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Mixture models are more appealing and appropriate for studying the het-
erogeneous nature of lifetimes of certain mechanical, biological, social, eco-
nomic and several other processes as compared to simple models. This paper
considers a mixture of generalized Rayleigh distributions under classical and
Bayesian perspectives based on type I censored samples. The new distribu-
tion which exhibits decreasing, decreasing-increasing-decreasing, unimodal
and bimodal shaped density while the distribution has the ability to model
lifetime data with increasing, increasing-decreasing-increasing, bathtub and
bi-bathtub-shaped failure rates. We derive some basic and structural prop-
erties of the proposed distribution. Moreover, we estimate the parameters
of the model by using frequentist and Bayesian approaches. In frequen-
tist method, the maximum likelihood estimate of the parameters and their
asymptotic confidence intervals are obtained while for Bayesian analysis, the
squared error loss (SEL) function and uniform as well as beta and gamma pri-
ors are considered to obtain the Bayes estimators of the unknown parameters
of the model. Furthermore, the highest posterior density (HPD) credible in-
tervals are also obtained. In real data analysis, in addition to point estimates
of the model parameters, asymptotic confidence intervals and HPD credible
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intervals, two bootstrap CIs are also provided. Monte Carlo simulation study
is performed to assess the behavior of these estimators. An application of
the model is presented by re-analyzing strength for single carbon fibers data
set.

Keywords: Bayesian analysis, censored data, generalized Rayleigh distri-
bution, mixture model, squared error loss function.

1 Introduction

In general, the study of homogeneous data is wide, where data is mostly considered as
having a single population with a single pattern of failure. But in real life, we often
come across heterogeneous data comprising of multiple sub-populations coming from
different environments. For example, a life time experiment data may have multiple
sub-populations which may be due to different manufacturing processes or different ex-
perimental environments of the units. Therefore, the methodological development and
practical applications of finite mixtures of lifetime distributions have stimulated great
interest in recent times. This can mainly be attributed to the versatility of the mixture
models and their potential applicability in real life situations. For example, Menden-
hall and Hader (1958) have opined that there are mainly two or more different causes
attributable to the failure of a system or device in practical situations encountered by
engineers. Similarly, in order to know the proportion of failure due to a certain cause,
Acheson and McElwee (1953) divided the causes of failures of electronic tubes into
gaseous defects, mechanical defects and normal deterioration of the cathode. Another
example is that of an engineering system which consists of different subsystems. These
subsystems may be composed of different homogeneous and/or heterogeneous subsys-
tems and in such cases, single probability models fail to capture the heterogeneous nature
of the systems. Therefore, researchers use a mixture model to capture the heterogeneity
of such systems. Finite mixture models of some suitable probability distribution have
been garnering popular attention primarily because of the fact that most of the time,
the commonly used distributions seem to be redundant when a population comprising
several subpopulations mixed in unknown proportions is considered. Mixture models are
directly applicable when data are available only from overall mixture distributions, such
as data arising from the field of biology; Bhattacharya (1967); Gregor (1969), medicine;
Chivers (1977); Burckhardt (1978)), social sciences; Harris (1983), economics; Jedidi
et al. (1997) and Shakhatreh et al. (2019), reliability analysis; Sultan et al. (2007), life
testing; Shawky and Bakoban (2009), industrial engineering; Ali et al. (2012), etc. Based
on different components of the mixture model coming from same or different family of
distributions, the mixture models are categorized as type-I and type-II mixture models.
If components of the probability distribution of the mixture model belong to the same
family, it is classified as type-I mixture model, and if the components come from different
families, it is classified as type-II mixture model. The features of these models have been
studied in detail by Li and Sedransk (1988).
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Lately, researchers have taken a keen interest in studying mixture models from clas-
sical and Bayesian perspectives, particularly mixture models with finite and infinite
components. It was Newcomb (1886) who first developed the concept of the finite mix-
ture distribution for modelling outliers. Since then several studies have been conducted
on classical and Bayesian analysis of a two-component mixture model. Notable among
them are: Sankaran and Nair (2005) , Nadarajah and Kotz (2005), Sultan et al. (2007),
Kalantan and F. (1988), Aslam1 et al. (2015), Alotaibi et al. (2022), Li and Fang (2022),
Al-Hemyari and Al Abbasi (2023) and many others. One may also refer some of the
recent articles with respect to censoring schemes based on classical and Bayesian esti-
mation of parameters of mixture models. For example, Saleem et al. (2010), Feroze and
Aslam (2014), Ali (2014), Tahir et al. (2016, 2019), Sindhu et al. (2018), Aslam et al.
(2018, 2020), Feroze et al. (2021), Bdair and Raqab (2022), Jahanbani et al. (2023) and
references cited therein.
Generalized Rayleigh distribution, also widely known as Burr X distribution, is well

discussed with its applicability and relation with other well-known distributions. This
distribution has many properties common to many distributions like two parameter
gamma, Weibull and generalized exponential distributions. The additional property of
the non-monotone hazard rate makes this distribution very useful in modelling many
real-life problems. Thus, a mixture of generalized Rayleigh components becomes more
flexible and useful in modelling many real-life problems where data are heterogeneously
distributed. Motivated by this rationale, our goal of this paper is to introduce a 2-
component mixture of generalized Rayleigh distribution called the mixture of two com-
ponent generalized Rayleigh (MTGR) distribution. Several properties of the new dis-
tribution including the identifiability of the distribution are derived. Next, we estimate
the parameters of the model by using frequentist and Bayesian approaches using type I
censored samples. In frequentist case, the maximum likelihood method is used to esti-
mate the model parameters. Also, approximate confidence intervals (ACIs) of the model
parameters are obtained. For Bayesian analysis, squared error loss function and uni-
form, as well as beta and gamma priors, are considered to obtain the Bayes estimators.
Besides, the highest posterior density (HPD) credible intervals are also obtained. In real
data analysis, over and above point estimates, ACIs and HPD credible intervals, we have
also considered two bootstrap CIs. To the best of our knowledge, 2-component mixture
of generalized Rayleigh distributions is not discussed before using the aforementioned
methods of estimation.
The article is organized as follows. In Section 2, we introduce the 2-component mixture

of generalized Rayleigh distributions. Shape properties of the PDF and HRF of the 2-
component mixture of generalized Rayleigh distributions are presented in Section 3.
In Section 4, some statistical properties of MTGR distribution are presented. The
identifiability of MTGR distribution are shown in Section 5. In Section 6, the estimation
of the model parameters under type I censored samples are obtained and discussed by
the methods of maximum likelihood, bootstrap confidence intervals (CIs), and Bayes
methods using the Metropolis-Hastings (MH) algorithm. The Monte Carlo simulation
study is carried out in Section 7. In Section 8, the potentiality of the new model is
illustrated by real data. Finally, some concluding remarks and further research proposals
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are given in Section 9.

2 Two-component mixture of generalized Rayleigh (GR)
distribution

In this section, we introduce the finite mixtures of two-component of GR distribution,
see, Surles and Padgett (2001). Several authors considered different aspects of GR
distribution. See for example, Kundu and Raqab (2005), Yakubu and Yahaya (2015),
Dey et al. (2017), Junru and Wenhao (2020), Mahto et al. (2018) and many others. First,
we recall the definition of the GR distribution and some of its properties. A random
variable X is called a GR random variable with shape and inverted scale parameters;
α > 0 and λ > 0, respectively, if its PDF is given by

f(x;α, λ) = 2αλ2 x exp[−(λx)2]
(
1− exp[−(λx)2]

)α−1
; x > 0, (1)

and the corresponding cumulative distribution function (CDF)can be expressed as

F (x;α, λ) =
(
1− exp[−(λx)2]

)α
; x > 0 , α, λ > 0 (2)

The reliability function (RE) is given by

R(x;α, λ) = 1−
(
1− exp[−(λx)2]

)α
(3)

and the hazard rate (HR) function is given by

H(x;α, λ) =
2xαλ2 exp[−(λx)2]

1− (1− exp[−(λx)2])α
. (4)

Note that the generalized Rayleigh is a special case of the exponentiated Weibull dis-
tribution introduced and discussed by Mudholkar et al. (1995) with CDF; F (x) =
(1−exp(−(λ x)c)α. They showed that the hazard rate function of exponentiated Weibull
distribution can be constant (α = c = 1), decreasing (c < 1 and cα < 1), increasing
(c > 1 and cα > 1), or unimodal (c < 1 and cα > 1) and bathtub-shaped failure rates
( (c > 1 and cα < 1). Therefore, the shapes of the HR function of the GR distribution
can be monotonically increasing or bathtub-shaped hazard rates.

The finite mixture of two components of GR distribution assuming unknown mixing
weights (proportions) p1 and p2 is defined via its PDF as follows:

f(x; ζ) = p1f1(x;θ1) + p2f2(x;θ2); p1 + p2 = 1, (5)

where ζ = (pi,θi), θi = (αi, λi), i = 1, 2, and fi(x;θi) is the pdf of the ith component
given via Eq.(1) with parameters αi and λi. Equivalently,

f(x) =
2∑
i=1

pi

{
2αiλ

2
ix exp[−(λix)

2]
(
1− exp[−(λix)

2]
)(αi−1)

}
(6)
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Henceforth, we use X ∼ MTGR(p, α1, α2, λ1, λ2) to stand for a random variable whose
PDF is given via Eq.(6).

The MTGR distribution can be in principle useful in studying the failure of a certain
device that is primarily damaged due to two failure types with unequal effects, one of
which follows the GR(α1, λ1) distribution and which occurs with probability p1 whereas
the other type follows another GR(α2, λ2) distribution but with probability 1−p1, being
either of these type failures can lead to the device’s failure An interesting example that
describes this situation, suppose that punctures and cumulative damage are identified
as the two main types of failure for a certain car tire. Clearly, the tire will break down
once one of these types of failures has arisen. Observe that the dominant cause of
failures is ageing, however, random failures due to puncture can remain. So if failure
due to the dominant ones (ageing) follows the GR(α1, λ1)distribution that occurred
with probability p1 whereas the failure due to punctures follows another GR(α2, λ2)
distribution with probability 1− p1, then the failure of the tire can be studied using the
distribution given via Eq.(6).

The CDF, RE, and HR functions of the MTGR distribution are given respectively in
the following compact forms

F (x) = p
(
1− exp[−(λ1x)

2]
)α1 + (1− p)

(
1− exp[−(λ2x)

2]
)α2 , (7)

R(x) = 1− p
(
1− exp[−(λ1x)

2]
)α1 − (1− p)

(
1− exp[−(λ2x)

2]
)α2 , (8)

and

H(x) =

∑2
i=1 pi

{
2αiλ

2
ix exp[−(λix)

2]
(
1− exp[−(λix)

2]
)(αi−1)

}
1− p (1− exp[−(λ1x)2])

α1 − (1− p) (1− exp[−(λ2x)2])
α2 ,

(9)

where p = p1.

3 Properties of PDF and HR curves

In this section, we study and demonstrate the possible shapes for the PDF and HR
curves of the MTGR distribution.

3.1 Shapes of the PDF

Before we start discussing shapes for the PDF curves of the MTGR distribution, we
have the following proposition

Proposition 1. We have that

1. For sufficiently small values of x, (x → 0) and for i ̸= j, i, j = 1, 2, we have that

lim
x→0

f(x, ζ) =


∞, αi < αi ≤ 1

2 or (αi <
1
2 and αj ≥ 1

2),

0, αi, αj ≥ 1
2 ,
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2. For sufficiently, large values of x, (x → ∞,) we have that limx→∞ f(x, ζ) = 0.

Proof. For (1), observe that as x → 0, we have 1 − exp[−(λix)
2] ∼ λ2

ix
2, i = 1, 2.

Consequently, we have

f(x, ζ) ∼ 2α1λ
2α1
1 p x2α1−1 + 2α2λ

2α2
2 (1− p) x2α2−1. (10)

When both α1 and α2 are greater than or equal to 1/2, it then follows from Eq.(10) that
f(x, ζ) → 0 as x → 0. Next, re-writing Eq.(10) as follows: if α1 < α2 ≤ 1

2 or (α1 <
1
2 and α2 ≥ 1

2), then

f(x, ζ) = 2x2α1−1
[
α1λ

2α1
1 p+ α2λ

2α2
2 (1− p)x2(α2−α1)

]
,

and when α2 < α1 ≤ 1
2 or (α1 ≥ 1

2 and α2 <
1
2), then

f(x, ζ) = 2x2α2−1
[
α1λ

2α1
1 px2(α1−α2) + α2λ

2α2
2 (1− p)

]
.

Therefore, f(x, ζ) → ∞ as x → 0. For (2), as x → ∞, we have

f(x) ∼ p 2α1λ
2
1 x exp[−(λ1x)

2] + (1− p) 2α2λ
2
2x exp[−(λ2x)

2].

On using the above equation along with the aid of the L’Hoptials rule, we conclude that
f(x) → 0 as x → ∞.

The behaviour of the PDF of the MTGR model can be summarized in four cases.

� Decreasing case. This case occur when α1, α2 < 1/2. To show this, we have from
1 that f(x, ζ) → ∞, as x → 0 and f(x, ζ) →, 0 as x → ∞. To finish, we need to
show that the first derivative of f(x, ζ) is negative. The first derivative of Eq.(6)
is

f
′
(x; ζ) =

2∑
i=1

pi gi(x,θi)wi(x,θi), p1 + p2 = 1, (11)

where gi(x,θi) = 2λ2
iαi exp[−(λix)

2]
(
1− exp[−(λix)

2]
)(αi−2)

and

wi(x,θi) =
[
1− 2λ2

ix
2 − exp[−(λix)

2]
(
1− 2αiλ

2
ix

2
)]

.

If αi < 1/2, then
(
1− 2αiλ

2
ix

2
)
>

(
1− λ2

ix
2
)
, and hence, it can be checked that

wi(x,θi) < 0. Since gi(x,θi) > 0 and wi(x,θi) < 0, it then follows that the first
derivative of the PDF for the ith component is negative, i.e., f

′
i (x;θi) < 0, and so

is f
′
(x; ζ) < 0. See Figures 1

� Decreasing-increasing-decreasing case. This case happens when αi <
1
2 and αj ≥

1
2 , i ̸= j, i, j = 1, 2. To see this, assume without loss of generality that α1 < 1/2 and
that α2 > 1/2. In this case f1(x;θ1) is a decreasing function whereas f2(x;θ2) is
a unimodal function. Clearly, the decreasing-increasing-decreasing case can occur
due to the intersection of the two functions, which is quite natural. See Figure 2
(a- c).
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Figure 1: plots of the MTGR distribution exhibiting decreasing function for the cases:
(a) (p = 0.2, α1 = 0.1, α2 = 0.3, λ1 = 1, λ2 = 2); (b) (p = 0.4, α1 = 0.1,
α2 = 0.2, λ1 = 0.5, λ2 = 2); (c) (p = 0.9, α1 = 0.4, α2 = 0.2, λ1 = 0.5,
λ2 = 0.1)
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Figure 2: plots of the MTGR distribution exhibiting decreasing function for the cases: (a)(p =

0.2, α1 = 0.1, α2 = 0.3, λ1 = 3, λ2 = 0.3); (b)(p = 0.5, α1 = 0.3, α2 = 3, λ1 = 0.1,

λ2 = 0.7); (c) (p = 0.7, α1 = 2, α2 = 0.1, λ1 = 0.5, λ2 = 1)
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� Unimodal case. This case can happen when α1, α2 > 1/2. Note that when
αi > 1/2, then fi(x;θi) has a unique mode. Let x⋆i be the mode of fi(x;θi),
for i = 1, 2. Put x1 = min(x⋆1, x

⋆
2) and x2 = max(x⋆1, x

⋆
2). Since the PDF of the

MTGR distribution is a mixture of f1(x;θ1) and f2(x;θ2), then certainly f(x; ζ)
will possess a unique mode when the modes x⋆1 and x⋆2 are relatively close. It is
observed that these two modes can be close from each other when α1 < α2 and
λ1 < λ2 or vice versa, see for example Figure 3(a-c).
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Figure 3: plots of the MTGR distribution exhibiting exhibiting unimodal: (a) (p = 0.2, α1 = 0.9,

α2 = 2, λ1 = 0.5, λ2 = 1); (b) (p = 0.7, α1 = 3, α2 = 0.6, λ1 = 1.5, λ2 = 0.5); (c)

(p = 0.4, α1 = 0.9, α2 = 2, λ1 = 1, λ2 = 2)

� Bimodal case. The bimodal case can occur when modes x⋆1 and x⋆2 (defined in the
previous case) are far from each other. It is anticipated that this case can happen
when either α1 > α2 and λ1 < λ2 or α1 < α2 and λ1 > λ2. See Figure 4(a-c) for
further illustration.

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(a)
x

P
D

F

f1(x)
f2(x)
f(x)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)
x

P
D

F

f1(x)
f2(x)
f(x)

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

(c)
x

P
D

F

f1(x)
f2(x)
f(x)

Figure 4: plots of the MTGR distribution exhibiting bimodals for the cases: (a) (p = 0.3,

α1 = 0.9, α2 = 5, λ1 = 0.3, λ2 = 0.1); (b) (p = 0.6, α1 = 5, α2 = 1.5, λ1 = 0.3,

λ2 = 1.3); (c) (p = 0.4, α1 = 0.9, α2 = 5, λ1 = 0.5, λ2 = 0.2)
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3.2 Shapes of the HR curves

Al-Hussaini and Sultan (2001) provided a general result about the hazard rate function
for any mixture of two distribution functions in terms of corresponding hazard rate
functions to these distributions. Therefore, the hazard rate function in Eq.(4) can be
penned in view of this result as a convex combination of two GR hazard rate functions.
That is, the HR can be written as follows

H(x; ζ) = g(x; ζ)H1(x;θ1) + (1− g(x; ζ))H2(x;θ2), (12)

where for i = 1, 2, Hi(x;θi) is the HR function of the GR given in Eq. (4) and

g(x; ζ) =
1

1 + k(x; ζ)
and k(x; ζ) =

(1− p)R2(x;θ2)

pR1(x;θ1)
.

The first derivative of the HR function of the MTGR distribution based on Eq.(12) is
given by

H
′
(x; ζ) = g(x; ζ)H

′
1(x;θ1) + q(x; ζ))H

′
2(x;θ2)

− g(x; ζ)q(x; ζ) [H1(x;θ1)−H2(x;θ2)]
2 , (13)

where q(x; ζ) = 1−g(x; ζ). The following proposition is helpful in describing the possible
shapes for the HR curves.

Proposition 2. For the HR function given via Eq.(12), we have that

1. For sufficiently small values of x, (x → 0) and for i ̸= j, i, j = 1, 2

lim
x→0

H(x, ζ) =


∞, αi < αi ≤ 1

2 or (αi <
1
2 and αj ≥ 1

2),

0, αi, αj ≥ 1
2

2. For sufficiently, large values of x,(x → ∞,) we have that limx→∞H(x, ζ) = ∞.

Proof. For (1), it follows from Proposition 1 by noting that limx→0 f(x) = limx→0H(x).
To show (2), first not that limx→∞Hi(x;θi) = ∞, for i = 1, 2. This can be verified by
using L’Hoptial’s rule. Now consider the behavior of k(x, ζ) as x → ∞. Since

lim
x→∞

k(x; ζ) =
(1− p)

p
lim
x→∞

1−
(
1− exp[−(λ2x)

2]
)α2

1− (1− exp[−(λ1x)2])
α1

.
=

(1− p)

p

(
α2λ

2
2

α1λ2
1

)
lim
x→∞

D(F1, F2;x) lim
x→∞

Λ(λ1, λ2;x) exp
[
−(λ2

2 − λ2
1)x

2
]
,

where
.
= denotes that L’Hoptial’s rule is used,

D(F1, F2;x) =

(
1− exp[−(λ2x)

2]
)α2−1

(1− exp[−(λ1x)2])
α1−1 and Λ(λ1, λ2;x) = exp

[
−(λ2

2 − λ2
1)x

2
]
.
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Clearly, D(F1, F2;x) → 1 as x → ∞. Since,

lim
x→∞

Λ(λ1, λ2;x) =


∞, λ2

1 > λ2
2

1, λ2
1 = λ2

2,

0, λ2
1 < λ2

2

it then follows that

lim
x→∞

k(x; ζ) =


∞, λ2

1 > λ2
2

(1−p)
p , λ2

1 = λ2
2

0, λ2
1 < λ2

2

Now for λ2
1 > λ2

2 and as x → ∞, we have that g(x; ζ) → 0, and hence H(x; ζ) ∼
H2(x,θ2). Consequently, we have that limx→∞H(x; ζ) = limx→∞H2(x,θ2) = ∞. Sim-
ilarly, when λ2

1 < λ2
2 then g(x; ζ) → 1 as x → ∞, and so H(x; ζ) ∼ H1(x,θ1). An

immediate result is that limx→∞H(x; ζ) = limx→∞H1(x,θ1) = ∞. When λ2
1 = λ2

2,
write Eq.(4) as follows

HR(x; ζ) = pH1(x,θ1)

[
1 +

(1− p)

p
)D(H1, H2;x)

]
,

where D(H1, H2;x) = H2(x,θ2)/H2(x,θ1). As x → ∞ we have that D(H1, H2;x) → 1.
Therefore, we have that HR(x; ζ) ∼ H1(x,θ1) as x → ∞, and as a result we that
limx→∞HR(x; ζ) = ∞.

The behaviour of the hazard rate curves can be spelled out in four different situations.

� Increasing case. This case can happen when αi > 1/2 where i = 1, 2. Note
that H

′
i(x;θi) > 0 since the HR function of the GR distribution is an increas-

ing function when its shape parameter α > 1/2. On the other hand, Eq.(13)
reveals that H

′
(x; ζ) is positive when the first two terms of this equation dom-

inate the third term. Observe that the third term in Eq.(13) represents the
difference between the two hazard rate functions H1(x;θ1) and H2(x;θ2), i.e.
∆(H1, H2) = |H1(x;θ1)−H2(x;θ2)|. The value of ∆(H1, H2) became small when
the functions H1(x;θ1) and H2(x;θ2) are close from each other, and this can occur
when the scale parameters λ1 and λ2 are relatively close from each other as well.
See Figure 5 (a-c).

� Increasing-decreasing-increasing case. This scenario case can also occur when
αi > 1/2 for i = 1, 2. It occurs when one of the two HR functions, H1(x;θ1)
and H2(x;θ2) dominates the other one substantially after a certain point whereas
these functions are close from each other on the beginning. Let x⋆ and x⋆ be the
values at which H(x; ζ) attains its minimum and maximum respectively. Sup-
pose that H1(x;θ1) > H2(x;θ2). On the interval (0, x⋆) the value of ∆(H1, H2)
became small and hence is dominated by the first two terms in Eq.(13) which
implies that H

′
(x; ζ) > 0. On the interval (x⋆, x⋆), the value of ∆(H1, H2) be-

came large and therefore dominated the first two terms in Eq(13) implying that
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Figure 5: Some plots of the HR curves of the MTGR distribution exhibiting decreasing function

for the cases: (a) (p = 0.8, α1 = 2, α2 = 1, λ1 = 1, λ2 = 2); (b) (p = 0.3, α1 = 1,

α2 = 2, λ1 = 3, λ2 = 2); (c) (p = 0.9, α1 = 1, α2 = 0.6, λ1 = 0.4, λ2 = 0.3)

H
′
(x; ζ) < 0. Finally on (x⋆,∞) we have that H

′
(x; ζ) ∼ H

′
i(x;θi) > 0 since as

x → ∞, limx→∞ g(x; ζ)q(x; ζ) = 0 implying that H(x; ζ) is an increasing function
on this interval. See Figure 6(a-c) for further illustration.
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Figure 6: Some plots of the HR curves of the MTGR distribution exhibiting increasing-

decreasing-increasing function for the cases: (a) (p = 0.3, α1 = 1, α2 = 1.5, λ1 = 0.1,

λ2 = 0.3); (b) (p = 0.8, α1 = 2, α2 = 1, λ1 = 0.5, λ2 = 0.1); (c) (p = 0.4, α1 = 2,

α2 = 1.8, λ1 = 0.2, λ2 = 1)

� Bathtub-shaped case. This case can happen when αi < αi < 1
2 or (αi <

1
2 and αj ≥ 1

2), i ̸= j, i, j = 1, 2.When bothH1(x;θ1) andH2(x;θ2) have bathtub-
shaped HR functions such that their corresponding change points are close from
each other, then the HR function of MTGR distribution is a bathtub-shaped. Ad-
ditionally, when one of these HR functions has an increasing HR that is dominated
by the other HR function with a bathtub-shaped HR, then the HR function of
the MTGR distribution has a bathtub-shaped HR function with a unique chang-
ing point. It is also anticipated that this situation may occur when α1 < α2 and
λ1 > λ2 or vice versa, see Figure 7(a-c).
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Figure 7: Some plots of the HR curves of the MTGR distribution exhibiting bathtub-shaped

hazard rates for the cases: (a) (p = 0.3, α1 = 0.3, α2 = 2, λ1 = 0.4, λ2 = 0.3); (b)

(p = 0.7, α1 = 2, α2 = 0.1, λ1 = 0.5, λ2 = 1); (c) (p = 0.4, α1 = 0.4, α2 = 0.1,

λ1 = 0.5, λ2 = 1)

� Bi-Bathtub-shaped case. This case can occur also when αi < αi <
1
2 or (αi <

1
2 and αj ≥ 1

2), i ̸= j, i, j = 1, 2.When bothH1(x;θ1) andH2(x;θ2) have bathtub-
shaped HR functions such that their corresponding change points are far from each
other, then the HR function of MTGR distribution is a bi bathtub-shaped HR,
see Figure 8(a). Moreover, Additionally, when one of these HR functions has an
increasing hazard rate that intersects the other HR function with a bathtub-shaped
hazard rate, then the HR of the MTGR distribution has a bi bathtub-shaped with
two changing points, see Figure 8(b-c). It is also observed that this situation may
occur when α1 < α2 and λ1 < λ2 or vice versa.
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Figure 8: Some plots of the HR curves of the MTGR distribution exhibiting bi-bathtub-shaped

hazard rates for the cases: (a) (p = 0.1, α1 = 0.1, α2 = 0.3, λ1 = 2, λ2 = 4); (b)

(p = 0.8, α1 = 0.2, α2 = 1.5, λ1 = 0.3, λ2 = 0.8); (c) (p = 0.3, α1 = 2, α2 = 0.1,

λ1 = 0.3, λ2 = 0.1)
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4 Some statistical properties

In this section, we provide some statistical properties for the proposed model.

4.1 Mean

Let X be a generalized Rayleigh distribution with parameters λi and αi, i = 1, 2, i.e.,
X ∼ GR(αi, λi). The k

th moments of X can be obtained in view of the result by Choud-
hury (2005) as

E(Xk) = αiλ
−k
i Γ

(
k

2
+ 1

)1 + ∞∑
j=0

aj(j + 1)−
k
2
−1

 ,

where aj =
(αi−1)(αi−2)...(αi−j)

j! (−1)j . Therefore, the mean of MTGR distribution is

µk =

2∑
i=1

piαiλ
−k
i Γ

(
k

2
+ 1

)1 + ∞∑
j=0

aj(j + 1)−
k
2
−1,

 , (14)

where p1 = p and p2 = 1− p1.

4.2 Quantile

The quantile function of the MTGR distribution is the value, say xq that solves the
following non-linear equation

p[(1− e−λ
2
1x

2
)α1 ] + (1− p)[(1− e−λ

2
2x

2
)α2 − (1− q) = 0, (15)

where 0 < q < 1. The median is the value x0.5. Note that Eq.(15) can be used to generate
random samples from the MTGR distribution.

4.3 Mode

Generally, mode(s) for a distribution play important roles in studying the behaviour of
the distribution, particularly in the finite mixture models. Let ki(x, λi) := exp(−λ2

ix
2).

The mode(s) of the MTGR distribution is (are) found by solving the ensuing equation
numerically

2∑
i=1

2piαiλ
2
i ki(x, λi)(1− ki(x, λi))

αi−2
[
1− 2λ2

ix
2 − ki(x, λi)

(
1− 2αiλ

2
ix

2
)]

Table 1 presents the mean, median and mode of the MTGR distribution by using different
choices of the parameters. The results reported in Table 1 reveal many interesting
properties of the MTGR distribution. Clearly, the mode is little affected by the changing
in the values of the mixing proportion p. Additionally, the mean and the median increase
as p increases in the unimodal case, and the mean is always greater than the median.
Contrary to the unimodal case, the mean and the median decrease as p increase for the
bimodal case, and also, the median is greater than the mean
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Table 1: The mean, median and the mode(s)of MTGR distribution for different values
of the parameters

ζ = (p, α1, α2, λ1, λ2) Mode(s) Median Mean

(0.2,0.3,3,0.1,0.7) 1.6930 1.845891 2.3909

(0.4,0.3,3,0.1,0.7) 1.6870 1.924532 2.9384

(0.6,0.3,3,0.1,0.7) 1.6747 2.06331 3.4859

(0.2,0.9,2,1,2) 0.5180 0.5785 0.6276

(0.4,0.9,2,1,2) 0.5226 0.6105 0.6822

(0.6,0.9,2,1,2) 0.5310 0.6535 0.7369

(0.2, 0.9, 5.0, 0.3, 0.1) 1.2960, 6.8302 6.5675 6.1864

(0.4, 0.9, 5.0, 0.3, 0.1) 1.2956, 6.8296 5.4795 5.0629

(0.6, 0.9, 5.0, 0.3, 0.1) 1.2955, 6.8285 2.6025 3.9394

5 Identifiability of the class of the MTGR distribution

Let FGR = {Fi(x;θi) : i = 1, . . . ,m; θi ∈ R2
+} be a finite family of cumulative prob-

ability distributions spanned by the GR distribution indexed by the vector parameters
θi = (αi, λi). A finite mixture of the GR distributions of order m can be expressed as a
convex combinations of Fi(x;θi), . . . , Fm(x;θm) ∈ FGR as

F (x; ζ) =
m∑
k=1

ωiFi(x;θi), i = 1, . . . ,m,

where ωi > 0, called the weights such that
∑m

i=1 ωi = 1, and

ζ = (ω,θ) = [(ω1, . . . , ωm), (θ1, . . . ,θm)].

Now, the space of all possible finite mixture densities of the GR distribution denoted by
MT RGm which can be analytically expressed as

MT RGm =

{
F (x; ζ) : F (x; ζ) =

ℓ∑
k=1

ωiFi(x;θi); Fi(x;θi) ∈ Fm; ℓ ∈ {2, . . . ,m}

}

The identifiability of the finite mixtures is important in statistical inferences, particularly
in getting unique and consistent estimates for the indexed parameters of the model. In
order to study this problem, we state the definition of the identifiability of a finite
mixture. The class MT RGm is identifiable if and only if for any arbitrary f and f⋆ ∈
MT RGm;

F =
m∑
k=1

ωiFi(x;θi) and F ⋆ =
m⋆∑
k=1

ω⋆i F
⋆
i (x;θi) such that F = F ⋆ implies that m = m⋆,
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and (ω1, F1), . . . , (ωm, Fm) are the permutations of (ω⋆1, F
⋆
1 ), . . . , (ω

⋆
m, F

⋆
m). It is clear that

showing the identifiability for certain finite mixture models is quite difficult and is not
straightforward by using the definition. Therefore, several authors have contributed in
providing conditions for establishing the identifiability of various finite mixture models.
Related to this topic, readers are referred to Teicher (1963); Chandra (1977); Al-Hussaini
and Ahmad (1981); Ahmad (1988); Ahmad and Abd-El-Hakim (1990); Atienza et al.
(2006), among others. In this paper, we show the identifiability of the family of MTGR
distributions using the results given in Atienza et al. (2006).

Theorem 5.1. Atienza et al. (2006) Let F be a class of cumulative probability distri-
butions. Let M : Fi −→ φi be a linear mapping which transforms any Fi ∈ F into a
real function with domain Sψi

(F ) ∈ Rd. Let S0(F ) = {t ∈ Sφ(F ) : φF (t) ̸= 0}. Suppose
that there exists a total order ⪯ on ∈ F such that for any F ∈ F there exists a point
t(F ) ∈ S

′
0(F ), where A

′
denotes the closure of the set A satisfying

i For F1, . . . , Fm ∈ F such that F1 < Fi for 2 ≤ i ≤ m, then t(F ) ∈ [S0(F1) ∩ [∩mi=2Sφ(Fi]]
′
,

ii for each F1, F2 ∈ F , such that F1 < F2 then

lim
t→t(F1)

φ2(t)

φ1(t)
= 0,

Then the class G of all finite mixing distributions is identifiable relative to F .

Note that the linear mapping in the above theorem can be taken as the moment
generating function of a random variable X; E(exp(tx)) or the real moments E(Xt) =
E(exp(t ln(x))). It has been observed that these choices have been used by several au-
thors, see for example Otiniano et al. (2015) and Otiniano et al. (2017). In this paper,
we use the moment generating function of 2t ln(X) of the GR distribution as the lin-
ear mapping in order to establish the identifiability of the finite mixtures of the GR
distribution.

Theorem 5.2. The family MT RGGR of all finite mixtures of FGR is identifiable.

Proof. Let M be the map which transform a distribution function F ∈ FGR into the
moment generating function of 2t ln(X), where X is the random variable following the
GR distribution with parameters αi and λi. The moment generating function of 2t ln(X)
after simple algebra lead to

M [F (.;λ, α)] = φF (t) =
Γ(α+ 1)Γ

(
1− t

λ2

)
Γ
(
α+ 1− t

λ2

) , t ∈ (−∞, λ2) (16)

It is clear from Eq.(16) that S0(F (.;λ, α)) = (−∞, λ2). Now, let F1, F2 ∈ FGR, then we
have total order in FGR; F1 < F2 when the following cases hold

� λ1 < λ2 and α1 = α2

� λ1 = λ2 and α1 > α2
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To verify the sufficiency condition in Theorem 5.1, consider the case λ1 < λ2 and α1 = α2.
In this case we have that t(F1) = λ2

1 which satisfies t(F1) = λ2
1 ∈ [S0(F1) ∩ Sφ(F2)]

′
.

Once the total order is established, it remains to show that the following limit goes to 0
as t → λ2

1.

lim
t→λ21

φF2(t)

φF1(t)
= lim

t→λ21

ρ(t;α, λ1, λ2)
Γ
(
1− t

λ22

)
Γ
(
1− t

λ21

)


where

ρ(t;α, λ1, λ2) =
Γ
(
α+ 1− t

λ22

)
Γ
(
α+ 1− t

λ21

) ,
and that

lim
t→λ21

ρ(t;α, λ1, λ2) =
Γ
(
α+ 1− λ21

λ22

)
Γ (α)

> 0. (17)

due to the fact that λ2
1/λ

2
2 < 1. Now observe that

lim
t→λ21

Γ

(
1− t

λ2
1

)
= Γ(0+) = ∞, (18)

see Abramowitz (1965). With λ2
1 < λ2

2, we have that

lim
t→λ21

Γ

(
1− t

λ2
1

)
= Γ

(
1− λ2

1

λ2
2

)
> 0. (19)

On using Eqns. (17), (18), and (19), we have

lim
t→λ21

φF2(t)

φF1(t)
= 0.

The second case can be proved similarly, which completes the proof.

6 Estimation parameters of MTGR distribution

This section deals with the estimation of unknown parameters of the model using fre-
quentist and Bayesian methods under Type-I censored data. Toward this goal, suppose
that the lifetime data say the random variable X, follows an MTGR(p, α, α, λ1, λ2) dis-
tribution with PDF and CDF given by Eqns.(6) and (7) respectively. Assume that the
total r number of units with lifetimes, say x = (x11, x12, . . . , x1r1 , x21, x22, . . . , x2r2) are
observed till the prefixed time T reaches in which the r1 number of units follow GR
distribution with parameters α, λ1, and r2 number of units follow GR distribution with
parameters α and λ2 such that r = (r1+ r2). Note that we assume that the lifetime dis-
tribution for the r1 and r2 units follow GR distribution with common shape parameters
but with different scale parameters due to identifiability problems, and hence consistency
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of the ML estimates can be achieved. Therefore, the lifetimes of the total (n−r) number
of units are not observed. Now the likelihood function of (α, λ1, λ2, p | x) can be written
as

L(α, λ1, λ2, p | x) ∝
{ r1∏
k=1

pf1(xk1;α, λ1)
}{ r2∏

k=1

(1− p)f2(xk2;α, λ2)
}

×
[
1− F (T ;α, λ1, λ2)

]n−r
. (20)

∝ pr1(1− p)r2αrη1η2∆1∆2Λ

r1∏
j=1

x1j ·
r2∏
j=1

x2j

where r = r1 + r2 and

ηi = λ2ri
i e−

∑ri
j=1(λixij)

2

∆i =

ri∏
j=1

(
1− e−(λixij)

2)α−1
, for i = 1, 2.

and Λ =
{
1−

{
p
(
1− e−(λ1T )2

)α
+ (1− p)

(
1− e−(λ2T )2

)α}}n−r
6.1 Maximum Likelihood Estimation

The maximum likelihood (ML) method is a popular method used to estimate unknown
parameters due to its desirable properties, including consistency, asymptotic efficiency,
and invariance. The ML estimates for the parameters can be obtained by maximizing
the likelihood function over the parameter space. Equivalently, these estimates can be
obtained based on the log-likelihood function. To do so, let l = lnL(α, λ1, λ2, p | x),
then the partial derivatives with respect to p, α, λi are given by

∂l

∂p
=

r1
p

− r2
1− p

− n− r

1− F (T )
[F1(T )− F2(T )],

∂l

∂α
=

r

α
+

r1∑
j=1

lnA1(xj) +

r2∑
j=1

lnA2(xj),

− n− r

1− F (T )

[
pF1(T ) lnA1(T ) + (1− p)F2(T ) lnA1(T )

]
,

∂l

∂λi
=

2ri
λi

− 2λi

ri∑
j=1

x2ij + 2(α− 1)λi

ri∑
j=1

x2ije
−(λixij)

2

Ai(xij)
− p(n− r)T

λi(1− F (T ))
fi(T ),

where i = 1, 2 and Ai(x) = 1 − e−(λix)
2
. Further we denote fi = fi(x;α, λi) and

F (x) = F (x;α, λ1, λ2). Solving simultaneously all the above equations, we can get the
maximum likelihood estimators for α, λi, p. Since the estimators do not turn out to have
a closed form, so a numerical technique such as the Newton-Raphson method is applied
to compute maximum likelihood estimates of p, α, λi, respectively, denoted as p̂, α̂, λ̂i.
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For interval estimation of ϕ = (p, λ1, λ2, α), we derive the observed information ma-
trix, since the form of the expected information matrix is very complicated and re-
quires numerical integration. The elements of the 4 × 4 observed information matrix;
I(ϕ) = E( ∂2l

∂ϕ∂ϕt ) are given in the Appendix. Under some regularity conditions for un-
known parameters in the interior of parameter space but not on the boundaries, the

asymptotic distribution of
√
n
(
ϕ̂− ϕ

)
follows multivariate normal with mean vector

zero and variance-covariance matrix is J−1 (ϕ) i.e.,
√
n
(
ϕ̂− ϕ

)
∼ N4

(
0, J−1 (ϕ)

)
, where

J(ϕ) is the expected information matrix. The asymptotic behavior is valid if J(ϕ) is

replaced by I
(
ϕ̂
)
, i.e., the observed information matrix evaluated at ϕ̂. Thus, the

multivariate normal N4

(
0, I−1

(
ϕ̂
))

distribution can be used to obtain approximate

confidence intervals for the considered parameters.

6.2 Bootstrap confidence intervals

In this section, we use the bootstrap technique to construct confidence intervals for
the unknown parameters of the model. Here, we consider two methods of bootstrap
CIs, namely, bootstrap-t (Boot-t) and Bootstrap-p (Boot-p), see for example, Efron and
Tibshirani (1994). The following steps are required for the Boot-p method:

1. Draw sample x = (x11, x12, . . . , x1r1 , x21, x22, . . . , x2r2) from GR(x;α, λ1, λ2) corre-
sponding to the values of, say θ = (α, λ1, λ2, p), n and T . From the drawn sample,
compute the estimate of θ, say θ̂.

2. Next draw a bootstrap sample of x = (x∗11, x
∗
12, . . . , x

∗
1r1

, x∗21, x
∗
22, . . . , x

∗
2r2

) from

GR(x; θ̂∗), and compute the updated bootstrap estimate of θ say θ̂∗.

3. Repeat the previous step, say M times.

4. Let F̂ (x) = P (θ̂∗ ≤ x), be the CDF of θ̂∗. Then define θ̂Boot−p(x) = F−1(x) for a
given x. Therefore the approximate 100(1 − γ)% confidence interval for θ is now

given by
(
θ̂Boot−p(

γ
2 ),

θ̂Boot−p(1− γ
2 )
)

The following steps are required to construct bootstrap confidence intervals using the
Boot-t Method:

1. Draw sample x = (x11, x12, . . . , x1r1 , x21, x22, . . . , x2r2) from GR(x;α, λ1, λ2) corre-
sponding to the values of, say θ = (α, λ1, λ2, p), n and T . From the drawn sample,
compute the estimate of θ, say θ̂.

2. Next draw a bootstrap sample of x = (x∗11, x
∗
12, . . . , x

∗
1r1

, x∗21, x
∗
22, . . . , x

∗
2r2

) from

GR(x; θ̂∗), and compute the updated bootstrap estimate of θ, say θ̂∗ and V̂ (θ̂∗).

3. compute the statistic T ∗ defined as T ∗ =
(
θ̂∗ − θ̂

)
/

√
V̂ (θ̂∗)
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4. Repeat the steps 2 and 3, say M times.

5. Let F̂ (x) = P (T ∗ ≤ x), be the CDF of θ̂∗. Define θ̂Boot−t(x) = θ̂+

√
V̂ (θ̂∗)F̂−1(x)

for a given x. Then the approximate 100(1 − γ)% confidence interval for θ is

obtained as
(
θ̂Boot−t(

γ
2 ), θ̂Boot−t(1−

γ
2 )
)

6.3 Bayesian Estimation

Bayesian inference procedures have been taken into consideration by many statistical
researchers, especially researchers in the field of survival analysis and reliability engi-
neering. In this section, the Bayes estimates of model parameters α, λ1, λ2 and p are
obtained under the square error loss (SEL) function. We consider two prior distributions
for the parameters of MTGR distribution. In each case, we provide Bayesian estimator
under the SEL function.

6.3.1 Bayes estimators under uniform priors based on SEL function

We assume that the parameters α, λ1, λ2 and p of MTGR distribution have independent
uniform prior distributions as given by

α ∼ U(0,∞), λ1 ∼ U(0,∞), λ1 ∼ U(0,∞), and p ∼ U(0, 1),

Hence, the joint prior density function is formulated as follows:

π1(α, λ1, λ2, p) ∝ 1; α, λ1, λ2 > 0, 0 < p < 1. (21)

The joint posterior distribution in terms of a given likelihood function in Eq.(20) and
joint prior distribution π1(α, λ1, λ2, p) in Eq.(21) is defined as

π∗
1(α, λ1, λ2, p | data) ∝ L(data) π1(α, λ1, λ2, p)

Hence, the joint posterior density of parameters α, λ1, λ2 and p based on Type-I censored
data is given by

π∗
1(α, λ1, λ2, p | x) = K1 pr1(1− p)r2αrη1η2∆1∆2Λ. (22)

where K1 is given as

K−1
1 =

∫ 1

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
pr1(1− p)r2αrη1η2∆1∆2Λ dλ1dλ2dαdp.

Under the SEL function, the Bayes estimate of a parameter is equal to its posterior
mean. Note that estimators using other loss functions can be obtained similarly. From
Eq. (22), it is clear that the Bayes estimators of α, λ1, λ2 and p can not be explicitly
obtained due to the involvement of the ratio of multiple integrals, therefore, we use the
Markov chain Monte Carlo (MCMC) technique to obtain the desired estimates.
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6.3.2 Bayes estimators under the beta and gamma priors based on SEL
function

Here, we assume that the parameters α, λ1, λ2 and p of MTGR distribution have inde-
pendent beta and gamma prior distributions as given by

p ∼ Beta(a, b), λ1 ∼ Gamma(c, d), λ2 ∼ Gamma(e, f), α ∼ Gamma(g, h).

where a, b, c, d, e, f, g and h are positive constants. Here, the joint prior density function
is formulated as follows:

π2(α, λ1, λ2, p) ∝ pa−1(1− p)b−1λc−1
1 λe−1

2 αg−1e−(dλ1+fλ2+hα) (23)

Hence, the joint posterior density of parameters α, λ1, λ2andp under joint prior density
π2(α, λ1, λ2, p) for the Type-I censored data is given by

π∗
2(α, λ1, λ2, p | x) ∝ pr1+a−1(1− p)r2+b−1λc−1

1 λe−1
2 αr+g−1e−(dλ1+fλ2+hα)

r1∏
j=1

x1j

r2∏
j=1

x2jη1η2∆1∆2Λ. (24)

From Eq.(24), it is clear that the Bayes estimators of α, λ1, λ2 and p can not be obtained
explicitly, hence, we use Markov chain Monte Carlo (MCMC) technique to obtain the
desired estimates.

6.3.3 MCMC Method

To obtain the Bayes estimates of the parameters α, λ1, λ2 and p under type-I censoring,
samples are generated from the posterior distribution. From Eq.(22), the conditional
posterior distributions for the parameters α, λ1, λ2 and p under uniform prior are, re-
spectively given by

π∗
1(α | λ1, λ2, p, x) = αr1∆1∆2Λ,

π∗
1(λ1 | α, λ2, p, x) = η1∆1Λ,

π∗
1(λ2 | α, λ1, p, x) = η2∆2Λ,

π∗
1(p | α, λ1, λ2, x) = pr1(1− p)r2Λ. (25)

From Eq.(24), the conditional posterior distributions for the parameters α, λ1, λ2 and
p under beta andgamma priors are, respectively given by

π∗
2(α | λ1, λ2, p, x) = αr+g−1 e−hα ∆1∆2Λ,

π∗
2(λ1 | α, λ2, p, x) = λc−1

1 e−dλ1 η1∆1Λ,

π∗
2(λ2 | α, λ1, p, x) = λe−1

2 e−fλ2 η2∆2Λ,

π∗
2(p | α, λ1, λ2, x) = pr1+a−1(1− p)r2+b−1Λ. (26)
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Figure 9: The posterior density of α, λ1, λ2 and p under uniform prior.

Figure 10: The posterior density of α, λ1, λ2 and p under beta-gamma prior.
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Since the conditional posterior distributions of the parameters α, λ1, λ2 and p are
not reducible into the forms of some well-known distributions, and we use Metropolis-
Hastings algorithm proposed by Metropolis et al. (1953) and Hastings (1970) to gener-
ate posterior samples. If the conditional posterior distributions of the parameters are
unimodal and are roughly symmetric, then these can be approximated by a normal dis-
tribution. Figures 9 and 10 show that the conditional distributions of α, λ1, λ2 and
p are unimodal and very much symmetric by visual inspection. Therefore, to generate
random samples from these conditional distributions, we use the following steps from
the Metropolis-Hastings algorithm:

� Set initial guesses for the parameters (α, λ1, λ2, p) as (α
0, λ0

1, λ
0
2, p

0).

� Set i = 1.

� Generate α ∼ N(αi−1, σ11), λ1 ∼ N(λi−1
1 , σ22), λ2 ∼ N(λi−1

2 , σ33) and p ∼ N(pi−1, σ44),
where σii denotes the (i, i)th entry of the variance-covariance matrix Σ.

� Compute q =
π∗(αi,λi1,λ

i
2,p

i|x)
π∗(αi−1,λi−1

1 ,λi−1
2 ,pi−1|x)

.

� Accept (αi, λi1, λ
i
2, p

i) with the probability min(1, q).

� Repeat Steps 3–5 M times to obtain M number of samples for the parameters
(α, λ1, λ2, p).

� Obtain the Bayes estimates using MCMC under SEL function as

p̃MC =
1

M ′

M
′∑

i+1

p(i), α̃MC =
1

M ′

M
′∑

i=1

α(i), λ̃jMC =
1

M ′

M
′∑

i=1

λ
(i)
j , for j = 1, 2

where M
′
= M −M0 and M0 is the count of burns in period.

� . The 100(1− δ)% HPD credible intervals are obtained using the idea of Chen and
Shao (1999).

7 Numerical Illustration

In this section, we provide some simulation results based on maximum likelihood and
Bayesian methods. First, we consider the performance of the MLEs of the parameters
with respect to sample size n and for different parameter values for the MTGR distribu-
tion. Let p̂, α̂ λ̂1 and λ̂2 be the MLEs of the parameters p, α, λ1 and λ2, respectively. We
calculate the mean squared errors (MSEs) and average bias (ABs) of the MLEs of the
parameters p, α, λ1 and λ2 based on simulation results of 1000 replications. Results of
the simulation study are summarized in Table 3 for different values of n, p, α, λ1 and λ2.
From Table 3, we observe that as sample size increases, the average biases and the MSEs
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decrease. It verifies the consistency properties of MLEs. In Table 4, we have reported
average confidence Length(ACL) along with coverage probabilities of the parameters of
the model. The boot-p and boot-t confidence intervals for the parameters of the model
are presented in Tables 4 and 5. On comparing the various interval estimates, we observe
that the HPD interval estimates are better in terms of interval lengths for the two sets
of parameters. We also observe that except for parameter α, the results get better when
the value of T increases. We further observe that the interval lengths get smaller with
the increase in the sample size. Next, we assess the performance of the Bayes estimates
in terms of their mean squared errors (MSEs) and average biases (ABs) based on Monte
Carlo simulation. Bayes estimates are obtained using uniform priors (Prior-I) and beta
and gamma priors (Prior-II) under the SEL function. We generated sample of sizes
n = 35, 50 and 70 from the MTGR distribution with parameters p, α, λ1 and λ2 such
that (p, α, λ1, λ2) ∈ {(0.5, 0.5, 0.5, 0.6), (0.65, 0.5, 0.6, 0.4)}. The considered hyperparam-
eter values are shown in Table 2 and the hyperparameters value are considered in such
a way that the mean of prior density is equal to the corresponding model parameter
value. Also, we have computed Bayes HPD credible length and coverage probabilities
(CPs) of the parameters p, α, λ1 and λ2. Results of the simulation study are summa-
rized in Tables 6-9. It is evident from these tables that as the sample size increases,
the MSEs of the Bayes estimates decrease, which verifies the consistency properties of
the estimators. For the sake of comparison purposes, if we compare MLEs with Bayes
estimates in terms of MSEs, we observe that Bayes estimates perform marginally better
than MLEs in almost all cases. Further, comparing the choice of priors, Prior-I performs
better marginally better than Prior-II in terms of MSEs for the parameters p and α while
Prior-II performs better than Prior-I for the parameters λ1 and λ2. It is also observed
that HPD credible intervals have smaller interval lengths than the intervals obtained by
using the asymptotic normality property of MLEs. Besides, boot-p performs better than
boot-t in terms of interval lengths and coverage probabilities.

Table 2: Hyperparameters value for Prior-II corresponding two sets of parameters p, α, λ1

and λ2.

Parameter Hyperparameter

p = 0.5, λ1 = 0.5, λ2 = 0.6, α = 0.5, (a, b) = (1, 1), (c, d) = (1, 2)

(e, f) = (3, 5), (g, h) = (1, 2)

p = 0.65, λ1 = 0.6, λ2 = 0.4, α = 0.5, (a, b) = (13, 7), (c, d) = (3, 5)

(e, f) = (2, 5), (g, h) = (1, 2)

8 Real data Analysis

In this section, to show the applicability of the methodology presented in this article,
we present two real data sets for the illustration purpose.
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Table 3: MSEs and ABs of the MLEs for the parameters p, α, λ1 and λ2.

(p, α, λ1, λ2) n T p̂ α̂ λ̂1 λ̂2

(0.5, 0.5,0.5 0.6) 35 1 0.20177 0.09687 0.22088 0.11875

-0.31071 -0.14495 0.30563 0.14501

1.25 0.10253 0.08638 0.17654 0.08964

-0.21779 0.12022 0.24773 0.14216

1.5 0.08287 0.061635 0.12289 0.08013

-0.10036 0.07623 0.22219 0.04389

50 1 0.01763 0.03879 0.21551 0.08645

-0.02645 -0.14295 0.23688 0.14095

1.25 0.01458 0.02955 0.16711 0.07242

-0.01884 0.11968 0.21420 0.14984

1.5 0.01373 0.02667 0.11006 0.06730

-0.01740 0.06199 0.21368 0.02957

70 1 0.01574 0.03132 0.17316 0.04567

-0.01584 -0.13573 0.14644 0.13424

1.25 0.01295 0.01997 0.15990 0.04001

-0.01247 0.06300 0.12703 0.12162

1.5 0.01141 0.01369 0.10117 0.03366

-0.01244 0.05227 0.10502 0.03007

(0.65,0.5,0.6,0.4) 35 1 0.10655 0.11427 0.18417 0.23134

-0.04376 -0.18315 0.26246 -0.25636

1.5 0.10645 0.11038 0.11195 0.19338

-0.03425 0.08191 0.24665 0.20683

1.7 0.10223 0.02544 0.09699 0.19232

-0.02634 0.07315 0.22098 0.18430

50 1 0.04491 0.11358 0.13033 0.14453

-0.04309 -0.09451 0.25610 -0.17311

1.5 0.02494 0.05809 0.08115 0.14121

-0.03405 0.06675 0.20557 0.14719

1.7 0.02422 0.01474 0.07934 0.12558

-0.02381 0.05027 0.20632 0.11367

70 1 0.04429 0.03263 0.10803 0.13964

-0.03931 -0.09171 0.15857 -0.16719

1.5 0.02387 0.02297 0.07744 0.13185

-0.03113 0.04862 0.20164 0.14469

1.7 0.02350 0.00995 0.07737 0.12017

-0.02257 0.04552 0.20603 0.10889
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Table 4: The average confidence Length(ACL), Boot-p and Boot-t confidence interval
length and CP for the parameters p = 0.5, α = 0.5, λ1 = 0.5 and λ2 = 0.6.

ACI Boot-p Boot-t

n T p α λ1 λ2 p α λ1 λ2 p α λ1 λ2

35 1 0.41197 0.42728 0.89719 0.75502 0.22202 0.30941 0.442421 0.60229 2.23882 3.20588 1.93069 3.51295

0.923 0.929 0.899 0.851 0.991 0.695 0.843 0.952 0.747 0.699 0.945 0.647

1.25 0.37821 0.45076 0.88196 0.73623 0.24772 0.37418 0.41631 0.50394 2.73124 3.27811 1.90952 2.73479

0.966 0.879 0.988 0.899 0.850 0.838 0.848 0.938 0.793 0.850 0.949 0.974

1.5 0.35538 0.48492 0.84307 0.70410 0.26520 0.48042 0.38492 0.444505 3.11055 3.38963 1.90952 2.32636

0.887 0.991 0.893 0.979 0.932 0.840 0.838 0.742 0.989 0.926 0.843 0.749

50 1 0.34453 0.34982 0.75127 0.63231 0.18558 0.30155 0.36378 0.50677 2.11348 3.18847 1.88015 3.29579

0.977 0.919 0.988 0.936 0.997 0.866 0.846 0.957 0.945 0.877 0.846 0.948

1.25 0.31773 0.37495 0.73077 0.61901 0.20739 0.30238 0.33981 0.41097 2.71790 3.26669 1.85075 2.59430

0.978 0.899 0.891 0.913 0.993 0.643 0.845 0.836 0.992 0.910 0.899 0.756

1.5 0.29924 0.39225 0.70226 0.59212 0.22284 0.349469 0.31309 0.43023 3.08874 3.37909 1.85017 2.17445

0.899 0.919 0.993 0.919 0.955 0.840 0.837 0.925 0.967 0.910 0.819 0.819

70 1 0.29116 0.29275 0.63283 0.53665 0.15368 0.23622 0.30727 0.42727 2.18112 3.18691 1.83679 2.56508

0.988 0.698 0.798 0.991 0.998 0.630 0.729 0.776 0.874 0.958 0.837 0.966

1.25 0.26816 0.31075 0.61179 0.52462 0.17386 0.27136 0.28074 0.34987 2.68200 3.21165 1.80961 2.17708

0.995 0.887 0.883 0.963 0.999 0.692 0.843 0.939 0.993 0.855 0.910 0.889

1.5 0.25345 0.32362 0.58771 0.50565 0.18763 0.29926 0.26064 0.28698 3.05323 3.26706 1.79065 2.11670

0.911 0.877 0.881 0.911 0.951 0.943 0.749 0.842 0.933 0.861 0.944 0.929

Table 5: The average confidence Length(ACL), Boot-p and Boot-t confidence interval
length and CP for the parameters p = 0.65, α = 0.5, λ1 = 0.6 and λ2 = 0.4.

ACI Boot-p Boot-t

n T p α λ1 λ2 p α λ1 λ2 p α λ1 λ2

35 1 0.42811 0.40091 0.88566 0.68067 0.22985 0.22344 0.34140 0.64433 2.39312 3.29689 1.61608 3.82204

0.899 0.937 0.938 0.848 0.990 0.673 0.849 0.892 0.797 0.766 0.683 0.885

1.5 0.34372 0.47465 0.79301 0.64151 0.25196 0.36847 0.28967 0.62399 3.11466 3.38455 1.50923 3.59534

1.000 0.991 0.983 0.983 0.993 0.885 0.792 0.985 0.990 0.992 0.789 0.991

1.7 0.32767 0.48035 0.72556 0.54427 0.25980 0.44764 0.28335 0.61442 3.34443 3.53956 1.50655 3.23503

0.899 0.969 0.991 0.987 0.990 0.977 0.865 0.981 0.990 0.998 0.992 0.876

50 1 0.35501 0.32600 0.73814 0.56361 0.19562 0.19424 0.27556 0.54235 2.29210 3.29707 1.57877 3.53276

0.878 0.899 0.988 0.960 0.899 0.659 0.693 0.924 0.991 0.778 0.883 0.765

1.5 0.28822 0.37312 0.65907 0.53883 0.21037 0.31762 0.23684 0.51711 3.10881 3.36612 1.50780 3.37089

1.000 0.925 0.838 0.673 0.957 0.890 0.696 0.861 0.991 0.895 0.936 0.991

1.7 0.27543 0.38204 0.60606 0.46089 0.21499 0.35904 0.23086 0.49358 3.252221 3.50206 1.46736 3.21411

0.984 0.892 0.988 0.987 1.000 0.875 0.993 0.986 0.877 0.998 0.939 0.956

70 1 0.29927 0.27319 0.62253 0.46521 0.18229 0.15393 0.22805 0.45977 2.22891 3.26534 1.53451 3.46884

0.998 0.985 0.938 0.734 0.915 0.763 0.893 0.878 0.896 0.759 0.881 0.881

1.5 0.24463 0.31126 0.55664 0.45091 0.17683 0.25821 0.19593 0.43977 3.07349 3.31839 1.48953 3.14209

0.874 0.925 0.977 0.683 0.997 0.984 0.976 0.991 0.990 0.998 0.892 0.997

1.7 0.23378 0.31952 0.51540 0.39253 0.15942 0.27986 0.19097 0.40078 3.22159 3.46792 1.42785 2.74779

0.988 0.990 0.978 0.808 0.929 0.880 0.928 0.931 0.987 0.995 0.897 0.699
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Table 6: MSEs and ABs of the Bayes for the parameters p, α, λ1 and λ2 under Prior-I.

(p, α, λ1, λ2) n T p̃ α̃ λ̃1 λ̃2

(0.5,0.5,0.5,0.6) 35 1 0.01303 0.02778 0.11147 0.05335

-0.01916 -0.1771 0.26125 0.14728

1.25 0.01274 0.02027 0.10858 0.05267

-0.01778 -0.10731 0.24754 0.13591

1.5 0.01105 0.01826 0.09907 0.05041

-0.01701 -0.06724 0.23706 0.13169

50 1 0.01028 0.02575 0.07483 0.03354

-0.01683 -0.14925 0.23516 0.12452

1.25 0.00924 0.01879 0.07113 0.03256

-0.01612 -0.09424 0.22193 0.11926

1.5 0.00828 0.01267 0.06692 0.03147

-0.01443 -0.05613 0.21626 0.10957

70 1 0.00689 0.02104 0.05569 0.02762

-0.01579 -0.13957 0.22142 0.12043

1.25 0.00668 0.01674 0.05552 0.02492

-0.01590 -0.08218 0.20535 0.10444

1.5 0.00547 0.01082 0.05343 0.02344

-0.00992 -0.03981 0.19986 0.09937

(0.65,0.5,0.6,0.4) 35 1 0.02879 0.02625 0.05696 0.15935

0.02427 -0.13006 0.16829 0.16359

1.5 0.01895 0.01888 0.04445 0.13350

0.01991 -0.08343 0.13305 0.13979

1.7 0.01009 0.01747 0.03921 0.12484

0.00896 -0.00719 0.12066 0.11820

50 1 0.00937 0.02663 0.03493 0.12743

0.01881 -0.11362 0.13648 0.19403

1.5 0.00724 0.01426 0.02923 0.11502

0.01551 -0.06278 0.11809 0.13433

1.7 0.00697 0.01116 0.02304 0.10024

0.00878 -0.05900 0.09500 0.11597

70 1 0.00716 0.02203 0.02954 0.11698

0.01139 -0.07286 0.13469 0.11506

1.5 0.00515 0.01057 0.02513 0.11046

0.01450 -0.05933 0.10898 0.11391

1.7 0.00447 0.00885 0.02459 0.10635

0.00801 -0.03410 0.10561 0.08584
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Table 7: The HPD credible interival and coverage percentage(CP) of the Bayes for the
parameters p, α, λ1 and λ2 under Prior-I.

(p, α, λ1, λ2) n T p̃ α̃ λ̃1 λ̃2

(0.5,0.5,0.5,0.6) 35 1 0.27514 0.27742 0.72005 0.67363

1.000 0.995 0.962 0.998

1.25 0.23523 0.29105 0.62533 0.57796

0.999 0.957 0.992 0.929

1.5 0.21244 0.30519 0.57164 0.52712

0.987 0.995 0.999 0.964

50 1 0.21694 0.21071 0.57203 0.54804

0.999 0.998 0.997 0.998

1.25 0.18937 0.23257 0.51340 0.48732

0.997 0.995 0.993 0.989

1.5 0.16804 0.23775 0.46906 0.44318

1.000 0.993 0.995 0.987

70 1 0.16777 0.15925 0.46425 0.45078

0.999 0.993 0.974 0.929

1.25 0.14662 0.17371 0.41626 0.40160

1.000 0.991 0.964 1.000

1.5 0.13184 0.18608 0.37903 0.36581

0.969 0.938 0.916 0.993

(0.65,0.5,0.6,0.4) 35 1 0.28298 0.25769 0.60367 0.58709

1.000 0.962 1.000 1.000

1.5 0.21315 0.30550 0.49406 0.48252

0.999 0.991 0.993 0.998

1.7 0.20444 0.31294 0.46805 0.45985

0.997 0.994 0.989 0.993

50 1 0.21967 0.19703 0.48438 0.47641

0.999 0.976 1.000 0.989

1.5 0.16415 0.23115 0.40269 0.39771

1.000 0.997 1.000 0.999

1.7 0.15387 0.24329 0.38041 0.37819

1.000 0.961 0.995 0.997

70 1 0.17191 0.14660 0.39378 0.38990

0.998 0.987 0.991 0.996

1.5 0.12441 0.18286 0.32689 0.32417

0.936 0.978 1.000 0.999

1.7 0.11601 0.18345 0.29832 0.29758

0.998 0.998 0.984 0.997
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Table 8: MSEs and ABs of the Bayes for the parameters p, α, λ1 and λ2 under Prior-II.

(p, α, λ1, λ2) n T p̃ α̃ λ̃1 λ̃2

(0.5,0.5,0.5,0.6) 35 1 0.01341 0.03271 0.07689 0.04428

-0.01760 -0.15917 0.19381 0.09275

1.25 0.01165 0.02859 0.07210 0.03738

-0.01625 -0.11833 0.17413 0.07831

1.5 0.01136 0.01958 0.07083 0.03534

-0.01156 -0.07891 0.15470 0.05505

50 1 0.00988 0.03207 0.05324 0.02365

-0.01638 -0.15546 0.18361 0.08153

1.25 0.00964 0.02061 0.04794 0.02293

-0.01268 -0.10969 0.17285 0.06749

1.5 0.00839 0.01534 0.04591 0.02110

-0.01166 -0.07661 0.15190 0.05219

70 1 0.00741 0.02919 0.05134 0.02113

-0.01312 -0.06791 0.18302 0.07319

1.25 0.00718 0.01964 0.04359 0.01783

-0.01107 -0.06031 0.14945 0.06194

1.5 0.00602 0.01290 0.03828 0.01260

-0.00943 -0.01699 0.13797 0.03726

(0.65,0.5,0.6,0.4) 35 1 0.03742 0.02709 0.05693 0.15959

0.03426 -0.12681 0.16754 0.11772

1.5 0.01353 0.02059 0.05024 0.14618

0.01331 -0.03491 0.15088 0.11730

1.7 0.00923 0.01907 0.04058 0.12591

0.00868 -0.02682 0.11947 0.06425

50 1 0.00905 0.02608 0.03292 0.13054

0.02230 -0.13760 0.13103 0.10783

1.5 0.00702 0.01341 0.03059 0.12262

0.01103 -0.05579 0.11983 0.10613

1.7 0.00647 0.01262 0.02848 0.10916

0.00707 -0.03064 0.10438 0.10309

70 1 0.00720 0.02022 0.02844 0.11636

0.02674 -0.15040 0.13072 0.12098

1.5 0.00523 0.01012 0.02497 0.10351

0.01331 -0.05568 0.11924 0.08602

1.7 0.00469 0.00852 0.01948 0.09368

0.00480 0.00097 0.08651 0.04700
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Table 9: The HPD credible interival and coverage percentage(CP) of the Bayes for the
parameters p, α, λ1 and λ2 under Prior-II.

(p, α, λ1, λ2) n T p̃ α̃ λ̃1 λ̃2

(0.5,0.5,0.5,0.6) 35 1 0.26495 0.26073 0.69141 0.63604

1.000 0.949 0.955 0.998

1.25 0.23626 0.27733 0.62074 0.56481

0.999 1.000 0.976 0.989

1.5 0.20837 0.29537 0.56546 0.51615

1.000 0.998 0.995 0.999

50 1 0.21223 0.20343 0.56386 0.53499

0.984 0.990 0.995 0.997

1.25 0.19156 0.21965 0.50283 0.47203

0.989 0.992 0.978 0.951

1.5 0.16778 0.23107 0.46161 0.43485

1.000 0.969 0.998 0.940

70 1 0.16689 0.15960 0.45412 0.43868

0.993 0.877 0.994 0.999

1.25 0.14662 0.17337 0.41144 0.39504

0.998 0.963 0.944 0.988

1.5 0.13103 0.18351 0.37451 0.35942

0.998 0.976 0.934 0.978

(0.65,0.5,0.6,0.4) 35 1 0.284104 0.26480 0.60504 0.59145

1.000 1.000 1.000 1.000

1.5 0.21155 0.31846 0.49620 0.48523

0.996 0.991 0.991 0.997

1.7 0.19823 0.32933 0.47330 0.46822

0.997 1.000 0.989 0.998

50 1 0.21957 0.19975 0.48523 0.47788

0.993 0.997 0.996 0.966

1.5 0.16405 0.23582 0.39915 0.39335

0.997 0.953 0.989 0.997

1.7 0.15270 0.24349 0.37822 0.37619

1.000 0.991 0.997 0.998

70 1 0.17099 0.15024 0.39304 0.38904

0.919 0.993 0.978 0.893

1.5 0.12573 0.18266 0.32549 0.32331

0.995 0.999 0.991 0.949

1.7 0.11474 0.18385 0.29796 0.29787

0.999 0.997 0.992 0.985
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8.1 Carbon fiber data

Here, we apply a real data set which was originally reported by Bader and Priest (1982).
The data represents the strength measured in GPA for single carbon fibres and impreg-
nated 1000-carbon fibre tows. Single fibres were tested under tension at gauge lengths of
20 mm with sample sizes n = 69. The data divided by 10 for computational convenience
are as follows:
0.1312, 0.1314, 0.1479, 0.1552, 0.1700, 0.1803, 0.1861, 0.1865, 0.1944, 0.1958, 0.1966, 0.1997,

0.2006, 0.2021, 0.2027, 0.2055, 0.2063, 0.2098, 0.2140, 0.2179, 0.2224, 0.2240, 0.2253, 0.2270,

0.2272, 0.2274, 0.2301, 0.2301, 0.2359, 0.2382, 0.2382, 0.2426, 0.2434, 0.2435, 0.2478, 0.2490,

0.2511, 0.2514, 0.2535, 0.2554, 0.2566, 0.2570, 0.2586, 0.2629, 0.2633, 0.2642, 0.2648, 0.2684,

0.2697, 0.2726, 0.2770, 0.2773, 0.2800, 0.2809, 0.2818, 0.2821, 0.2848, 0.2880, 0.2954, 0.3012,

0.3067, 0.3084, 0.3090, 0.3096, 0.3128, 0.3233, 0.3433, 0.3585, 0.3585.
In order to perform the classical and Bayesian analysis assuming the two-component

mixture of GR distribution, we randomly assembled the sets of data into two subpopu-
lations using probabilistic mixing weight p1 = 0.45 and T = 3.08. We call the first set
of data as Data-I with the subpopulations as follows:

Subpopulation-I:

0.1312, 0.1479, 0.1552, 0.1700, 0.1861, 0.1944, 0.1997, 0.2027, 0.2063, 0.2179, 0.2240, 0.2270,
0.2301, 0.2382, 0.2426, 0.2434, 0.2478, 0.2514, 0.2570, 0.2633, 0.2684, 0.2770, 0.2773, 0.2800,
0.2818, 0.2821, 0.2880, 0.3012, 0.3067, 0.3233, 0.3585.

Subpopulation-II:

0.1314, 0.1803, 0.1865, 0.1958, 0.1966, 0.2006, 0.2021, 0.2055, 0.2098, 0.2140, 0.2224, 0.2253,

0.2272, 0.2274, 0.2359, 0.2435, 0.2490, 0.2511, 0.2535, 0.2554, 0.2566, 0.2586, 0.2629, 0.2642,

0.2648, 0.2697, 0.2726, 0.2809, 0.2848, 0.2954, 0.3084, 0.3090, 0.3096, 0.3128, 0.3433, 0.3128,

0.3433, 0.3585.

We call the second set of data as Data-II with subpopulations of the given carbon fiber
data set as follows:

Subpopulation-I:

0.1312, 0.1314, 0.1700, 0.1861, 0.1944, 0.1997, 0.2006, 0.2021, 0.2098, 0.2240, 0.2270, 0.2274,

0.2301, 0.2359, 0.2382, 0.2426, 0.2490, 0.2566, 0.2629, 0.2642, 0.2697, 0.2726, 0.2770, 0.2800,

0.2821, 0.3012, 0.3084, 0.3090, 0.3233, 0.3585, 0.3585.

Subpopulation-II:

0.1479, 0.1552, 0.1803, 0.1865, 0.1958, 0.1966, 0.2027, 0.2055, 0.2063, 0.2140, 0.2179, 0.2224,

0.2253, 0.2272, 0.2434 , 0.2435, 0.2478, 0.2511, 0.2514, 0.2535, 0.2554, 0.2570, 0.2586, 0.2633,

0.2648, 0.2684 ,0.2773, 0.2809, 0.2818, 0.2848, 0.2880, 0.2954, 0.3067, 0.3096, 0.3128 ,0.3433 .

Now, before we obtain the various point and interval estimates to see the performance
of the different methodologies discussed, it is essential to check whether the given data
set fits our model. For this purpose, we calculate Kolmogorov-Smirnov(KS) distance and
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p-values. For comparison, together with MTGR distribution, we consider some other
models namely, generalized Rayleigh distribution(GR), generalized exponential distribu-
tion (GE), and exponentiated Pareto distribution (EP) and calculate the associated KS
distance and p-values along with MLEs of the parameters. We have calculated MTGR1

and MTGR2 based on the estimates under Data-I and Data-II, respectively. All the
calculated values are tabulated in Table 10. From the tabulated values, one may easily
conclude that the MTGR model shows a reasonably better fit than the other compet-
ing models for the considered data. Furthermore, plots for the empirical cumulative
distribution function with the theoretical cumulative distribution function of the distri-
bution are also provided in Figure 11, which also suggest a comparably better fit of the
considered MTGR distribution.

Table 10: MLEs of parameters and goodness fit test for the real data.

Model MLE KS-distance p-value Standard error

MTGR1 p̂=0.4412, α̂=8.8870, λ̂1=6.9047,λ̂2=6.4676 0.06178 0.9549 0.00646

MTGR2 p̂=0.4627, α̂=9.4985, λ̂1=6.7616,λ̂2=6.7536 0.06268 0.9492 0.00623

EP α̂ = 134.0172, λ̂ = 24.7305 0.10185 0.4713 0.00803

GE α̂ = 88.2219, λ̂ = 20.3746 0.09496 0.5625 0.00755

GR α̂=8.7898, λ̂=6.6674 0.06586 0.9257 0.00638

Table 11: Point and interval estimates of p, α, λ1 and λ2 for data-I.

Carbon fiber data p̃ α̃ λ̃1 λ̃2

MLE 0.44914 0.44751 1.41013 1.37833

ACL [0.21583] [0.27301] [ 0.24792] [0.88127]

Boot-p [0.17391] [0.15662] [0.18653] [0.27889]

Boot-t [2.93456] [3.38393] [1.77952] [1.70521]

Bayes(Prior-I) 0.46427 0.43892 1.45865 1.50586

HPD length [0.09825] [0.08713] [0.12376] [0.24327]

Bayes(Prior-II) 0.46476 0.58590 1.52089 1.56184

HPD length [0.10985] [0.12665] [ 0.08086] [0.17406]

In Tables 11 and 12, we report MLEs, 95% approximate CIs, Bayes point estimates
based on Prior-I and Prior-II, 95% HPD credible intervals. In addition to these, we also
report boot-p and boot-t intervals for each parameter of the MTGR distribution. From
Tables 11 and 12, we observe that Bayesian point estimates perform quite good than
the ML estimates for Data-I and Data-II both under both the prior assumptions. Here
we have considered not informative priors. When comparing the various classical inter-
val estimates namely approximate, boot-p and boot-t intervals with the HPD interval
estimates under the two priors, we observe that the performance of the HPD intervals is
better in terms of interval lengths. Further comparing the point and interval estimates
under classical and Bayesian approaches for the two data sets, we observe that the re-
sults for Data-II perform better. One may also make some other observations based on
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Figure 11: Empirical and fitted CDFs for the different distributions.
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Table 12: Point and interval estimates of p, α, λ1 and λ2 for data-II.

Carbon fiber data p̃ α̃ λ̃1 λ̃2

MLE 0.46268 0.44500 1.39485 1.39631

ACL [0.03577] [0.29634] [0.24792] [1.30890]

Boot-p [0.17911] [0.15277] [0.18928] [0.37945]

Boot-t [2.95780] [3.4009] [1.81881] [1.797794]

Bayes (Prior-I) 0.46474 0.43493 1.43119 1.59457

HPD length [0.00099] [0.07051] [ 0.07162] [0.33376]

Bayes(Prior-II) 0.46215 0.50196 1.49257 1.69332

HPD length [0.00087] [0.09827] [0.04581] [0.28211]

estimates of parameters and other comparisons may also be made. Here we have con-
sidered the two data sets based on probabilistic mixing weight p = 0.45 and T = 3.08,
by changing the values of these two quantities, further interesting observations can also
be drawn.

8.2 Floyd River floods data

The occurrence of extreme flood rates in rivers has significant implications for the econ-
omy, society, politics, and engineering. A prime example of this is the 1993 floods along
the Mississippi River. Therefore, it is crucial to model flood data and conduct analy-
ses that involve predicting extreme values such as the maximum flood levels expected
once every fifty or thousand years. These applications of extreme value theory play a
vital role. This data was originally taken by Mudholkar et al. (1995) and presented in
Table 13. Although there are various distribution models used in this context, Pericchi
and Rodriguez-Iturbe (1985) argue that the Gumbel distribution, which represents a
medium-tail extreme-value distribution, is the only one with a theoretical basis suit-
able for analyzing extreme streamflow. The following data shows the consecutive annual
flood discharge rates for the Floyd River at James, Iowa, for the years 1955-1973. For the

Table 13: The consecutive annual Floyd River flood discharge rate data at James, Iowa.

Year Flood discharge in (ft3/s)

1955-1964 2260,318,1330,970,1920,15100,2870,20600,3810,726

1965-1973 7500,7170,2000,829,17300,4740,13400,2940,5660.

Source: United State Water Resources Council (1977).

goodnessfit of this data, we first divide by 10000 and calculate Kolmogorov-Smirnov(KS)
distance and p-values and present the values along with MLE in Table 14. From the
tabulated values, one may easily conclude that the MTGR model shows a reasonably
better fit than the other competing models for the considered data. Furthermore, plots
for the empirical cumulative distribution function with the theoretical cumulative dis-
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tribution function of the distribution are also provided in Figure 12 which also suggest
a comparably better fit of the considered MTGR distribution. In Table 15, we report

Figure 12: Empirical and fitted CDFs for the different distributions under Floyd River
flood data.

MLEs, 95% approximate CIs, Bayes point estimates based on Prior-I and Prior-II, 95%
HPD credible intervals. In addition to these, we also report boot-p and boot-t inter-
vals for each parameter of the MTGR distribution. From Table 15, we observe that
Bayesian estimates perform quite good than the ML estimates for river flood data under
non-informative prior.

9 Conclusion

In this article, we have considered the classical and Bayesian methods of estimation
of MTGR distribution using type I censored samples. In addition, we have derived
some statistical properties along with the identifiability of MTGR distribution. From
simulation and real-life data analysis, we may conclude that the Bayesian estimation
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Table 14: MLEs of parameters and goodness fit test for the Floyd River flood data.

Model MLE KS-distance p-value Standard error

MTGR p̂=0.5263, α̂=0.3456, λ̂1=0.8025,λ̂2=0.8046 0.16794 0.5992 0.1291

Lindley α̂=2.3240 0.1877 0.4596 0.1213

Burr X α̂=0.3202, β̂=0.7870 0.1907 0.4398 0.13096

Table 15: Point and interval estimates of p, α, λ1 and λ2 for Floyd river flood data.

p̃ α̃ λ̃1 λ̃2

MLE 0.50605 0.48077 1.28281 0.87915

ACL [0.43929] [0.60831] [1.66668] [0.93242]

Boot-p [0.36529] [0.35900] [0.64301] [0.44014]

Boot-t [3.30656] [3.29592] [2.52984] [1.76961]

Bayes (Prior-I) 0.54984 0.40896 1.09845 0.81905

HPD length [0.23180] [0.17481] [0.78118] [0.54513]

Bayes(Prior-II) 0.5135 0.5195 1.17413 0.9598

HPD length [0.12874] [0.29780] [0.67476] [0.44562]

has an edge over ML method. An application of the MTGR distribution to real data
set shows the feasibility of our proposed distribution. We hope the proposed MTGR
distribution may attract wider application in statistics. In future, this work can be
extended using more than 2-component mixture of GR distribution using informative
and non-informative priors. Moreover, numerical methods such as EM algorithm and
Laplace methods are worth to be studied. Additionally, a finite mixture of regression
models for complete and censored data based on MTGR distributions can be considered.
More importantly, burn-in procedures that are used engineering methods to eliminate
weak components through determining optimal stopping time are worth to be studied
using the current distribution. This can also be achieved by studying the relation between
the change points of mean residual life and failure rate. Finally, further information
pertaining to the proportion of the weak components which will fail should be carried out,
which can be quantified by estimating the entropy parameter of the MTGR distribution.
It is worth mentioning that the entropy parameter can be estimated using some methods
given in Shakhatreh et al. (2021).
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Appendix:

Elements of the observed information matrix for the MTGR model are given below.

∂2 logL

∂p2
= − r1

p2
− r2

(1− p)2
− (n− r)(F1(T )− F2(T ))

2

(1− F (T ))2
,

∂2 logL

∂p ∂α
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−(n− r)(F1(T )− F2(T ))

(1− F (T ))2
{pF1(T ) lnA1(T ) + (1− p)F2(T ) lnA2(T )}

− (n− r)

1− F (T )
{F1(T ) lnA1(T )− F2(T ) lnA2(T )},

∂2 logL
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(F1(T )− F2(T ))f1(T ),

∂2 logL

∂p ∂λ2
=

(n− r)T

λ2(1− F (T ))
f2(T ) +

p(n− r)T

λ2(1− F (T ))2
(F1(T )− F2(T ))f2(T ),

∂2 logL

∂λ2
1

= −2r1
λ2
1

− 2

r1∑
j=1

x2
1j + 2(α− 1)

r1∑
j=1

x2
1je

−λ2
1x

2
1j

A1(x2j)

− 4(α− 1)

r1∑
j=1

{
λ1x

2
1j

B1(x1j)

A1(x1j)
+

B2
1(x1j)

A2
1(x1j)

}
− p(n− r)

λ1(1− F (T ))

{ 2

λ1
f1(T )− 2λ1T

2f1(T )

+
2(α− 1)B1(T )

A1(T )
f1(T )

}
+

p(n− r)T

λ2
1(1− F (T ))2

{1− F (T )− pTf1(T )}f1(T ),
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∂2 logL

∂λ1 ∂λ2
= −p(1− p)(n− r)T 2

λ1λ2(1− F (T ))2
f1(T )f2(T ),

∂2 logL

∂λ1∂α
= 2λ1

r1∑
j=1

x2
1je

−λ2
1x

2
1j

A1(x1j)
− p(n− r)T

λ1(1− F (T ))2

{
pF1(T ) lnF1(T )

+ (1− p)F2(T ) lnF2(T )
}
f1(T )

− p(n− r)T

λ1(1− F (T ))
(α−1 + lnA1(T ))f1(T ),

∂2 logL

∂λ2
2

= −2r2
λ2
2

− 2

r2∑
j=1

x2
2j + 2(α− 1)

r2∑
j=1

x2
2je

−λ2
2x

2
2j

A2(x2j)

− 4(α− 1)

r2∑
j=1

{
λ2x

2
2j

B2(x1j)

A2(x1j)
+

B2
2(x2j)

A2
2(x2j)

}
− p(n− r)T

λ2(1− F (T ))

{ 2

λ2
f2(T )− 2λ2T

2f2(T ) +
2(α− 1)B2(T )

A2(T )
f2(T )

}
+

p(n− r)T

λ2
2(1− F (T ))2

{1− F (T )− (1− p)Tf2(T )}f2(T ),

∂2 logL

∂λ2 ∂α
= 2λ2

r2∑
j=1

x2
2je

−λ2
2x

2
2j

A2(x2j)
− p(n− r)T

λ2(1− F (T ))2

{
pF1(T ) lnF1(T )

+ (1− p)F2(T ) lnF2(T )
}
f2(T )

− p(n− r)T

λ1(1− F (T ))
(α−1 + lnA2(T ))f2(T ),

∂2 logL

∂α2
= − r

α2
− (n− r)

(1− F (T ))2
(
pF1(T ) lnA1(T ) + (1− p)F2(T ) lnA2(T )

)2
− (n− r)

1− F (T )

(
pF1(T )(lnA1(T ))

2 + (1− p)(lnA2(T ))
2
)
.

where, Ai(x) = 1− e−λ2
ix

2

and Bi(x) = λix
2e−λ2

ix
2

, i = 1, 2.
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