the forecasting
accuracy of EMD -RW forecasting method. The RMSE, MAE, MAPE, and TheilU
values for RW, ARIMA, HW, STS, and EMD-RW models, as shown in Table 2 and
Table 3 for the ten countries.

From Table 2 and Table 3, nine of the ten countries shown the proposed method
EMD-RW produced lower RMSE, MAE, MAPE, and TheilU for short-term (h=6 days)
forecasting. As for the medium-term (h=180 days) forecasting performance, eight out
of the ten countries indicate that EMD-RW is superior to the single RW, ARIMA,
single HW, and STS. Meanwhile, for long-term (h=365 days) forecasting, out of the ten
countries, only three countries displayed lesser forecasting performance measurement
values for EMD-RW but chose another model to be better.

Moreover, results in Table 2 and Table 3 reveal that the HW and ARIMA models could
be an alternative for long-term prediction due to the minimum measure of accuracy.
Taylor (2003) indicates that ARIMA and HW are appropriate and adequate for a short-
time forecast. However, in this study when long-term forecasting stock market, 365 days,
the ARIMA model, compared to the remaining models, indicated minimum accuracy
measures, (108.6, 90.8, 16.9, and 26.1) and (276.1, 236.8, 4.1, and 9.4) for Iceland and
New Zealand respectively. At the same time, HW predicted France’s, Germany’s, Italy’s,
and Netherlands’s index better. Therefore, in this case, the results indicate that ARIMA
and HW are only adequate for long-term forecast, and this contradicts the conditional of
ARIMA and HW modeling essence of short and medium forecasting (Al-Musaylh et al.,
2018; Wong and Guo, 2010; Makridakis and Hibon, 1991; Makatjane and Moroke, 2016).

The proposed method, EMD-RW indicates the minimum accuracy measures, (154.4,
127.4, 2.8, and 2.5), (393.3, 351.1, 3.4, and 1.8), (606.4, 530.2, 2.6, and 1.5), and (13.8,
11.4, 2.7, and 2.2) when forecasting 6 and 180 days for the daily stock market index
of France, Germany, Italy, and the Netherlands. Also, on average, the EMD-RW out-
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Table 2: The RMSE, MAE, MAPE, and TheilU of EMD-RW, ARIMA, HW, STS, and
RW for forecasting at h = 6, 180, and 365 for France, Germany, Iceland, Italy,
and Malaysia countries.

RMSE MAE MAPE TheilU

Country Method\h 6 180 365 6 180 365 6 180 365 6 180 365

RW 183 493.8 559.5 158.3 443.9 466.8 3.5 9.4 9.6 2.9 6.9 8.3

ARIMA 185.8 613.2 559.5 160.8 556.6 466.8 3.6 11.8 9.6 3 8.5 8.3

France HW 186.8 784.8 400.6 161.6 712.9 317.4 3.6 15.1 6.5 3 10.9 5.9

STS 182.6 492.8 559.6 157.8 442.9 466.9 3.5 9.4 9.6 2.9 6.9 8.3

EMD-RW 154.4 451.8 542.6 127.4 396.7 450.9 2.8 8.4 9.3 2.5 6.3 8

RW 398.7 1192.6 1262 353.9 1016.6 1022.8 3.5 9.7 9.3 1.8 7.2 7.8

ARIMA 410.7 1652.5 1267.9 362.5 1450.2 1027.5 3.5 13.8 9.3 1.9 10 7.9

Germany HW 399.5 2605.1 964.8 354.5 2306.8 756.3 3.5 21.9 6.9 1.8 15.5 6

STS 398.7 1192.6 1262 353.9 1016.6 1022.8 3.5 9.7 9.3 1.8 7.2 7.8

EMD-RW 393.3 1156.4 1234.2 351.1 975.3 1001.5 3.4 9.4 9.1 1.8 7 7.7

RW 9.3 86.5 139.5 8.8 76.2 117.6 1.4 13.2 22 2.3 21.6 33.6

ARIMA 13.7 65 108.6 13.1 57.4 90.8 2.1 9.9 16.9 3.5 16.2 26.1

Iceland HW 7.9 51.3 160.3 7.3 45.5 135.7 1.2 7.9 25.4 2 12.8 38.7

STS 8.4 86.5 108.9 7.8 76.2 91.1 1.3 13.2 17 2.1 21.6 26.2

EMD-RW 5.2 86.1 138.6 4.3 75.7 116.6 0.7 13.1 21.8 1.4 21.5 33.4

RW 698.6 1169.1 1676 581.5 947.3 1450 2.8 4.3 6.7 1.8 3.2 4.8

ARIMA 699.7 1315.9 1675.9 582.2 1060.7 1449.9 2.8 4.9 6.7 1.8 3.6 4.8

Italy HW 681.9 3300.6 1477 569.4 2744.7 1245.6 2.8 12.5 6 1.7 9 4.6

STS 700.4 1170.8 1675.7 582.4 948.5 1449.8 2.8 4.3 6.7 1.8 3.2 4.8

EMD-RW 606.4 1135.6 1615.2 530.2 924.5 1398 2.6 4.2 6.5 1.5 3.1 4.7

RW 21.4 166.2 151.5 19 151.5 127 1.1 9.1 7.5 1.2 13 13.4

ARIMA 20.8 212.7 273.8 18.8 193.9 236.3 1.1 11.6 13.8 1.2 16.6 24.1

Malaysia HW 22.1 274.7 15246.6 19.8 249.4 15185.3 1.2 15 869.7 1.3 21.5 1292

STS 20.5 165.3 152 18.6 150.6 127.5 1.1 9.1 7.5 1.2 13 13.4

EMD-RW 21 163.4 135.4 18.9 148.7 108.5 1.1 8.9 6.4 1.2 12.8 12

performed all four benchmark models when predicting the short, medium, and long-term
forecast of Norway, Spain, and US stock market index, and this could be attributed to
the fact that the new method improved the performance of the RW model.

In view of this, the result indicates that the EMD-RW is not only an improved excellent
alternative to studying the stock markets index behavior but also a good hybrid model to
achieve short- and medium-term forecasts with high accuracy. The proposed method is
presented to be used for short-term and medium-term forecasting, more than long-term
ones. This is due to short-term and medium-term forecasting being far more prevalent
in commodities and stock markets where traders and investors focus on short-term and
medium-term forecasting (Liu et al., 2022).

Despite this, the proposed method, EMD-RW indicates the minimum accuracy mea-
sures, (135.4, 108.5, 6.4, and 12), (27.9, 22.1, 4.1, and 4.4), (597,498.7, 4.7, and 4.1),
and (86.7, 75.8, 3.7, and 4.5) when forecasting 365 days for the daily stock market index
of Malaysia, Norwegian, Spain, and US S&P500. Also, in the stock markets of France,
Germany, Italy, and New Zealand, the EMD-RW outperformed three benchmark models
when predicting the long-term forecast.
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Table 3: The RMSE, MAE, MAPE, and TheilU of EMD-RW, ARIMA, HW, STS, and
RW for forecasting at h = 6, 180, and 365 for Netherlands, New Zealand,
Norwegian, Spain, and US S&P 500 countries.

RMSE MAE MAPE TheilU

Country Method\h 6 180 365 6 180 365 6 180 365 6 180 365

RW 16 52.2 64.3 13.7 45.5 54.8 3.2 10.1 11.7 2.6 8.1 10.6

ARIMA 16.3 66.3 52.4 14 58.5 42.5 3.3 13 9 2.6 10.2 8.5

Nether- HW 16.3 89.6 48.8 14 79.5 38.7 3.3 17.7 8.2 2.6 13.8 7.9

lands STS 16 52.2 64.3 13.7 45.5 54.8 3.2 10.1 11.7 2.6 8.1 10.6

EMD-RW 13.8 48.2 61.9 11.4 40.8 52.2 2.7 9.1 11.1 2.2 7.5 10.1

RW 44.2 199.6 640.3 38.9 149.1 576.4 0.6 2.5 9.9 1 5.9 21.6

ARIMA 53 176.7 276.1 45.8 125.6 236.8 0.7 2.2 4.1 1.2 5.6 9.4

New HW 60.4 189.2 779.8 51.8 144 700.7 0.8 2.4 12.1 1.4 5.6 26.3

Zealand STS 44.2 199.6 640.3 38.9 149.1 576.4 0.6 2.5 9.9 1 5.9 21.6

EMD-RW 40.6 188.2 605.7 34.1 145 540.3 0.5 2.4 9.3 0.8 5.6 20.4

RW 17.9 43.7 29.2 14 36.3 23.4 2.7 6.6 4.3 2.1 6.5 4.6

ARIMA 17.9 45.6 29 14 38.1 23.2 2.7 7 4.3 2.1 6.8 4.5

Nor- HW 17.2 108.2 136.7 13.5 94.5 122 2.6 17.1 22 2 15.8 20.7

wegian STS 17.9 43.7 29.2 14 36.3 23.4 2.7 6.6 4.3 2.1 6.5 4.6

EMD-RW 17 41.3 27.9 13.5 33.4 22.1 2.6 6.1 4.1 1.9 6.1 4.4

RW 377.2 1278.3 640.5 321.9 1088.2 514.2 3.5 10.8 4.8 2.9 9 4.3

ARIMA 379.9 1260.1 637.3 327.2 1066.8 512.2 3.5 10.6 4.8 3 8.9 4.3

Spain HW 347 2248.7 669.4 294.4 1953.6 532 3.2 19.3 4.9 2.7 15.7 4.5

STS 377.2 1278.3 640.5 321.9 1088.2 514.2 3.5 10.8 4.8 2.9 9 4.3

EMD-RW 340.4 1250.7 597 283 1055.9 498.7 3.1 10.5 4.7 2.7 8.8 4.1

RW 77 80.6 87.8 66.7 55.4 76.8 3.4 2.8 3.7 2.9 3.9 4.5

ARIMA 78.4 146.6 122.8 67.9 119.3 87.9 3.4 5.9 4.4 2.9 7 6.6

US S HW 79.2 167.4 220 68.6 138.8 176 3.4 6.9 8.7 3 8 11.7

&P 500 STS 76.7 151.4 87.8 66.3 124.2 76.8 3.3 6.2 3.7 2.9 7.2 4.5

EMD-RW 64.5 78.2 86.7 51.7 53.1 75.8 2.6 2.7 3.7 2.4 3.8 4.5

6 Conclusions

In this study, a new hybrid EMD-RW forecasting method was presented for stock market
forecasting. The EMD-RW was examined on ten different stock market data using four
accuracy calculation functions. It was found that EMD-RW can outperform four selected
forecasting methods for short and medium-term forecasting but the proposed was limited
for long-term forecasting. Thus, this paper recommended using EMD-RW for forecasting
stock market data in short and medium-term durations. In addition, the results of this
study are aligned with previous literature that reveals the traditional forecasting method,
when combined with EMD, will create a better forecasting model.
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