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This article proposes a new estimation method to fit the structural re-
gression model when the variables are subject to errors. The new estimation
method is the extension of the Wald estimation method and involves iterative
process. Several Monte Carlo simulation experiments were used to study the
performance of the proposed estimators. The results were compared with
the classical Wald estimation method in terms of its root mean square error
(RMSE). In addition, an application for examining the relationships between
Jordan’s national gross domestic product (GDP) and its human development
index (HDI) was presented. Numerical results showed that the GDP and HDI
have a strong positive and significant correlation. Moreover, the proposed
procedures with different subgroup sizes (r =3 and r =4) gave more accurate
estimators than the classical estimation methods in fitting the relationships
between GDP and HDI.

keywords: Measurement Error Models, Wald Estimator, Repetitive Esti-
mator, Human Development Index, National Gross Domestic Product, Monte
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1 Introduction

Measurement error models (MEMs) are one of the most interesting models used to study
the relationships between two or more variables. These models were used when both
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©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



488 Al Dibi’i, Abdul Rahman, Al-Nasser

response and predictor variables are measured with error. In modeling, when both vari-
ables are contaminated by measurement errors, they are known by many names: MEM,
errors-in-variables (EIV), error in covariance when the predictor is a continuous variable,
misclassification when the predictor variable is discrete, or regression model when both
variables are subject to error (Stefanski (2000); Gustafson (2021)). The MEM is an
extension of simple linear regression and occurs in many practical studies; for example,
but not limited to, this model often occurs in healthcare studies, econometrics, ecology,
and many other research areas. One critical impact of modeling the data using the MEM
for estimating the unknown parameters is that the classical estimation methods such as
least squares or maximum likelihood estimation (MLE) do not consistently estimate the
unknown parameters (Carroll et al. (1995)). The problem of fitting the MEM has been
considered by many authors (see Madansky (1959); Fuller (1987); Cheng and Van Ness
(1999); Gillard (2006, 2010)). In spite of developed estimation methods for fitting the
MEM, this is still an unresolved area. The difficulty with the estimation approaches
in the literature, whether parametric or non-parametric, is that they rely on additional
assumptions or a very complex optimization procedure, which makes these methods fail
to give reliable results, or they need prior assumptions to produce consistent estimators.
On the other hand, the smoothing methods cannot clearly remove the effect of the error
in the predictor. Moreover, some difficulty also appears in using data-driven methods,
which mainly depend on the numerical or physical properties of the data, which makes
them work perfectly with some data and fail with other selected data. The problem of
estimating the MEM model has received increasing attention from many authors, with
the growing realization that the predictors are either weakly defined or poorly measured,
(Griliches (1974)). One of the most interesting estimation procedures was proposed by
(Wald (1940)), which suggests dividing the data into two groups based on the median
value and then fitting a line between the mean of both groups. Wald’s estimators are
consistent only when the error terms are normally distributed (Gupta and Amanull
(1970)). Since then, there have been some developments in the Wald estimation pro-
cedure (see, for example, (Al-Nasser et al. (2016); Cheng and Van Ness (1999)). The
purpose of this paper is to shed further light on the Wald-type estimation procedure for
fitting the structural MEM. This paper is divided into eight sections. Section 2 describes
the structural MEM. Section 3 reviews the classical estimation procedures: Wald-type,
Maximum Likelihood and Method of Moment. Section 4 presents the proposed proce-
dures (Repetitive procedure and Iterative procedure). Then in Section 5 several Monte
Carlo experiments are presented to assess the performance of the proposed estimator in
fitting the structural MEM. Then, in Section 6 a real data analysis is given for illustrat-
ing the relationships between the Human Development Index (HDI) and the National
Gross Domestic Product (GDP); finally, some concluding remarks are given in Section
7.
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2 Structural Measurement Error Model

The structural MEM is the one from three models of MEM that depending on the
assumptions about (Cheng and Van Ness (1999)), whereas, if the ξi are independent
identically distributed random variables and independent of the errors, then the model
is known as a structural model, when E (ξi) = µ and V ar (ξi) = σ2.

Let’s consider a bivariate sample of size n: (x1, y1), (x2, y2), ... (xn, yn) subject to error
observations, such that:
E(Xi) = ξi and E(yi) = ηi
where ξi and ηi, i = 1, 2, ..., n are the true values of xi and yi respectively. Then

the observed values have a linear relationship with the exact values given as:

xi = xii + δi, and yi = ηi + ϵi (1)

where ξi, and ϵi are independent error δ terms ϵ of the true values and of each other’s
with zero mean and constant variances σ2

δ and σ2
ϵ , respectively. Also, the true values are

linearly related in the form of:

ηi = α + β ξi i = 1, 2, ..., n (2)

where α and β are unknown parameters to be estimated, under the following as-
sumptions:

� The elements of the sequences δi and ϵi, i = 1, 2, ..., n are independently and
identically distributed with zero mean and finite variances σ2

δ and σ2
ϵ respec-

tively, that is: E(δi) = E(ϵi) = 0, foralli, E(δiδj) = E(ϵiϵj) = 0, i ̸= j and
V ar(δi) = σ2

δ , V ar(ϵi) = σ2
ϵ for all i

� The elements of the sequences δi and ϵi, i = 1, 2, ..., n are mutually independent,
where E(δiϵj) = 0 for all i and j.

� δi and ϵi are also independent of the true values of ξi and ηi, in which: E(ξiδi) = 0,
and E(ηiϵi) = 0.

� The true values of xi and yi are linearly related as: yi = α+ βxi, i = 1, 2, ..., n

where α and β are the parameters to be determined.

� The limit inferior is considered as | (x1+x2+.....+xm)−(x(m+1)+x2+...+xn)

n | , n= 2,3,...,m,
where m = n

2 .

� All the even and odd-order moments of the error terms exist and are finite.

Now, combining the model given in (1) and (2) we will have the following relationship:

yi = ηi + ϵi (3)

yi = α+ βξi + ϵi (4)
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yi = α+ β(xi − δi) + ϵi (5)

Measurement error, which occurs when a variable of interest is not accurately observed,
is a problem that frequently calls into question the reliability of an analysis. Although
there are numerous methods for correcting the effects of measurement error, when their
underlying assumptions are violated, they become unreliable. This issue is exacerbated
when presumptions, like those pertaining to the distribution of error terms, are hard or
impossible to test using the available data. In the literature on measurement error, an
additive model with normally distributed errors is frequently assumed. Therefore, the
predictor is not independent from the error term, which violates the basic assumption of
the least squares theory. Accordingly, other estimation methods are needed to solve this
problem; one of the most interesting is the free distribution estimation method known
as the Wald-type grouping procedure.

3 The Classical Estimations of MEM

Measurement error, which occurs when a variable of interest is not accurately observed,
is a problem that frequently calls into question the reliability of an analysis. Although
there are numerous methods for correcting the effects of measurement error, when their
underlying assumptions are violated, they become unreliable. This issue is exacerbated
when presumptions, like those pertaining to the distribution of error terms, are hard or
impossible to test using the available data. In the literature on measurement error, an
additive model with normally distributed errors is frequently assumed. However, when
the predictor is not independent from the error term, it violates the basic assumption of
the least squares theory. Accordingly, other estimation methods are needed to solve this
problem; one of the most interesting is the free distribution estimation method known
as the Wald-type grouping procedure. A brief discussion on the common methods used
for estimating MEM are as follows:

3.1 Wald-Type Estimation Method

A popular and simple estimation method in the context of structural MEM is the Wald-
type estimation method, also known as grouping methods (Wald (1940); Gillard (2010)).
The main idea of the Wald- type estimation methods is to split the data into groups
(two or three groups), then estimate the slope of the MEM based on the group’s centers.
To illustrate this procedure, consider a random sample of size n, say (xi , yi) i=1, 2,
. . . . . ., n. Then, based on the order statistics of X, the data is divided into two groups
of the same size, such that:

� Group1 = G1 = (x(i), y[i]);x(i) ≤ Median(x)

� Group2 = G2 = (x(i), y[i]);x(i) > Median(x)

where x(i) is the ith order statistic and y[i] is the associated i-th judgmental order
statistic. In the case of odd sample size, the median is eliminated. Then, the unknown
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slope could be estimated by joining the mean of the low values of X(G1) to the mean of
the high values of X(G2). Accordingly, we have the following two group estimators:

β̂ =
ȳG2 − ȳG1

x̄G2 − x̄G1

(6)

and

α̂ = ȳ − β̂x̄ (7)

where:

ȳG1 =
y(1)+........ + y(m)

m ȳG2 =
y(m+1)+........ + y(n)

m

x̄G1 =
x(1)+..... + x(m)

m x̄G2 =
x(m+1)+..... + x(n)

m

ȳ =
ȳG1

+ ȳG2
n and x̄ =

x̄G1
+ x̄G2
n

It could be noted that,

E
(
β̂
)
= E

(
ȳG2 − ȳG1

x̄G2 − x̄G1

)
= E

(
(α+ βx̄2)− (α+ β x̄1)

x̄2 − x̄1

)
= β (8)

with the associated variance given as:

V ar
(
β̂
)
=

1

(x̄2 − x̄1)
2 {V ar (ȳ2 , ȳ1)} =

var (ȳ2) + var (ȳ1)− 2cov (ȳ2 , ȳ1)

(x̄2 − x̄1)
2 (9)

Moreover,

E (α̂) = E (ȳ − β x̄) = (α+ β x̄− β x̄) = α (10)

with

var (α̂) = var
(
ȳ − β̂ x̄

)
= var (ȳ) + var

(
β̂
)
− 2 cov (ȳ2 , ȳ1) (11)

An extension of the two groups procedure was proposed by (Bartlett (1949); Nair and
Shrivastava (1942)) where they suggested the splitting of the data into three equally sized
sub-groups, G1, G2 and G3 and after eliminating the middle group from the analysis,
the unknown parameters were estimated as:

β̂ =
ȳG3 − ȳG1

x̄G3 − x̄G1
andα̂ = ȳ − β̂x̄. (12)

where:

ȳG1 =
y(1)+........ + y(m)

m ȳG3 =
y(m+k+1)+........ + y(n)

m

x̄G1 =
x(1)+..... + x(m)

m x̄G3 =
x(m+k+1)+..... + x(n)

m

ȳ =
ȳG1 + ȳG3

n
; x̄ =

x̄G1 + x̄G2

n
. (13)
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In similar way that given in 5 and 7, it could be show that,

E
(
β̂
)
= β (14)

E (α̂) = α (15)

3.2 Maximum Likelihood Estimation Method

Several estimation methods for fitting the structural measurement error model (MEM)
had been discussed in the literature. Among these, the least squares and maximum
likelihood estimation (MLE) methods are the most commonly used. Based on a certain
prior assumption(s), the MLE method is preferred (Lindley (1947)). earlier, (Madan-
sky (1959)) provided detailed summary of using the MLE in the context of MEM. An
alternative estimation approach is the grouping method that proposed by (Nair and
Shrivastava (1942)). Moreover, (Gillard (2010)) proposed a Bayesian technique using
the expectation-maximization (EM) algorithms to calculate the MLE for MEMs with or
without equation error. Similarly,(Griliches (1974)) developed an iterative MLE proce-
dure for estimating a heteroscedastic MEM.

The classical MLE of model (3) can be obtained by solving the log likelihood function,
which is given by:

logL(α, β, σ2
δ , σ

2
ϵ , ξ1, ..., ξn, η1, ..., ηn) (16)

= nlog(2π)− n

2
log(σ2

δ ) + log(σ2
ϵ −

∑n
i=1(xi − ξi)

2σ2
δ

−
∑n

i=1 (yi − α − βξi)
2

2σ2
ϵ

(17)

However, the above likelihood function is unbounded. To see this, let us put and
this results in σ2

δ approaching 0. The likelihood function will then approach infinity,
irrespective of the values of α, β and σ2

ε . An additional assumption is required about

the variance ratio λ = σ2
ε

σ2
δ
, and it is assumed to be known. As a matter of fact, in the

case of λ is unknown, the solution is a saddle point rather than maximum of likelihood
surface.

Consider the simple linear structural MEM, given in (3); then under the regular as-
sumption, this model can be estimated by solving a system of five equations as follows:

E(X) = Eξ = µ;EY = µy = Eη = β0 + β1µ;
V ar(X) = σ2

x = var(ξ) + σ2
δ = σ2 + σ2

δ ;
V ar(Y ) = σ2

y = var(η) + σ2
ϵ = β2

1σ
2 + σ2

ϵ ;
cov(X,Y ) = σ2

xy = cov(ξ, η) = β1σ
2.

Meanwhile, one can use the first and second order moments to find the optimal esti-
mators of the structural MEM, that is:

µ̂ = χ̄ = 1
n

∑n
i=1 xi;

µ̂y = ȳ = 1
n

∑n
i=1 yi;
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σ̂2
x = sxx = 1

n

∑n
i=1 (xi − χ̄)2 ;

σ̂2
y = syy = 1

n

∑n
i=1 (yi − χ̄)2 ;

σ̂2
xy = sxy = 1

n

∑n
i=1 (xi − χ̄) (yi − ȳ) .

Let’s replace µ̂y, σ̂2
x, σ̂

2
y and σ̂2

xy by these values:

χ̄ = µ̂ ;

ȳ = β̂0 + β̂1µ̂; ;

sxx = σ̂2 + σ̂2
δ ; ;

syy = β̂2
1 σ̂

2 + σ̂2
ε ; ;

sxy = β̂1σ̂
2; .

Since σ̂2 ≥ 0, σ̂2
δ ≥ 0 and σ̂2

ε ≥ 0, then the following inequalities hold

sxx ≥ syy

β̂1
;

syy ≥ β̂1sxy;

sxx ≥ σ̂2
δ ;

syy ≥ σ̂2
ε ;

sign(sxy) = sign
(
β̂1

)
.

Since the number of equations is less than the number of parameters, additional in-
formation is needed to solve the system, which appears on six sides in the literature:

� The ratio of the error variances, λ = σ2
ϵ

σ2
δ
, is known.

� The reliability ratio, Kξ which is equal to = σ2

(σ2+σ2
δ)
, is known.

� The variance σ2
δ is known.

� The variance σ2
ε is known.

� Both variances σ2
ε and σ2

δ are known.

� The intercept β0 is known.

In this method, for example based on the first prior assumption, then the slops can be
computed as follows:

β̂ =
(Syy − λSxx) +

√
(Syy − λSxx2 + 4λSxy2

2Sxy
(18)

and

α̂ = ȳ − β̂x̄ (19)
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3.3 Method of Moments

Many mathematical statistics books, including (Casella and Berger (1990)), describe the
method of moments (MOM) technique, though the treatment is brief here as it is else-
where. They, like many other mathematical statistical texts, emphasized the maximum
likelihood method. MOM estimators have been criticized because they are not uniquely
defined, which means that if the method is used, it must be chosen from among possible
estimators to find those that best suit the data being analyzed. This is demonstrated
by applying the method to errors in variable regression theory. On the other hand, the
MOM has the advantage of being simple, with the only assumptions being that low-order
moments of the distributions describing the observations exist (Gillard and Iles (2005)).

In this method, the slops are computed as follows:

β̂1 =
sxy

sxx − σ2
δ

; sxx > σ2
δ , syy >

(Sxy)
2 − σδε

sxx − σ2
δ

and σ2
δ is known. (20)

where:

sxy =
∑

xy − n
∑

x̄ȳ,

Sxx =
∑

x2i − nx̄2

α̂ = ȳ − β̂x̄

4 The Proposed Estimation Procedure

This paper proposes two new extensions of Wald-type procedures to improve the esti-
mation of the structural MEM. The general idea of these procedures can be summarized
as follows:

� Sort the x’s values in ascending order from smallest to largest with their associated
y’s values (x(i), y[i]), i=1, 2, ..., n.

� Divide the sample into r-subgroups of equal size (i.e., say the subsample size is k)
such that r ≤ [n2 ].

� Compute the mean for each subgroup x̄i, ȳi; i = 1, 2, ..., r.

Next, the estimation of the unknown parameters involves the following two procedures:

Procedure 1

� The idea in this procedure is to compute all possible slopes (Figure.1). This can be
done by defining the jth slope iteratively as:

β̂j =
ȳmj − ȳ(m−1)j

x̄mj − x̄(m−1)j
, j = 1, 2, . . . . . . . . . ,

(
r

2

)
, m = 1, 2, . . . . . . . . . r. (21)

Accordingly the unknown parameters can be estimated as:
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Figure 1: All possible slopes between the subgroups

β̂p1 =
1(
r
2

) ∑
j

β̂j and α̂p1 = ȳ − β̂p1x̄ (22)

Procedure 2 In this procedure the idea is to compute the pairwise slopes continuously
and gradually from one subgroup to another subgroup (Figure 2). Therefore, the jth
slope in this case can be computed as:

β̂j =
ȳmj − ȳ(m−1)j

x̄mj − x̄(m−1)j
, j = 1, 2, . . . . . . . . . , (r − 1) , m = 1, 2, . . . , r − 1 (23)

Figure 2: Pairwise slope between the subgroups

� Then the unknown parameters of the MEM can be estimated as

β̂p2 =
1

(r − 1)

∑
j

β̂j and α̂p2 = ȳ − β̂p2x̄ (24)

Theorem: Assuming that the model in Eq.1-2 is satisfied, then the estimators given
in Eq. 16 and Eq.18 are unbiased estimators. Proof:

E
(
β̂j

)
= E

(
ȳmj − ȳ(m−1)j

x̄mj − x̄(m−1)j

)
(25)

with associated variance given as:
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V ar(β̂) =
1

x̄mj − x̄2(m−1)j

V ar(ȳmj , ȳ(m− 1)j) (26)

=
var (ȳmj) + var

(
ȳ(m−1)j

)
− 2cov

(
ȳmj , ȳ(m−1)j

)(
x̄mj − x̄(m−1)j

)2 (27)

Also,

E (α̂) = E
(
ȳ − β̂p2 x̄

)
=

(
α+ β̂pi x̄− β̂pi x̄

)
= α i = 1, 2 (28)

with
var (α̂) = var

(
ȳ − β̂pi x̄

)
= var (ȳ) + var

(
β̂pi

)
− 2 cov (ȳm , ȳ(m−1)) (29)

5 Monte Carlo Experiment

Monte Carlo simulations and experiments were carried out to evaluate the performance of
the proposed procedures. In these experiments, 10,000 random samples were generated
from the structural MEM, each of size n = 50, 100, 200, and 500. Two cases were
considered within the sample by assuming the data were either with or without some
outliers. The simulations were done with the following set-up:

� Order the data from the smallest to the largest with their respective associated
Y i′si = 1, 2, ..., n, where:

ηi = α+ β1ξi i = 1, 2, . . . , n

yi = ηi + ϵi

xi = ξi + δi i = 1, 2, . . . , n

� Set the initial values for the model parameters are α = 0, β = 1, σ2
ϵ = 1, λ =

1, σ2
δ = 1 and σ2

ξ = 1.

� Divide each sample into r =3 ,4 subsamples when dealing with the classical and
proposed Wald-type procedures. Noted that for MOM and MLE procedures we
didn’t divide the sample for subgroups.

� In the case where outlier exists, the data are considered impure. In each step, a
set number of observations (10%) were extracted and replaced with outliers.
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An impure data set was formed based on the following specifications:

� Outliers exist only in y. In this case, the variance of the response error is assumed
to be (ϵiN(0, σ2

ϵ ), σ
2
ϵ = 16.

� Outliers exist only in x. In this case, the variance of the response error is assumed
to be (δiN(0, σ2

δ ), σ
2
δ = 16.

� Outliers exist both in y and x. Then the error terms were generated from normal
distribution with variances (σ2

δ , σ
2
ϵ ) = (16, 16).

The performances of these estimators were measured by computing the simulated bias
and mean square error, which are represented as:

Bias =
1

10000

10000∑
i=1

(µ̂i − µ) & MSE =
1

10000

10000∑
i=1

(µ̂i − µ)2 (30)

with µ̂iis the estimates given by one of the proposed estimators for the ith sample.
The results of the Monte Carlo experiment are presented in Table 1 for the inliers cases.
Table 2, Table 3, and Table 4 each have outliers in x only, y only, and in both x and y,
respectively. The simulated results as reported in Tables 2-4 suggested that the proposed
estimation method is better than the classical Wald-type procedure for each different
sample size, when the data contains outliers. Also, as the sample size increases, the
proposed procedures outperform the classical Wald-type procedure in terms of bias and
MSE for both parameters. On the other hand, for the inlier cases shown in Table 1,
the classical Wald-type procedure is more efficient compared to the proposed estimation
method.

6 Real Data Application

In the past, a nation’s overall development level was determined by its national income
because it was believed that the more a nation produced, the more progress it would make
both economically and socially. However, we acknowledge that there may be significant
differences between societal progress or overall development and GDP growth. Over the
past two decades, there has been much discussion about the limitations of using GDP as
a gauge of a country’s quality of life or social well-being. The fact that a large portion of
the population’s quality of life has not improved despite a high GDP growth rate has led
some people to believe that the GDP measure should be expanded to consider human
well-being and life quality. The Human Development Index (HDI), a multidimensional
indicator of development, has proven to be more reasonable in comparison to the measure
of GDP growth, which is one-dimensional in income. This is in line with the general
belief that well-being is a multidimensional concept that cannot be measured by market
production or GDP alone, so the value of all goods produced in a nation during a fiscal
year is used to define its GDP. It is discovered to be one of the economic growth and
production indicators and to play a crucial strategic role in employment, development,
and the balance of payments.
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To show the application of the proposed SMEM, two different datasets were collected
to interpret the relationship between GDP and HDI. The data were from Jordan’s eco-
nomic report for 1990-2019 (The World Bank. Jordan — Data (worldbank.org), Country
Economy. Jordan - Human Development Index - HDI 2019 — countryeconomy.com) and
presented in Table 5.

Table 6 reports the descriptive analysis of the data. It indicates that the smallest GDP
was in 1991 (GDP = 1155.2), while the largest was in 2019 (GDP = 4405.487). Mean-
while, the lowest HDI is 0.625, as reported in 1990, and the highest is in 2008 which is
reported at 0.745. Overall, the mean GDP of Jordan is 2618.4 (SD = 1207.3) and the
mean HDI is 0.709 (SD = 0.035). It is worth noting that GDP and HDI have a strong
positive significant correlation in Jordan (r = 0.741, p < 0.001), and the trend of both
variables within the study period are given in Figure 1 and 2.

Figure 3: The trend of the Jordanian HDI within 1990-2019

Figure 4: The trend of the National GDP within 1990-2019

Moreover, the scatter plot (Figure 5) suggests the type of the relationships to be
almost linear.

GDP and HDI can be written as a linear relationship model. However, it is believed



Electronic Journal of Applied Statistical Analysis 503

Table 5: Yearly Dataset of HDI and GDP of Jordan (1990-2021)

Year HDI GDP

1990 0.625 1166.611

1991 0.636 1155.234

1992 0.657 1335.288

1993 0.668 1334.229

1994 0.679 1414.339

1995 0.693 1466.045

1996 0.695 1463.888

1997 0.699 1494.511

1998 0.702 1600.398

1999 0.706 1619.536

2000 0.711 1651.622

2001 0.717 1720.361

2002 0.715 1802.055

2003 0.72 1876.259

2004 0.726 2044.964

2005 0.738 2183.395

2006 0.741 2513.029

2007 0.744 2735.379

2008 0.745 3455.77

2009 0.743 3559.692

2010 0.737 3736.645

2011 0.734 3852.89

2012 0.735 3910.347

2013 0.729 4044.427

2014 0.729 4131.447

2015 0.73 4164.109

2016 0.729 4175.357

2017 0.726 4231.518

2018 0.728 4308.151

2019 0.729 4405.487
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Table 6: Descriptive Statistics

Variable Min Max Mean SD Correlation P.

GDP 1155.2 4405.5 2618.4 1207.3 0.741 ¡ 0.001

HDI 0.625 0.745 0.709 0.035

Figure 5: The scatter plot of HDI and GDP

that both variables are subject to error because several sub-factors determine the final
value of each of them. As a result, MEM is the best model to study the relationship
between HDI and GDP, which can be rewritten as

HDI = α+ β × (GDP − δ) + ϵ

Accordingly, Table 7 shows the results of the parameter estimation according to the
three methods discussed previously in this article. The results indicate, based on the
mean square error (MSE), that the proposed procedures with r = 3 and r = 4 gave more
accurate estimators than the other estimation methods. The outcomes are shown by the
residual line, such that the line that is nearest to zero is the best-fit line. The residual
plots in Figure 6 indicate that the proposed procedures (yellow, green, and gray lines)
are better than the classical procedures (light blue and orange lines).

7 Concluding Remarks

To address the problems in estimating the SMEM, this study proposed a new nonpara-
metric estimation procedure. In the new procedure, an iterative Wald-type estimation
method was used. For medium or large sample size data, Monte Carlo simulations
extend strong evidence of the prevalence of the proposed estimation procedures over
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Table 7: Parameter Estimation of HDI vs GDP

Procedure Method Criterion α β MSR

Classical Wald-type r = 2 1.77673 Ö10-5 0.66 0.008475

r = 3 1.90293 Ö10-5 0.756 0.009427

MLE 2.32E-05 0.647 0.019723

MOM 2.22E-05 0.637 0.018722

Proposed Procedure.1 r = 3 2.06822 Ö10-5 0.655 0.000692

r = 4 2.715 Ö10-5 0.639 0.000442

Procedure.2 r = 3 1.434 Ö10-5 0.672 0.00049

r = 4 1.748 Ö10-5 0.666 0.000462

Figure 6: Residual Comparisons of the estimation methods

classical methods. Moreover, an estimation method was applied to real data to study
the effect of GDP on HDI. According to the data analysis, there is a strong positive
relationship between the two variables. The optimal r value of the proposed procedure
will be determined in future work.
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