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Partial Least Squares Structural Equation Modeling (PLS-SEM) is a pow-
erful statistical approach that has become a mainstream method in many
application areas. It offers flexibility in handling formative and reflective
measurement blocks, enabling researchers to model relationships among ob-
served and latent variables. The crucial step in this approach is the PLS-SEM
algorithm, which involves computing the scores of latent variables by alter-
nating between inner and outer estimation. The aims of the present paper
are twofold. The first contribution shows that the computations used in the
outer estimation are inappropriate for reflective blocks. The second contribu-
tion involves introducing an alternative algorithm to overcome this drawback
by using a new strategy based on considering the true structure of reflective
blocks. Numerical studies and empirical simulations are provided to illus-
trate the advantages of the proposed algorithm compared to the classical
one.
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Introduction

Structural Equation Modeling (SEM) is a set of statistical techniques commonly used in
order to model complex systems of human behavior while allowing for the use of latent
variables and variables measured with error. SEM helps the researcher to test or validate
a theoretical model for theory testing and extension.

Two major approaches are most widely used to estimate SEM: Covariance-based (CB-
SEM) and Variance-based approaches Bollen (1989). The first approach called Linear
Structural RELations (LISREL) Bollen (1989) minimizes the discrepancy between the
empirical and model-implied variance-covariance matrix of the observable variables to
obtain the model parameter estimates. The second approach, called Partial Least Square
Structural Equation Modeling (PLS-SEM) Benitez et al. (2020) creates linear combina-
tions of the observed variables as stand-ins for the theoretical concepts and subsequently
estimates the model parameters Russolillo (2009); Benitez et al. (2020).

Originally, PLS-SEM was founded in the first half of the 20th century by Herman Wold
Takane and Hwang (2018); Vinzi (2010); Hair Jr et al. (2021); Hwang et al. (2020);
Streukens et al. (2017); Hanafi et al. (2022); Wold (1966). Currently, PLS-SEM is a
prevailing approach that is widely used in many fields such as Business administration
research Hair et al. (2012a), marketing Hair et al. (2012b), operations management
Peng and Lai (2012), finance Avkiran and Ringle (2018), economics Sanchez (2013), and
others Fabbricatore et al. (2023); Mayrink et al. (2021); Hwang et al. (2015); Cho and
Choi (2020); Takane and Hwang (2018); Vinzi (2010); Hair Jr et al. (2021); Hwang et al.
(2020); Streukens et al. (2017). PLS-SEM is implemented in many software, such as
LVPLS Lohmöller (2013), PLS-Graph (Chin 2003) Chin (2001), SmartPLS Ringle et al.
(2015), PLS-SEM in XLSTAT XLSTAT (2019) and plspm package in R Sanchez (2013).

The analysis in PLS-SEM framework begins by drawing the conceptual representation
of the whole model. An example is given in figure 1.
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Figure 1: Schematic representation of a PLS-SEM model with four blocks.
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In the sequel, we note respectively by n, K, and pk, the number of observations, the
number of blocks, and the number of observed variables called Manifest Variables (MVs)
in the kth block with 1 ≤ k ≤ K.

The whole model contains two sub-models; (i) the structural model (or the inner
model), (ii) and the measurement model (or the outer model). On one side, the struc-
tural model describes the relations between unobserved variables called Latent Valriables
(LVs) denoted by ξk, (1 ≤ k ≤ K) (see figure 2 (a)). These relations are assumed to
follow linear regression of the form:

ξk =
K∑

j=1,j ̸=k

βkjξj + ζk (1)

where ζk called disturbance is a centered random variable not correlated with all LVs
appearing on the right side of (1). And βkj called path coefficient is a quantity that
measures the effect of the LV ξj on the LV ξk. Note that some path coefficients βkj are
structurally null and correspond to LVs ξj that are not connected to ξk.

On the other side, the measurement models describe the relations between each LV and
its corresponding MVs. Two kinds of measurement models are widely used in practical
studies, models with reflective blocks and models with formative blocks.

If the kth block is reflective, the LV is considered as the cause of its own MVs, see
figure 2 (b). In other words, for each j, (1 ≤ j ≤ pk), ξk gives rise to each Xkj as follows:

Xkj = λkjξk + ϵkj (2)

where ϵkj is a centred random variable not correlated with the LV ξk.

Contrariwise, if the kth block is formative, the LV is caused by its MVs, see figure 2
(c) i.e. Xk1, · · · ,Xkpk gives rise to ξk as follows:

ξk =

pk∑
j=1

λkjXkj + ϵk (3)

where ϵk is a centred random variable not correlated with all MVs Xk1, · · · ,Xkpk .

Parameters λkj , (1 ≤ k ≤ K) and (1 ≤ j ≤ pk) figuring in (2) and (3) are called
loadings.

As aforementioned, all LVs in PLS-SEM are standardized. In the present paper, we
assume that all MVs are also standardized. That is:

∥ ξk ∥=∥ Xkj ∥=
√
n ∀ 1 ≤ k ≤ K and ∀ 1 ≤ j ≤ pk (4)

The main objective of the analysis is to estimate the parameters of the whole model,
which are the path coefficients βkj and the loadings λkj . PLS-SEM consists of two main
stages. The first stage computes the scores of each LV as a weighted composite of its
MVs while the second stage uses these scores to estimate βkj and λkj . The present paper
focuses on the first stage.
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Figure 2: Structural model, formative block, and reflective block.

In order to assess the quality of the obtained scores, the communality index is widely
used. It is defined as follows:

Com =
1

K

K∑
k=1

1

pk

pk∑
j=1

Cor2(ξk,Xkj) (5)

This index is obtained as the mean of the squared correlations linking each MV to the
corresponding LV. It is the average proportion of variance of MVs reproduced by the
LVs Tenenhaus et al. (2005). Values closer to 1 suggest that each LV is more related to
its corresponding MVs.

Formally, the scores of LVs are computed as weighted sums of the MVs by alternating
between two types of estimations. The first is called internal estimation and concerns
the structural model. The internal score of ξk is computed as a linear combination of
all scores of LVs connected to ξk. The user specifies the scheme and the procedure
to compute the coefficients of this combination. Two schemes are generally used in
practice, which are the centroid scheme and the factorial scheme. The factorial scheme
considers the degree of connection between blocks by the correlation coefficient between
the considered blocks. Meanwhile, in the centroid scheme, the blocks are treated fairly.
Furthermore, two procedures are used to design the scores to be integrated into the
computation of a new score. The first, called Lohmöller’s procedure uses only scores
computed at the previous iteration. The second, called Hanafi-Wold’s procedure uses
scores computed at the previous and actual iterations.

The second estimation, called external estimation concerns the measurement model.
Basically, the external score of ξk is computed as a linear combination of all columns
of the matrix Xk by specifying the mode to be considered to compute the vector of
weights of this combination. Two modes are widely used, which are Mode A and Mode
B. The choice of the mode is subject to theoretical reasoning, and in most cases, Mode
A is more commonly used Sanchez (2013); Henseler (2010); Pelagatti et al. (2012); Eboli
et al. (2018); Crocetta et al. (2021).

In Mode A, the corresponding block is reflective and it is considered as pk simple
regression models. As a consequence, the vector of weights is computed as being the
vector of regression coefficients in the simple regressions of each MV on the associated
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LV. Besides, in Mode B, the associated block is formative and it is considered as a
multiple regression model. As a matter of fact, the vector of weights is computed as
being the vector of regression coefficients in the multiple regression of the LV on its own
MVs.

As will be illustrated in section 1.3, the computation used in Mode B is completely
justified. However, the calculation used in Mode A is not consistent since it does not
reflect the true structure of the block. An immediate consequence is that the obtained
scores may lead to communality index which is not optimal.

The present paper aims to overcome this drawback by providing a new strategy to
compute the vector of weights. The main idea is to consider the true structure of
reflective block which is a Path Analysis Model (PAM). The direct consequence is that
the obtained scores of LVs are improved. For instance, if we consider the model described
in Hanafi et al. (2022) and the corresponding dataset 5, the communality index associated
with the scores obtained by using simple regressions in Mode A is 0,7604 whereas this
same index is 0,8472 for the scores obtained by the proposed computations.

The paper is structured as follows. Section 1 presents PLS-SEM algorithm. It recalls
the outer and inner estimation of scores of LVs. In section 2, we first present briefly
recursive Path Analysis models and how the parameters are estimated. Then we focus
on reflective and formative models. Section 3 introduces a new algorithm to estimate the
scores of latent variables. We begin by defining the augmented blocks then we provide a
new strategy to compute the vectors of weights. In section 4, the introduced algorithm
is numerically compared to the classical algorithm. Finally, section 5 concludes with a
summary and perspectives.

1 PLSPM algorithm

The present section presents the external and internal estimation of scores of LVs, and
the PLSPM algorithm. Let 1 ≤ k, l ≤ K and s = 0, 1, · · · .

1.1 External estimation

Let z
(s)
k be the internal estimation of the score associated wih the kth LV, at iteration

s. The corresponding external estimation at iteration s+1 denoted by y
(s+1)
k is defined

by :

y
(s+1)
k = Xkw

(s+1)
k (6)

where

w
(s+1)
k =

√
n

w̃
(s+1)
k∥∥∥Xkw̃
(s+1)
k

∥∥∥ (7)
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so that y
(s+1)
k have unit variance (see (4)) is the vector of weights and w̃

(s+1)
k is computed

according to the specified mode as follows :

w̃
(s+1)
k =

{
X′

kz
(s)
k Mode A

(X′
kXk)

−1X′
kz

(s)
k Mode B

(8)

Recall that Mode A (respectively Mode B) is preferred for reflective blocks (respectively
for formative blocks).

1.2 Internal estimation

The internal estimation of the score associated with the kth LV at iteration (s + 1) is
computed as follows :

z
(s+1)
k =

{ ∑K
l=1 cklθ

(s)
kl y

(s)
l Lohmöller’s procedure∑k−1

l=1 cklθ
(s)
kl y

(s+1)
l +

∑K
l=k+1 cklθ

(s)
kl y

(s)
l Wold’s procedure

(9)

where

θ
(s)
kl =

 sign
[
cor
(
y
(s)
k ,y

(s)
l

)]
Centroid scheme

cor
(
y
(s)
k ,y

(s)
l

)
Factorial scheme

(10)

with ckl = 1 if the LVs ξk and ξl are linked, and ckl = 0 otherwise. y
(s)
k and y

(s)
l are

the external estimations of the scores associated with ξk and ξl respectively as defined

in (6). Lohmöller’s procedure computes the score z
(s+1)
k at iteration s+ 1 as a function

of all adjacent scores z
(s)
j , (1 ≤ j ≤ K and ξj connected to ξk) obtained in the previous

iteration (s) Hanafi (2007); Tenenhaus et al. (2005); Henseler (2010) while Wold’s pro-

cedure uses the most recent available information, i.e. z
(s+1)
j , (1 ≤ j ≤ k − 1) and z

(s)
j ,

(k+1 ≤ j ≤ K) Henseler (2010); Hanafi et al. (2021). Wold’s procedure is characterized
by the advantage of being monotonically convergent. In contrast, Lohmöller’s procedure
does not always converge monotonically, but is implemented in most PLS software. The
present paper focuses on Lohmöller’s procedure.

1.3 PLSPM algorithm

The alternation between external and internal estimation defines the so called PLSPM
algorithm which can be summarized in figure 3 below.

PLSPM algorithm is initialized by arbitrary vectors of weights w
(0)
1 , · · · ,w(0)

K and

iterated over s; (s = 1, 2, . . .) until the quantity

K∑
k=1

∥∥∥y(s+1)
k − y

(s)
k

∥∥∥2 is less than a fixed

small threshold.

Equations in (8) are the main motivation of the present paper. In deed, when mode B
is considered for the kth block, this latter is a multiple regression model and the second
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Compute θk in (10)

Compute zk as in (9)

Compute w̃k as in (8)

Compute wk as in (7)

Compute yk as in (6)

Figure 3: PLSPM algorithm to compute the scores of LVs.

equation in (8) is coherent with this structure: w̃
(s+1)
k is estimated by the vector of the

coefficients of the multiple regression of z
(s)
k on Xk1, · · · and Xkpk .

Contrariwise, when mode A is chosen for the kth block, this latter is not a set of
simple regression models because it does not take into account the correlations between

all MVs of the block Xk. Consequently, it w̃
(s+1)
kj cannot be estimated by the regression

coefficient on the simple regression of Xkj on z
(s)
k . i.e. the first equation in (8) is not

realistic.

The main contribution of the present paper is to introduce an alternative method to

estimate the weight vectors w̃
(s+1)
k given in (8) when Mode A is used. Basically, the kth

block contains one explanatory variable (z
(s)
k ) and pk explained variables (Xk1, · · · and

Xkpk). As a consequence, this block is a reflective path analysis model. Consequently,
the associated parameters should be estimated by the appropriate strategy. In this
regard, El Hadri & al El Hadri et al. (2023); Sahli et al. (2024) recently proposed a
new method to estimate such type of models. It consists of an Alternating Least Square
procedure based on the Finite Iterative Method El Hadri and Hanafi (2015).

2 Estimation of Reflective Path Analysis Model

2.1 Recursive Path Analysis Model

Definition 1. A model regrouping a set of observed variables for which at least one of
them is an explained variable is called Path Analysis Model (PAM)Kline (2023).

In this section, the following notations are adopted.

� A variable that is always explanatory is called an exogenous variable and denoted
by ξ. Otherwise, it is called an endogenous variable and denoted by η.

� The direct effect of an exogenous variable on an endogenous variable is denoted by
γ.
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� The direct effect of an endogenous variable on another endogenous variable is
denoted by β.

� The disturbance term associated with an endogenous variable is denoted by ζ.

A PAM is represented algebraically by a system of a set of multiple regressions as
follows: 

η1 = γ11ξ1 + . . .+ γ1qξq + ζ1
...

ηp = βp1η1 + . . .+ βp,p−1ηp−1 + γp1ξ1 + . . .+ γpqξq + ζp

(11)

where q and p are respectively the number of exogenous and endogenous variables.
System (11) can be formulated as the following compact form:

η = Γξ +Bη + ζ (12)

Here, η and ξ are respectively the vectors of the endogenous and exogenous variables,
and ζ is the vector of disturbances. In addition, B = [βij ]1≤i,j≤p denotes the (p × p)
matrix of parameters relating endogenous variables. And Γ = [γij ]1≤i≤p;1≤j≤q is the
(p× q) matrix of parameters relating endogenous variables to exogenous variables.

Definition 2. A Path Analysis Model is called a Recursive Path Analysis Model if B is
a lower triangular matrix.

2.2 Estimation of Recursive Path Analysis Model

The estimation of a Recursive PAM consists of finding values for the unknown parameters
by minimizing a given criterion. These parameters are the elements of the vector ρ
defined as follows:

Definition 3. The vector denoted by ρ whose elements are the non null elements of
matrices Φ, Γ and B is called the vector of parameters:

ρ = V ecs(Φ,Γ,B) (13)

where Φ = [ϕij ]1≤i,j≤q denotes the (q × q) matrix among exogenous variables. Mean-
while, the Unweighted Least Squares is widely used as a criterion to be minimized. It is
defined as Bollen (1989); Kline (2023); El Hadri and Hanafi (2015):

F (ρ) =
1

2
tr

[(
R̂(ρ)−R

)2]
=

1

2
∥ R̂(ρ)−R ∥2F (14)

where in (14):

(i) R is the empirical correlation matrix (see (15)),

(ii) R̂ = R̂(ρ) is the correlation matrix involved by the path model (see (16)),
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(iii) tr denotes the trace of a square matrix and ∥∥F denotes the Frobenius norm.

Definition 4.

i. The matrix denoted by R and defined by

R =

(
E(ξ(data)ξ(data)

′
) E(ξ(data)η(data)′)

E(η(data)ξ(data)
′
) E(η(data)η(data)′)

)
(15)

is called the empirical correlation matrix, where ξ(data) and η(data) are respectively
the vectors of exogenous and the endogenous variables obtained from data.

ii. The matrix denoted by R̂ and defined by

R̂ = R̂(ρ) =

(
E(ξ(model)ξ(model)′) E(ξ(model)η(model)′)

E(η(model)ξ(model)′) E(η(model)η(model)′)

)
(16)

is called the correlation matrix implied by the model, where ξ(model) and η(model) are
respectively the vectors of exogenous and the endogenous variables obtained from
the vector of the model’s parameters defined in (13).

It is clear that the minimization of the criterion F defined in (14) requires to answer
the following two questions. First, how the matrix R̂ is computed when ρ is known?
And second, how to find the vector ρ which minimizes F?

In order to answer the first question, El Hadri and Hanafi (2015) introduced the
Finite Iterative Method (FIM) in 2015 to compute R̂ iteratively. FIM is defined by the
following iterations:

Algorithm 1 Finite Iterative Method to compute the matrix R̂ for
q exogenous variables and p endogenous variables.

Initialization : Set R̂1:q,1:q = Φ, A = [Γ,B] and j = 1.

Iterate over j = 1, · · · , p the following steps :

Step 1. Compute R̂q+j,1:q+j−1 = Aj,1:q+j−1R̂1:q+j−1,1:q+j−1.

Step 2. Compute R̂1:q+j−1,q+j = (R̂q+j,1:q+j−1)
′.

Step 3. Set R̂q+j,q+j = 1.

FIM starts by setting R̂1:q,1:q = Φ (correlation matrix between the q exogenous vari-

ables) where R̂1:q,1:q is the sub-matrix of R̂ obtained by extracting the first q rows and

the first q columns. Thereafter, the sub-row R̂q+j,1:q+j−1 of the (q + j)th row of R̂ con-
taining the first (q + j − 1) elements is computed (step 1) as the product between (i)
the sub-row Ak,1:q+j−1 of the jth row of A containing the first (q + j − 1) elements, (ii)

and the block R̂1:q+j−1,1:q+j−1 where R̂1:q+j−1,1:q+j−1 is the sub-matrix of R̂ obtained
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by extracting the first (q + j − 1) rows and the first (q + j − 1) columns. In step 2, the
sub-column R̂1:q+j−1,q+j of the (q+j)th column of R̂ is computed as being the transpose

of the sub-row R̂q+j,1:q+j−1. The (q + j)th diagonal element of R̂ is set to 1 (step 3).
Steps 1 to 3 are iterated p times over j.
And in order to answer the second question, El Hadri et al. (2023) introduce in 2022

a new procedure to estimate ρ = (ρ1, · · · , ρI)′ where I is the size of ρ. Formally, the
elements of this vector are estimated alternately and successively (one after an other)
by minimizing a univariate function each time defined as follows:

Fi(v) = F (ρ1, · · · , ρi−1, v, ρi+1, · · · , ρI) (17)

Formally, we fix ρ2, · · · and ρI and solve for ρ1. Once ρ1 is found, we fix it at its value
and keep ρ3, · · · and ρI fixed and solve for ρ2. We continue in the same way by fixing
ρ1, · · · and ρI−1 at their recent values and we solve for ρI . Then we go back to update
ρ1 and the process is repeated until convergence. i.e. F (ρ(s))− F (ρ(s+1)) is less than a
small fixed value. Note that the initial values are arbitrarily chosen. The procedure is
defined as the following :

Algorithm 2 Procedure to estimate the vector of parameters associated with
a given recursive PAM.

Initialization : Choose arbitrary values ρ
(0)
1 , . . . , ρ

(0)
I and set s = 0.

While ∥ ρ(s+1) − ρ(s) ∥≥ threshold.

Iterate over t = 1, · · · , I.
Step 1 : Compute M

(s)
i = R̂

(
ρ
(s+1)
1 , . . . , ρ

(s+1)
i−1 , 0, ρ

(s)
i+1, . . . , ρ

(s)
I

)
using FIM.

Step 2 : Compute Ñ
(s)
i = R̂

(
ρ
(s+1)
1 , . . . , ρ

(s+1)
i−1 , 1, ρ

(s)
i+1, . . . , ρ

(s)
I

)
using FIM.

Step 3 : Compute N
(s)
i = Ñ

(s)
i −M

(s)
i .

Step 4 : Compute ρ
(s+1)
i =

〈
N

(s)
i ,R−M

(s)
i

〉
∥∥∥N(s)

i

∥∥∥2
F

.

End.

ρ(s) ← ρ(s+1).

End.

The procedure begins with an arbitrary choice of initialization. Suppose that ρ
(s+1)
1 , . . . ,

ρ
(s+1)
i−1 are computed, the matrices M

(s)
i and Ñ

(s)
i are computed by FIM by setting re-

spectively ρi = 0 and ρi = 1 (step 1 and step 2). These two matrices allow to compute

the matrix N
(s)
i (step 3). Then ρi is updated in step 4 by the minimizer of the function

given in (17). Steps 1 to 4 are iterated I times over i. The procedure is iterated until
the quantity ∥ ρ(s+1) − ρ(s) ∥ reaches a given threshold.
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2.3 Reflective Path Analysis Model

Definition 5. A recursive PAM is called Reflective Path Analysis Model (RPAM) if
it contains one exogenous variable, all other variables are endogenous and explained by
the exogenous variable and no endogenous variable is explained by another endogenous
variable (figure (2 (b)).

A direct consequence of definition 5 is that for a RPAM,Φ = 1, Γ = (γ11, γ21, · · · , γp1)′,
B = 0, ρ = Γ′ and I = p.

Proposition 1. The correlation matrix implied by a RPAM involving p endogenous
variables and defined in (16) is :

R̂ =



1 ρ1 ρ2 · · · ρp

ρ1 1 ρ1ρ2 · · · ρ1ρp

ρ2 ρ1ρ2 1
...

...
...

. . . ρp−1ρp

ρp ρ1ρp · · · ρp−1ρp 1


(18)

Proof. See Appendix.

In addition, the empirical correlation matrix of dimension (p× p) among endogenous
variables is denoted by Ω :

Ω = [ωj,k]1≤j,k≤p = E(η(data)η(data)′) (19)

and the empirical correlation vector of dimension p between the p endogenous variables
and the exogenous variable is denoted by H :

H = [hj ]1≤j≤p = E(η(data)ξ(data)
′
) (20)

It follows that the empirical correlation matrix defined in (15) is expressed as:

R =



1 h1 h2 · · · hp

h1 1 ω2,1 · · · ωp,1

h2 ω2,1 1
...

...
...

. . . ωp,p−1

hp ωp,1 · · · ωp,p−1 1


(21)

Corollary 1. The update expression given in step 4 of algorithm 2 (the argmin of the
function given in (17) is :

ρ
(s+1)
j =

hj1 +

j−1∑
l=1

ωjlρ
(s+1)
l +

p∑
l=j+1

ωjlρ
(s)
l

1 +

j−1∑
l=1

(
ρ
(s+1)
l

)2
+

p∑
l=j+1

(
ρ
(s)
l

)2
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Proof. See Appendix.

3 PLSFIM algorithm

This section is devoted to introducing a new PLSPM algorithm. The novelty affects
mainly the estimation of weights performed in (8). To do so, at each iteration s, (s =

0, 1, · · · ) and for each k, (1 ≤ k ≤ K), the weights vector w̃
(s+1)
k will be estimated

using corollary 1 in section 2. For this purpose, we start by introducing the following
definition.

Definition 6. For k, (1 ≤ k ≤ K), and s, (s = 0, 1, · · · ), the model containing the

pk manifest variables Xk1, · · · ,Xkpk and the internal estimation z
(s)
k is called the kth

augmented block at iteration s.

It is clear that when Mode A is used for the kth block, the associated augmented

block is RPAM. In particular, z
(s)
k is the exogenous variable and Xk1, · · · ,Xkpk are the

endogenous variables. Using the procedure proposed by El Hadri et al. (2023), the

associated vector of weights w̃
(s+1)
k can estimated by algorithm 3 below.

Algorithm 3 Algorithm to estimate vector of weights associated with the kth

block.

Initialization : Choose arbitrary values
[
w̃

(s+1)
k1

](0)
, . . . ,

[
w̃

(s+1)
kpk

](0)
and set t = 0.

While

∥∥∥∥[w̃(s+1)
k

](t+1)
−
[
w̃

(s+1)
k

](t)∥∥∥∥ ≥ threshold

Iterate for j = 1, · · · , pk

Compute
[
w̃

(s+1)
kj

](t+1)

=
1

n
×

X′
kjz

(s)
k +

j−1∑
l=1

X′
kjXkl

[
w̃

(s+1)
kl

](t+1)

+

pk∑
l=j+1

X′
kjXkl

[
w̃

(s+1)
kl

](t)
1 +

j−1∑
l=1

([
w̃

(s+1)
kl

](t+1)
)2

+

pk∑
l=j+1

([
w̃

(s+1)
kl

](t))2
.

End.[
w̃

(s+1)
k

](t)
←
[
w̃

(s+1)
k

](t+1)
.

End.

Algorithm 3 allows to build a new algorithm to compute scores of LVs in PLSPM
framework. We call this algorithm Finite Iterative Method based algorithm (PLSFIM)
and it is defined as follows (figure 4).
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w̃k1

w̃kpk

· · ·

w̃k2

Compute θkl as in (10)

Compute yk as in (6)

Compute wk as in (7)

Compute zk as in (9)

Figure 4: PLSFIM algorithm to compute the scores of LVs.

It is important to note that PLSFIM and PLSPM algorithms are clearly different. In
deed, the estimates of vectors of weights are provided by these algorithms using different
criteria. Basically, PLSPM algorithm computes the associated weights for the kth block
(see the first equation in (8)) by minimizing the following criterion:

1

2

pk∑
j=1

[
w̃kj −X′

kjz
(s)
k

]2
(22)

whereas, from (23), the criterion used in PLSFIM algorithm is :

1

2

pk∑
j=1

[
w̃kj −X′

kjz
(s)
k

]2
+

1

2

pk∑
j,l=1,j ̸=l

(w̃kjw̃kl −X′
kjXkl)

2 (23)

The quantity
1

2

pk∑
j,l=1,j ̸=l

(w̃kjw̃kl −X′
kjXkl)

2 which is the difference between the two cri-

teria represents the ignored part when the model is considered as pk simple regression
models. This constitutes the main justification for the failure of Mode A stated in section
1.
One can remark that the PLSFIM seems to be more computationally demanding.

In this situation, much better estimation scores of LVs are expected to compensate
these computational efforts. In this context, is PLSFIM more efficient than PLSPM? In
order to respond to this question, the communality index defined in (5) is considered as a
criterion of efficiency. Ideally, one can provide a formal proof that compare ComPLSFIM

and ComPLSPM . Unfortunately, this proof seems not to be an easy task and needs deep
reflection. Consequently it will not be discussed in the present paper and we limit this
comparison in a numerical level. The following section is dedicated to this feature.

4 Numerical Comparisons

Several studies using real and simulated data will be given in this section to highlight
the advantages of PLSFIM compared to the classical algorithm PLSPM respectively
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described in figure 4 and figure 3 for reflective blocks. Note that all results concern
Lohmöller’s procedure. We remark that Hanafi-Wold’s procedure provides exactly the
same results.

4.1 Comparison on real data

To clarify the comparison between the two algorithms, it is very useful to refer to a
practical example where PLSPM has been applied very extensively. In this context, The
European Consumer Satisfaction Index (ECSI) Tenenhaus et al. (2005) is considered. It
is an analytical tool designed to provide a solid basis for selecting the right marketing
strategy. Using ECSI, the company can discover what the most important factors are
for the satisfaction and loyalty of customers. The corresponding dataset consists of 250
consumer responses to service units and 27 variables (27 MVs) grouped into 6 blocks (6
LVs). This suggests that Mode A is used to compute the weights in PLSPM. Finally, the
R plspm Sanchez (2013) package is used to implement PLSPM. Figure 5 below represents
the conceptual configuration of the ECSI model.

Customer

Expectation

Customer

Satisfaction

Perceived

Quality

Perceived

Value

Image

Loyalty

Complaints

Figure 5: Causality model describing causes and consequences of customer satisfaction.

PLSFIM and PLSPM are applied to this model to compute the scores of LVs. They
are initialized by the same vectors of weights which values are all chosen to be equal
to 0.5 and the threshold is fixed to 10−7. In addition, the threshold used in PLSFIM
is fixed at 10−9. The estimates of weights and scores of LVs obtained for centroid and
factorial schemes by the two algorithms are given in Appendix 5.

The respective values of communality index defined in (5) obtained by PLSPM and
PLSFIM are ComPLSPM = 0.659692 and ComPLSFIM = 0.660761 for centroid scheme
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and ComPLSPM = 0.659697 and ComPLSFIM = 0.660757 for factorial scheme. This
allows us to conclude that the part of variance of MVs explained by LVs estimated by
PLSFIM is more important than those estimated by PLSPM.

4.2 Comparison on simulated data 1

In the perspective of investigating if PLSFIM algorithm is always more efficient than
PLSPM algorithm, we consider the same model ECSI described in Figure 5 but with
simulated data. In this context and in order to avoid the problem of non convergence
of PLSPM Henseler (2010), we control the correlation between the MVs, and the Cron-
bach’s alpha to ensure the unidimensionality for all blocks Tenenhaus et al. (2005). 100
data sets are generated using dplyr, tidyr, and faux packages in the R software such
that the correlation between the MVs is ranged in the interval [0.7; 0.9] and the Cron-
bach’s alpha fixed between 0.91 and 0.98 for all blocks. Thereafter, PLSPM and PLSFIM
are initialized with the same vectors of weights and applied with the threshold 10−7 to
estimate the scores of LVs. The communality index defined in (5) is then computed for
both algorithms. Figure 6 below depicts the evolution of this index for centroid and
factorial schemes.

Figure 6: Evolution of the communality index for centroid (Left) and factorial (Right)
schemes for simulation 1.

Figure 6 shows that the communality provided by the PLSFIM is always higher than
that obtained by PLSPM. In deed, the respective mean values are 0.855 and 0.845 for
centroid scheme and the respective mean values are 0.855 and 0.847 for factorial scheme.
Based on this simulation, we can confirm that the LVs estimated by PLSFIM are more
related to their own MVs than those estimated by PLSPM. However, this advantage of
PLSFIM is not substantially significant.

4.3 Comparison on simulated data 2

In this section, we propose to show that the advantage of PLSFIM algorithm over PLSPM
algorithm can be more significant. To do so, we consider the model given in figure 7
below.
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ξ1

ξ5

ξ4

ξ3

ξ2

ξ6

ξ8

ξ7

Figure 7: Conceptual model with 8 blocks.

This model contains 8 blocks with different numbers of MVs, see Table 1 below.

Block ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

Number of MVs 5 6 7 4 5 4 4 8

Table 1: Number of MVs per block for model associated with figure 7

Thereafter, 100 datasets are generated on 4 configurations such that the correlation
between the MVs is respectively ranged in the intervals [0.5; 0.6], [0.6; 0.7], [0.7; 0.8] and
[0.8; 0.9] using the same method as in section 4.2. Thereafter, the communality index
is computed for each configuration and for each algorithm. Figure 8 below represents
the evolution of this index for centroid and factorial schemes. In addition, table 2 below
summarizes the means of communalities for both algorithms, both schemes and four
configurations.

Figure 8 shows that communality index obtained by using PLSFIM is clearly more
important than the one obtained by PLSPM. More precisely, table 2 shows that the
communality obtained using PLSFIM is informatively greater than the one obtained by
PLSPM whatever the chosen scheme and the considered configuration.

Correlation Centroid Factorial

PLSPM PLSFIM PLSPM PLSPIM

[0,5;0,6] 0.45 0.56 0.46 0.56

[0,6;0,7] 0.52 0.62 0.53 0.62

[0,7;0,8] 0.57 0.68 0.60 0.69

[0,8;0,9] 0.64 0.76 0.65 0.75

Table 2: Means of communalities for PLSPM and PLSFIM, both schemes and four con-
figurations.
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Figure 8: Evolution of the communality index for simulation 2 for centroid (Left) and
factorial (Right) schemes.



18 EL Hadri, Ebnou Abdem

5 Conclusion and perspectives

We have introduced in this paper a new algorithm to estimate the so-called weights
in PLS-SEM framework when all blocks are considered to be reflective. The proposed
algorithm is based on the Finite Iterative Method and allows to build a new algorithm
to compute the scores of LVs.

On one hand, this contribution concerns only the outer model. Can we propose analog
results for the inner model? The response to this question is the subject of future work
and it is in advance. Moreover, new quality indices can be constructed to test the fit of
models.

On the other hand, the advantages of this new algorithm are highlighted. Indeed we
have presented a real study and two numerical simulations that show that the proposed
algorithm is more efficient than the classical algorithm in terms of commonality index.
Meanwhile, it will be interesting to provide formal proof of this efficiency.
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Appendix 1

Proof. (of proposition 1). Using the FIM algorithm 1, the implied correlation matrix
R̂ is computed iteratively as follows :

i. Initialisation: R̂1:1,1:1 = Φ = 1.

ii. Let j be an integer such that 1 ≤ j ≤ p and suppose that

R̂1:j,1:j =



1 ρ1 ρ2 · · · ρj−1

ρ1 1 ρ1ρ2 · · · ρ1ρj−1

ρ2 ρ1ρ2 1
...

...
...

. . . ρj−2ρj−1

ρj−1 ρ1ρj−1 · · · ρj−2ρj−1 1


.



Electronic Journal of Applied Statistical Analysis 21

iii. R̂j+1,1:j = Aj,1:jR̂1:j,1:j =
(
ρj 0 · · · 0

)


1 ρ1 ρ2 · · · ρj−1

ρ1 1 ρ1ρ2 · · · ρ1ρj−1

ρ2 ρ1ρ2 1
...

...
...

. . . ρj−2ρj−1

ρj−1 ρ1ρj−1 · · · ρj−2ρj−1 1


=
(
ρj ρ1ρj · · · ρj−1ρj

)

iv. R̂1:j,j+1 = R̂′
j+1,1:j =


ρj

ρ1ρj
...

ρj−1ρj


v. R̂j+1,j+1 = 1

vi. R̂1:j,j+1 =



1 ρ1 ρ2 · · · ρj

ρ1 1 ρ1ρ2 · · · ρ1ρj

ρ2 ρ1ρ2 1
...

...
...

. . . ρj−1ρj

ρj ρ1ρj · · · ρj−1ρj 1



Appendix 2

Proof. (of corollary 1).
On one side, proposition 1 gives

R̂(ρj = 0) =



1

ρ1 1

ρ2 ρ1ρ2 1
...

...
...

. . .

ρj−1 ρ1ρj−1 · · · ρj−2ρj−1 1

0 0 · · · · · · 0 1

ρj+1 ρ1ρj+1 · · · · · · · · · 0 1
...

...
... · · · · · · · · · · · · 1

ρp ρ1ρp · · · · · · 0 · · · · · · ρp−1ρp 1
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And

R̂(ρj = 1) =



1

ρ1 1

ρ2 ρ1ρ2 1
...

...
...

. . .

ρj−1 ρ1ρj−1 · · · ρj−2ρj−1 1

1 ρ1 · · · · · · ρj−1 1

ρj+1 ρ1ρj+1 · · · · · · · · · ρj+1 1
...

...
... · · · · · · · · · · · · 1

ρp ρ1ρp · · · · · · ρp · · · · · · ρp−1ρp 1


Thus

Nj = R̂(ρj = 1)− R̂(ρj = 0) =



0

0 0

0 0 0
...

...
...

. . .

0 0 · · · 0 0

1 ρ1 · · · · · · ρj−1 0

0 0 · · · · · · · · · 0 0
...

...
...

...
...

...
... 0

0 0 · · · · · · ρp · · · · · · · · · 0


Thus

∥Nj∥2F = 2

1 +

p∑
l=1,l ̸=j

ρ2l


And on the other side, (21) gives

R−Mj =



0

h1 − ρ1 0

h2 − ρ2 ω12 − ρ1ρ2 0
...

...
...

. . .

hj−1 − ρj−1 ω1,j−1 − ρ1ρj−1 · · · ωj−2,j−1 − ρj−2ρj−1 0

hj ω1,j · · · · · · ωj−1,j 0

hj+1 − ρj+1 ω1,j+1 − ρ1ρj+1 · · · · · · · · · 0 0
...

...
... · · · · · · · · · · · · 0

hp − ρp ω1,p − ρ1ρp · · · · · · ωp,j · · · · · · ωp−1,p − ρp−1ρp 0
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Thus

⟨Nj ,R−Mj⟩ = 2

hj +

p∑
l=1,l ̸=j

ωjlρl


Finally

ρ̂j =
⟨Nj ,R−Mj⟩
∥Nj∥2F

=

hj +

p∑
l=1,l ̸=j

ωjlρl

1 +

p∑
l=1,l ̸=j

ρ2l
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Appendix 3

Centroid scheme

Image Expectation Quality

PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM

0.240 0.206 0.250 0.235 0.237 0.241

0.311 0.297 0.273 0.281 0.272 0.268

0.300 0.306 0.227 0.223 0.224 0.225

0.197 0.181 0.248 0.261 0.248 0.245

0.220 0.286 0.267 0.265 0.245 0.246

Value Satisfaction Loyalty

PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM

0.336 0.354 0.312 0.317 0.360 0.374

0.305 0.285 0.312 0.317 0.260 0.251

0.267 0.249 0.261 0.248 0.357 0.371

0.308 0.327 0.257 0.260 0.251 0.223

Factorial scheme

Image Expectation Quality

PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM

0.240 0.205 0.250 0.236 0.237 0.242

0.311 0.297 0.273 0.281 0.272 0.268

0.300 0.307 0.227 0.224 0.224 0.225

0.197 0.181 0.248 0.259 0.248 -0.245

0.219 0.284 0.267 0.265 0.235 0.246

Value Satisfaction Loyalty

PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM

0.336 0.354 0.312 0.317 0.360 0.374

0.306 0.285 0.312 0.317 0.251 0.250

0.267 0.249 0.261 0.248 0.354 0.371

0.308 0.327 0.257 0.259 0.251 0.222

Table 3: Weights obtained using PLSPM and PLSFIM for centroid and factorial scheme
associated with ECSI model given in part 4.1.
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Centroid scheme

Item Image Expectation Quality Value Satisfaction Loyalty

PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM

1 -0.164 -0.145 0.362 0.357 -0.471 -0.475 0.050 0.038 -0.205 -0.202 0.176 0.194

2 0.931 0.911 0.738 0.720 0.374 0.372 0.398 0.416 0.382 0.376 0.526 0.526

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

249 0.068 0.148 -0.206 -0.186 0.337 0.347 0.681 0.66 3 0.537 0.533 -0.227 -0.204

250 0.503 0.532 -0.631 -0.643 -0.706 -0.701 0.367 0.369 -0.043 -0.046 -0.239 -0.236

Factorial scheme

Item Image Expectation Quality Value Satisfaction Loyalty

PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM PLSFIM PLSPM

1 -0.164 -0.144 0.362 0.357 -0.472 -0.476 0.051 0.040 -0.205 -0.203 0.176 0.194

2 0.931 0.912 0.738 0.722 0.374 0.371 0.398 0.416 0.382 0.376 0.526 0.526

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

249 0.068 0.149 -0.206 -0.186 0.338 0.348 0.681 0.663 0.537 0.533 -0.227 -0.203

250 0.502 0.530 -0.630 -0.643 -0.707 -0.712 0.367 0.369 -0.043 -0.046 -0.239 -0.236

Table 4: Scores of LVs obtained by PLSPM and PLSFIM for centroid and factorial schemes associated with ECSI model given
in part 4.1.


