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In real-life situations, performing an experiment up to a certain period of
time or getting the desired number of failures is time-consuming and costly.
Many of the available observations remain censored and only give the sur-
vival information of testing units up to a noted time and not about the exact
failure times. In this study, we consider inverse Maxwell distribution having
an upside-down hazard rate as a survival lifetime model. The censoring time
is also assumed to follow the inverse Maxwell distribution with a different
parameter. The probability of failure of an item before censoring and ex-
pected and observed time on the test is derived from a random censoring
scheme. The maximum likelihood estimators with their confidence intervals
for the parameters are obtained for a randomly censored setup. We obtain
the Bayes estimators by taking the inverted gamma distribution as a prior
under squared error loss function. In Bayesian analysis, the two techniques,
i.e. Markov Chain Monte Carlo and Tierney-Kadane approximation methods
are used for estimation purposes. For checking the performances of proposed
estimators, we perform an extensive simulation study. A real data, guinea
pigs, is analyzed to support the proposed study.
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1 Introduction

In life-testing experiments, researchers conduct tests on human beings, electrical ap-
pliances, nature and many more aspects. In such studies, the primary objective is to
understand the basic nature of the observed lifetimes. Generally, conducting life-testing
experiments is time taking and expensive which demands a large amount of money, labor
and time. For reducing the cost and time of the experiments, various types of censoring
schemes are developed in the literature. These censoring schemes are helpful to perform
an experiment in limited sources and time as well. Popular censoring schemes are Type-
I and Type-II in which the experiment time and the maximum number of failures are
being fixed in advance respectively. But, in these censoring schemes either we have to
spend more time or do not get the desired number of failures. Several times these cen-
soring schemes are not pertinent to the nature of life testing experiments and hence the
purpose is not solved. There are some other censoring schemes to allow the experimental
units to be removed while running the experiment. These types of censoring schemes
are known as progressive and hybrid censoring schemes. These schemes have also been
studied in detail in the literature under consideration of different lifetime distributions.
A special type of censoring scheme known as random censoring in literature occurs when
the item is lost or removed randomly from the experiment before its failure under the
study. A sample is randomly censored when both the experimental unit and censoring
time points are random and independent of each other’s outcomes. A subject who moves
away from the experimental environment before the event of interest occurs is considered
a randomly censored value. In real life such situations occur often, especially in clinical
trials, the patients do not complete the course of treatment and they leave the study
due to several factors before the termination point of the experiment.

In a random censoring scheme, the entry time and the exit time of units in the exper-
iment are random. So each unit has a censoring time that is statistically independent
with corresponding failure times. In this case, the observed data is obtained by taking
the minimum of the censoring time and failure time. For random censoring, various dis-
tributions such as exponential, Rayleigh, gamma and Weibull, etc. for the failure time
and censoring time have been considered. Nandi and Dewan (2010) analyzes Marshall-
Olkin Bivariate Weibull distribution in the presence of random censoring and obtains
the parameter estimate by the Expectation-Maximization (E-M) algorithm. Kumar
and Garg (2014) discusses the parameter estimation of generalized inverted Rayleigh
distribution under the random censoring scheme. Krishna et al. (2015) presentes the
maximum likelihood (ML) and Bayes estimator assuming Maxwell distribution under
the random censoring scheme. In the continuation, Krishna and Goel (2017) discusses
the parameter estimation of geometric distribution under random censoring data setup.
In recent study, Kumar and Kumar (2019) analyzes the estimation procedure of inverse
Weibull distribution under a random censoring setup.

Many well-known lifetime models are used in life testing experiments. But for partic-
ular real data, the search for a more suitable model is always in demand. The Maxwell
model is one of the known distributions for life testing experiments. Many authors
have discussed several studies in different scenarios for Maxwell distribution. Tyagi and
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Bhattacharya (1989) present the Bayesian analysis of Maxwell distribution for velocity.
Whereas, Bekker and Roux (2005) discusses the statistical estimation for Maxwell dis-
tribution under ML, Bayes, and E-Bayesian approaches and compares the efficiency for
all methods. Krishna and Malik (2009) analyze the setup of Maxwell distribution under
the Type-II censoring scheme and obtain the ML and Bayes estimate of the parameter
of Maxwell distribution. Tomer and Panwar (2015) obtain the ML and Bayes estimates
of Maxwell distribution under Type-I progressively hybrid censoring scheme and also
calculate the expected number of failures in treatment. Modi and Gill (2015) discuss the
length-based weighted Maxwell distribution and derive its statistical properties. Sharma
et al. (2017) derive the statistical properties of extended Maxwell distribution. Sharma
et al. (2018) analyze area-biased Maxwell distribution under classical and Bayesian ap-
proaches. They also discuss the experimental study with simulation and real data.
Chaturvedi and Vyas (2019) propose a Gamma-Maxwell distribution and obtain the
parameter and reliability characteristics of the given distribution.
Sometimes inverse distributions are more suitable in lifetime experiments according to

important characteristics of given data. In the last decade, many authors have discussed
the behavior of hazard function for several inverse distributions. The inverse Maxwell
distribution (InvMWD) is obtained by inverting the Maxwell random variate. The
behavior of the hazard function for InvMWD is inverse of the bathtub. Singh and Sri-
vastava (2012) discuss the Bayesian estimation procedure of InvMWD with size-biased
sampling. Singh and Srivastava (2014) shows the survival behavior of InvMWD and
other statistical properties. They also obtained the parameter estimation in different
circumstances. Tomer and Panwar (2020) review the important statistical properties
of InvMWD in detail and obtained the estimate of the parameter under classical and
Bayesian paradigms with applications in different scenarios. Yadav et al. (2021) study
the InvMWD under the Marshall-Olkin family and obtained point and interval esti-
mates under ML approach. The authors give applications of the proposed distributions
to deal with different lifetime data problems. Kishan et al. (2021) discusses the three
component competing risks model for InvMWD under ML and Bayesian approaches.
Authors report the simulation and real data results for the proposed estimators.
Let us define the underlying lifetime distribution InvMWD. If Y is the Maxwell

random variable then a new random variable X = 1
Y follows InvMWD. The probability

density function (pdf) of InvMWD is given as

f(x; θ) =
4√
π

1

x4θ
3
2

exp

(
− 1

θx2

)
; x > 0, θ > 0 (1)

The survival function at a given time t of InvMWD is given by

S(t; θ) =
2√
π
γ

(
3

2
,
1

θt2

)
, (2)

where quantity γ (a, z) =
∫ z
0 u

a−1e−u du is a lower incomplete gamma function. The pdf
and survival function of InvMWD are presented in Figure 1 and Figure 2 for different
values of θ.



Electronic Journal of Applied Statistical Analysis 385

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

X

f X
(x

)

θ = 2

θ = 1

θ = 0.5

θ = 0.25

Figure 1: Density plot of InvMWD for different values of θ.
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Figure 2: Survival plot of InvMWD for different values of θ.

The hazard function of InvMWD is given by

h(x; θ) =
2

x4θ
3
2

exp

(
− 1

θx2

)[
γ

(
3

2
,

1

θx2

)]−1

. (3)
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The hazard function of InvMWD is an upside-down bathtub in nature, i.e. it increases
sharply in the initial phase and then after reaching a peak point it deepens gradually.
This means InvMWD represents the lifetime of such individuals who have an increased
chance of failing in the early age of life span and after survival up to a specific age,
the rate of failure starts decreasing as age increases. Tomer and Panwar (2020) have
discussed the nature of the hazard function of InvMWD in detail. The hazard rate
function for the InvMWD is given for different values of parameter θ in Figure 3. In
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Figure 3: The hazard rate function of InvMWD for different values of θ.

this study, we consider InvMWD as a lifetime model under the random censoring setup
and obtain the estimates of the parameters under classical and Bayesian approaches.
In introduction, we review the literature on censoring schemes and formulation and
applications of InvMWD. In Section 2, we derive the mathematical formulation for the
considered model under random censoring. In this case, both failure time and censoring
time are considered to follow the InvMWD with different parameters. The expression
of the probability of failure before censoring time and observed time to test are also
obtained. In Section 3, the ML estimators are obtained with their asymptotic confidence
intervals (ACIs) for the unknown parameters The Bayesian estimation procedure for
parameter estimation under squared error loss functions by using the inverted gamma
prior is discussed in Section 4. The Bayes estimates are obtained by using the Markov
Chain Monte Carlo (MCMC) algorithm and the Tierney-Kadane (T−K) approximation
method. The simulation study is presented in Section 5 and finally, Section 6 dedicated
to real data analysis to study the applications of InvMWD under random censoring.
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2 Setup of Problem

2.1 InvMWD Sample with Randomly Censoring Scheme

Suppose there are n individuals in the study. Let us denote the time to event associated
to these individuals as X1,X2,. . . ,Xn. These lifetimes are assumed to be independent
and identically distributed (i.i.d.) with pdf fX(x; θ) and cumulative distribution function
(cdf) FX(x; θ), respectively. Also, let T1, T2,. . . ,Tn be the random censoring times for
these individuals with pdf and cdf fT (t;λ) and FT (t;λ), respectively. Moreover, let us
assume that the random variables X ′

is and T
′
is, i = 1, 2, ..., n are mutually independent.

Note that, among X ′
is and T

′
is, only one will actually be observed at any particular time.

Under this setup, we observe the actual time as Yi = min(Xi, Ti); i = 1, 2, . . . , n.
Define indicator variable Di, as

Di =

{
1, if Xi ≤ Ti

0, if Xi > Ti,

i.e., the indicator variable Di takes value 1 when the ith individual experiences the event
at time Xi, and 0 if the he/she leaves the study before experiencing event of interest.
Thus, the indicator variable Di is a Bernoulli random variable with parameter p and the
probability mass function of Di is given by

P [Di = j] = pj(1− p)(1−j); j = 0, 1 (4)

Since, we assume X ′
is and T ′

is to be independent, therefore Y ′
i s and D′

is will also be
independent.

The joint density function of Y and D can be defined as

fY,D(y, d; θ, λ) = {fX(y; θ) (1− FT (y;λ))}d {fT (y;λ) (1− FX(y; θ))}1−d . (5)

y, λ, θ ≥ 0, d = 0, 1.

We assume X and T follow InvMWD with parameter θ and λ, respectively. Using
the pdf and cdf of InvMWD from (1) and (2), the joint density can be rewritten as

fY,D(y, d; θ, λ) =

[
4√
π

1

y4θ
3
2

exp

(
− 1

θy2

){
2√
π
γ

(
3

2
,

1

λy2

)}]d
[

4√
π

1

y4λ
3
2

exp

(
− 1

λy2

){
2√
π
γ

(
3

2
,

1

θy2

)}]1−d

.

In such studies, researchers may be interested to know the probability of failure for
individuals. We wish to obtain the mathematical form for probability of failure. Under
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Table 1: Probability of failure (p) before censoring time for different combination values
of θ and λ.

θ\λ 0.5 1.0 2.0 3.0

0.5 0.50 0.71 0.86 0.96

1.0 0.29 0.50 0.71 0.89

2.0 0.14 0.29 0.50 0.76

3.0 0.05 0.11 0.24 0.50

InvMWD model, the mathematical expression is given as

P [an item fails (d=1)] = P [X ≤ T ] =

∫ ∞

0
P [X ≤ t|T = t] fT (t)dt

=

∫ ∞

0

[∫ t

0
fX(x, θ)dx

]
fT (t, λ)dt

=
4

√
πλ

3
2

∫ ∞

0
t−4 exp

(
− 1

λt2

)
2√
π
Γ

(
3

2
,
1

θt2

)
dt

=
8

πλ
3
2

∫ ∞

0
t−4 exp

(
− 1

λt2

)
Γ

(
3

2
,
1

θt2

)
dt,

where, Γ (a, z) =
∫∞
z ua−1e−u du is a upper incomplete gamma function. We can solve

probability value by numerically for different values of θ and λ. Table 1 shows the
probability of failure (p) before the censoring time for different values of θ and λ. We
observe that an increase in the values of p with increasing values of λ, for a fixed value
of θ while a decrease in the values of p with increasing values of θ for a fixed value of λ.

2.2 Expected Time on Test

In lifetime experiments, the cost of the experiment depends on the time on test, hence
the researchers are interested to estimate the total time on test in such experiments.
We derive the mathematical expression of expected time on test (ETT ) and obtain its
values varying θ, λ and n in the random censoring scenario. Let us define the variable
Z = max(Y1, Y2, ..., Yn), then the cdf of Z is given by

FZ(z) = P (Z ≤ z)

= P [max(Y1, Y2, ..., Yn) ≤ z] = [P (Y1 ≤ z)]n ; z > 0.
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Since Yi, i = 1, 2, ..., n are i.i.d. random variables, thus we have

P [Yi ≤ z] = P [min (Xi, Ti) ≤ z]

= 1− P [min(Xi, Ti) > z]

= 1− P [Xi > z]P [Ti > z] (Xi, Ti are independent)

= 1− 4

π
γ

(
3

2
,

1

θz2

)
γ

(
3

2
,

1

λz2

)
.

Using above expression, we get the cdf of Z as follows

FZ(z) =

[
1− 4

π
γ

(
3

2
,

1

θz2

)
γ

(
3

2
,

1

λz2

)]n
. (6)

Now, the desired ETT can be written as

ETT = E(Z) =

∫ ∞

0
(1− FZ(z)) dz

=

∫ ∞

0

(
1−

[
1− 4

π
γ

(
3

2
,

1

θz2

)
γ

(
3

2
,

1

λz2

)]n)
dz. (7)

In addition to ETT , one more quantity, observed time on test (OBTT ) is of great
interest in such studies. In case of random censored sample, OBTT can be given by
quantity Z = max(Y1, Y2, . . . , Yn).

In case of uncensored (complete) sample, we derive ETT and OBTT . Let us define
V = max(X1, X2, ..., Xn), where X1, X2, ..., Xn is the observed sample values. Now, the
distribution function of V is given by

FV (v) = P (V ≤ v) = P [max(X1, X2, ..., Xn) ≤ v] = [P (X1 ≤ v)]n .

Since X ′
is are i.i.d., therefore, the expected value of V is given by

E(V ) =

∫ ∞

0
[1− FV (v)] dv =

∫ ∞

0
[1− [P (X1 ≤ v)]n] dv.

Thus, for our underlying distribution InvMWD(θ), expression for ETT can be defined
as

ETT =

∫ ∞

0

[
1−

{
2√
π
Γ

(
3

2
,

1

λv2

)}n]
dv. (8)

The OBTT for complete sample case is given by V = max(X1, X2, . . . , Xn).

We obtain the simulated results for ETT and OBTT using underlying distribution.
We generate 5000 randomly censored samples using the defined setup in subsection 2.1.
By using (7) and (8), the value of ETT and OBTT under randomly censored data for
different values of θ, λ and n are obtained. Average estimated values (EV ) of OBTT
along with mean square error (MSE) and ETT are reported in Table 2.
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Table 2: ETT and OBTT for different combination of λ and θ with varying sample size.

θ\λ 0.5 1.0 2.0

OBTT OBTT OBTT

n ETT EV MSE ETT EV MSE ETT EV MSE

50 2.6269 2.6239 0.0491 2.2001 2.2011 0.0379 1.8266 1.8158 0.0261

0.5 60 2.7181 2.7251 0.0531 2.2772 2.2837 0.0415 1.8923 1.8974 0.0280

80 2.8670 2.8617 0.0634 2.4029 2.4094 0.0489 1.9994 2.0014 0.0347

50 2.2001 2.1928 0.0356 1.8575 1.8536 0.0260 1.5557 1.5529 0.0176

1.0 60 2.2772 2.2917 0.0419 1.9220 1.9328 0.0293 1.6102 1.6082 0.0204

80 2.4029 2.4072 0.0460 2.0273 2.0239 0.0303 1.6991 1.6953 0.0215

50 1.8266 1.8244 0.0271 1.5557 1.5683 0.0201 1.3134 1.3110 0.0137

2.0 60 1.8923 1.8866 0.0264 1.6102 1.6154 0.0210 1.3590 1.3655 0.0147

80 1.9994 1.9941 0.0292 1.6991 1.7018 0.0233 1.4335 1.4365 0.0164

3 Maximum Likelihood Estimation

3.1 Point Estimation

Consider n individuals are in an experiment under random censoring setup. Then the
observed sample will be Y1, Y2, ..., Yn. Under InvMWD and observed data, the likelihood
function of parameters is given by

L(y, d; θ, λ) =
n∏

i=1

fY,D(y, d; θ, λ)

∝ θ−
3m
2 λ−

3(n−m)
2 exp

(
−1

θ

n∑
i=1

di
y2i

)
exp

(
− 1

λ

n∑
i=1

(1− di)

y2i

)
n∏

i=1

γ

(
3

2
,

1

λy2i

)di

n∏
i=1

γ

(
3

2
,

1

θy2i

)(1−di)

, (9)

where, m =
∑n

i=1 di. Now, on taking the logarithm of above equation, the log-likelihood
function can be written in the following form

l(y, d; θ, λ) ∝ −3m

2
ln(θ)− 3(n−m)

2
ln(λ)− 1

θ

n∑
i=1

di
y2i

− 1

λ

n∑
i=1

(1− di)

y2i

+
n∑

i=1

di ln

{
γ

(
3

2
,

1

λy2i

)}
+

n∑
i=1

(1− di) ln

{
γ

(
3

2
,

1

θy2i

)}
. (10)

Taking the partially differentiation of log-likelihood function with respect to θ and λ
and then equating to zero, we get the ML estimator θ̂ and λ̂ of θ and λ, respectively, as
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follows

θ̂ =
2

3m

 n∑
i=1

di
y2i

− 1

θ̂
1
2

n∑
i=1

(1− di) exp

(
− 1

θ̂y2i

)
y3i γ

(
3
2 ,

1
θ̂y2i

)
 , (11)

λ̂ =
2

3(n−m)

 n∑
i=1

(1− di)

y2i
− 1

λ̂
1
2

n∑
i=1

di exp

(
− 1

λ̂y2i

)
y3i γ

(
3
2 ,

1
λ̂y2i

)
 . (12)

The above equations of θ and λ are not in closed form, so we use the numerical iteration
methods for obtaining estimates.

3.2 Interval Estimation

The confidence intervals are measures of uncertainty in the sampling methods. Since the
distribution of parameters θ and λ are not in closed-form so we find the observed Fisher
information matrix as

I(ξ̂) =

[
a11 a12

a21 a22

] ∣∣∣∣
(θ=θ̂,λ=λ̂)

,

where, ξ̂=(θ̂, λ̂) is vector of ML estimates. Also the elements of matrix are given as

a11 = −∂
2l(y, d; θ, λ)

∂θ2
, a12 = −∂

2l(y, d; θ, λ)

∂θ∂λ
= a21 and a22 = −∂

2l(y, d; θ, λ)

∂λ2

The observed variance-covariance matrix is obtained by inverting Fisher matrix I(ξ̂) as

I(−1)(ξ̂) =

[
V ar(θ̂) Cov(θ̂, λ̂)

Cov(λ̂, θ̂) V ar(λ̂)

]
Thus, using the asymptotic normality of estimators, we get the 100(1− α)% confidence

limits for θ̂ and λ̂ by θ̂ ± zα
2

√
V ar(θ̂) and λ̂ ± zα

2

√
V ar(λ̂), respectively, where z(α

2
) is

upper 100(α2 )
th percentile of standard normal variate.

The detailed expressions used in constructing the asymptotic confidence interval (ACI)
are given as

∂2l(y, d; θ, λ)

∂θ2

∣∣∣∣
θ=θ̂

=
3m

2θ̂2
− 2

θ̂3

n∑
i=1

di
y2i

−
n∑

i=1

(1− di)ψ(y, θ̂),

∂2l(y, d; θ, λ)

∂θ∂λ

∣∣∣∣
θ=θ̂,λ=λ̂

=
∂2l(y, d; θ, λ)

∂θ∂λ

∣∣∣∣
λ=λ̂,θ=θ̂

= 0

and
∂2l(y, d; θ, λ)

∂λ2

∣∣∣∣
λ=λ̂

=
3(n−m)

2λ̂2
− 2

λ̂3

n∑
i=1

(1− di)

y2i
−

n∑
i=1

diψ(y, λ̂),
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where,

ψ(z, η) = ξ(z, η)

[
1

η2z2
− 5

2η
+ ξ(z, η)

]
and ξ(z, η) =

1

z3
e

−1

ηz2

[
η

5
2γ

(
3

2
,

1

ηz2

)]−1

.

Sometimes using this method, the lower bound of ACIs may come negative. In order
to overcome this issue, one approach is to replace the lower bound by zero and another
is to apply logarithmic transformation to obtain the asymptotic normality of ln (θ̂) and
ln (λ̂) as

ln θ̂ − ln θ

V ar(ln θ̂)
∼ N(0, 1) &

ln λ̂− lnλ

V ar(ln λ̂)
∼ N(0, 1).

Therefore, using the above property 100(1 − α)% ACIs of θ and λ in this manner can
be obtained by [

θ̂ exp

(
−zα

2

√
V̂ ar(ln θ̂)

)
, θ̂ exp

(
zα

2

√
V̂ ar(ln θ̂)

)]
and [

λ̂ exp

(
−zα

2

√
V̂ ar(ln λ̂)

)
, λ̂ exp

(
zα

2

√
V̂ ar(ln λ̂)

)]
.

4 Bayesian Estimation

Bayesian inferential techniques provide a regular method for the integration of prior
information drawn from other imaging methods. In the Bayesian framework, we use the
Bayes theorem to update the probability of a related event with some prior information.
So, we consider the parameter as a random variable that follows a distribution known
as the prior distribution.

4.1 Choice of Prior Distribution

In some experiments, strong prior information is available which is based on the joint
information of the nature of failure and past empirical experience. So, we choose infor-
mative prior to the experiment as like any probabilistic model for the experiment. But
when the past information is neither easy nor existent, it is a very cumbersome situation
to select an appropriate prior for the population parameter. This is a very extreme
situation where earlier experimentation was not available, so we prefer non-informative
priors. Here, we consider that the prior distributions of θ and λ are inverted gamma
distribution, denoted by IG(a1, b1) and IG(a2, b2), respectively, and given as

π∗1(θ) =
b1

a1

Γa1θa1+1
exp

(
−b1
θ

)
; θ, a1, b1 > 0.

and

π∗2(λ) =
b2

a2

Γa2λa2+1
exp

(
−b2
λ

)
; λ, a2, b2 > 0.
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where a1, a2, b1 and b2 are the hyper-parameter of prior distribution. Since θ and λ are
independent, so the joint prior density is obtain by multiplying both priors density and
written up to proportionality constants as follows

π∗(θ, λ) ∝ 1

θa1+1λa2+1
exp

{
−
(
b1
θ

+
b2
λ

)}
. (13)

4.2 Posterior Distribution

For obtaining the posterior distribution, we have to merge the likelihood function in (9)
and the joint prior density in (13). The required posterior distribution of (θ, λ) for given
observation, comes out to be as follows

π(θ, λ; y, d) =
L(θ, λ; y, d)π∗(θ, λ)∫∞

0

∫∞
0 L(θ, λ; y, d)π∗(θ, λ)dθdλ

= C−1L(θ, λ; y, d)π∗(θ, λ), (14)

where,

C =

∫ ∞

0

∫ ∞

0
L(θ, λ; y, d)π∗(θ, λ)dθdλ

=

∫ ∞

0
θ−(

3m
2

+a1+1)
n∏

i=1

exp

(
− di
θy2i

){
γ

(
3

2
,

1

θyi2

)}(1−di)

exp(−b1
θ
) dθ

∫ ∞

0
λ
−
(

3(n−m)
2

+a2+1
) n∏
i=1

exp

(
−(1− di)

λy2i

){
γ

(
3

2
,

1

λyi2

)}di

exp(−b2
λ
) dλ

= C1C2 =

∫ ∞

0
g1(θ)dθ

∫ ∞

0
g2(λ)dλ.

Here, quantities g1(θ) and g2(λ) can be given below by

g1(θ) =

∫ ∞

0
θ−(

3m
2

+a1+1)
n∏

i=1

exp

(
− di
θy2i

){
γ

(
3

2
,

1

θyi2

)}(1−di)

exp(−b1
θ
) dθ

and

g2(λ) =

∫ ∞

0
λ
−
(

3(n−m)
2

+a2+1
) n∏
i=1

exp

(
−(1− di)

λy2i

){
γ

(
3

2
,

1

λyi2

)}di

exp(−b2
λ
) dλ.

Now, the posterior distribution, up to proportionality constant is written as below

π(θ, λ; y, d) ∝ θ−(
3m
2

+a1+1)λ
−
(

3(n−m)
2

+a2+1
) n∏
i=1

exp

(
− di
θy2i

){
γ

(
3

2
,

1

θyi2

)}(1−di)

n∏
i=1

exp

(
−(1− di)

λy2i

){
γ

(
3

2
,

1

λyi2

)}di

exp

{
−
(
b1
θ

+
b2
λ

)}
. (15)
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The Bayes estimate of k(ξ) = k(θ, λ), say, is the function of θ and λ under squared error
loss function (SELF), can be obtained by as follows

E {k(ξ)} =

∫∞
0

∫∞
0 k(ξ)π(θ, λ; y, d)dθdλ∫∞

0

∫∞
0 π(θ, λ; y, d)dθdλ

. (16)

We observe that the direct solution of the ratio of integral in (16) is not possible. In this
regards, we have to discuss some Bayesian approximation techniques which are available
in literature. Here we used the two technique for drive the Bayes estimate of parameter
as (i) Markov Chain Monte Carlo (MCMC) method and (ii) Tierney-Kadane (T-K)
approximation method.
From posterior density (15), we obtain the full conditional distributions for parameters

θ and λ as

π1(θ|y, d) ∝ θ−(
3m
2

+a1+1) exp

{
−1

θ

(
b1 +

n∑
i=1

di
y2i

)}
n∏

i=1

{
γ

(
3

2
,

1

θyi2

)}(1−di)

, (17)

π2(λ|y, d) ∝ λ
−
(

3(n−m)
2

+a2+1
)
exp

{
− 1

λ

(
b2 +

n∑
i=1

(1− di)

y2i

)}
n∏

i=1

{
γ

(
3

2
,

1

λyi2

)}di

.

(18)

We observe that the marginal posterior distributions of θ and λ cannot be obtained in
the closed form, which is essential to obtain the Bayes estimates of parameters. But for
observed data, both are independent of each other.

4.3 MCMC Method

In MCMC method, the Metropolis-Hastings (M-H) algorithm [Chen et al. (2012)] is
well know method to generate the random sample from the posterior density. The
algorithm was first proposed by Metropolis et al. (1953) and later generalized by Hastings
(1970). Roberts and Smith (1994) discuss the conditions require for the convergence of
the algorithm. Hitchcock (2003) discuss the history and origin of the M-H algorithm
in detail. Using the M-H algorithm, we geneerate a Markov chain whose stationary
distribution is approximately same as the posterior distribution of interest.
Here, the full conditional posterior densities of θ and λ defined in (17) and (18) are

independent of each other, so we can draw the Bayesian samples from them by the M-H
algorithm independently. The necessary steps to generate samples by the M-H algorithm
from conditional densities are given as follows:

1. Set t=1 and take the initial value of parameters θ(0) = θ̂ and λ(0) = λ̂.

2. Generate candidate points θ∗ from proposal density q1 ∼ N
(
θ̂, V ar(θ̂)

)
and λ∗

from proposal density q2 ∼ N
(
λ̂, V ar(λ̂)

)
, now produce the points u1 and u2 from

a uniform distribution U(0,1). Then compute an acceptance ratio

r1 =
π1(θ

∗; y, d)q1(θ
(t−1))

π1(θ(t−1); y, d)q1(θ∗)
, r2 =

π2(λ
∗; y, d)q2(λ

(t−1))

π2(λ(t−1); y, d)q2(λ∗)
.
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3. Let P1(θ
(t−1), θ∗) = min(r1, 1), then set θ(t) = θ∗ if u1 ≤ P1(θ

(t−1), θ∗), otherwise
θ(t) = θ(t−1). Similarly let P2(λ

(t−1), λ∗) = min(r2, 1), set λ(t) = λ∗ if u2 ≤
P2(λ

(t−1), λ∗), otherwise λ(t) = λ(t−1).

4. set t=t+1.

5. Repeat steps (2)-(4) N ′ times to get the sequence θ1, θ2, . . . , θN
′
and λ1, λ2, . . . , λN

′

where N ′ is a large number.

From the generated samples, we discard the first few values to remove the dependency of
initial value effects. Also, by using cumsum and ACF plots, we diagnose the stationary
of the chains. In the end, we get a sample of size N, based on which we draw the required
inferences. Additionally, we calculated the Bayesian credible intervals (BCIs) and high-
est posterior density (HPD) intervals of the parameter using the method proposed by
Chen and Shao (1999).

4.4 Tierney-Kadane Approximation

In continuation, we use the T-K approximation [Tierney and Kadane (1986)] to find out
the Bayes estimates as an alternative to the MCMC algorithm. This method is used to
reduce the ratio of two integrals into finite expression. The posterior expectation of any
parametric function k(ξ) can be expressed in the following form

I(y) =

∫
ξ k(ξ)e

l(ξ)+η(ξ)dξ∫
ξ e

l(ξ)+η(ξ)dξ
, (19)

where l(ξ) and η(ξ) are the logarithm of likelihood function and logarithm of joint prior
distribution, respectively. Now, let us define the functions G(ξ) and G∗(ξ), respectively,
as given by:

G(ξ) =
l(ξ) + η(ξ)

n
(20)

and

G∗(ξ) = G(ξ) +
ln k(ξ)

n
(21)

If ξ̂ and ξ̂∗ are the estimate value of vectors which maximizes by (20) and (21), respec-
tively, then the function I(y) is approximated by

I(y) =

√
|S∗|
|S|

en{G∗(ξ̂∗)−G(ξ̂)} (22)

where |S∗| and |S| are the negative of inverse of Hessian of G(ξ̂) and G∗(ξ̂) respectively
computed at ξ̂ and ξ̂∗.

For obtaining the Bayes estimate of θ, consider k(ξ) = θ and by using the log-likelihood
function in (10) and joint prior density in (13). In this case, we define the function G(ξ)



396 Yadav, Kumar and Panwar

given in (20) as below

G(ξ) = −3m

2n
ln(θ)− 3(n−m)

2n
ln(λ)− 1

nθ

n∑
i=1

di
y2i

− 1

nλ

n∑
i=1

(1− di)

y2i

+
1

n

n∑
i=1

di ln

{
γ

(
3

2
,

1

λy2i

)}
+

1

n

n∑
i=1

(1− di) ln

{
γ

(
3

2
,

1

θy2i

)}
− (a1 + 1)

n
ln(θ)− (a2 + 1)

n
ln(λ)− b1

nθ
− b2
nλ

(23)

Let ξ̂ = (θ̂, λ̂) be the function of ML estimate of θ and λ and obtained by maximizing
(23). Hence, the function S is define as

|S| =

[
−∂2G(ξ)

∂θ2
−∂2G(ξ)

∂θ∂λ

−∂2G(ξ)
∂λ∂θ −∂2G(ξ)

∂λ2

] ∣∣∣∣∣
−1

(θ̂,λ̂)

,

Also, by using (21), let us define the second term such as

G∗(ξ) = G(ξ) +
ln θ

n
(24)

The ML estimates of ξ̂∗ = (θ̂∗, λ̂∗) is obtained by maximizing (24) with respect to θ and
λ. We can obtain the negative of inverse hessian of G∗(θ, λ) in similar manner done
above, say |S∗|. Thus using the above quantities, we get the required Bayes estimates of
θ by using (22). For obtaining the Bayes estimate of λ, we consider k(ξ) = λ. The rest
of the calculations can be done similarly as in the case of Bayes’ estimate of θ by using
the T-K approximation method.

5 Simulation Study

In this section, we give illustrations based on the simulation study. We generated samples
for the random censoring setup by assuming failure and censoring time distribution both
as InvMWD with corresponding parameters θ and λ. A simulation study is done by
setting different initial values of parameters θ and λ and the failure of the system is
obtained by taking the minimum censoring time and lifetimes. For simulation study,
we take two sets for parameters as (θ, λ) = {(1.65, 0.85), (0.85, 1.15)}. We compute ML
estimates for θ and λ along with MSE, AB for different sample sizes.

In Bayesian analysis, we use the inverted gamma prior for both parameters. We
take arbitrary values for hyper-parameters of prior distribution as a1 = a2 = 2 and
b1 = b2 = 3. In this regard, the Bayes estimate of parameters is obtained under SELF
by using the (i) MCMC method and (ii) T-K approximation method. In the MCMC
method, the M-H algorithm is used for generating the sample form full conditional of
θ and λ. We use the normal distribution as proposal density along with ML estimate
as location and variance as the scale parameter. From a long chain of length 500000
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obtained from the MH algorithm, first 5000 values are removed to discard the effect of
the initial values of the parameter. A proper thinning interval is chosen to avoid the
auto-correlation. Thus, we finally left with reduced stationary chain based on which
Bayes estimates are obtained. We report Bayesian credible and HPD intervals along
with coverage probability and shapes. In the T-K approximation method, we obtain the
point estimates along with MSE and AB. We have calculated results based on N = 5000
simulated data.
The ML and Bayes estimates of θ and λ are with their MSE and AB discussed in

Table 3 for different values of n. Since, the Bayes estimate of θ and λ obtained by using
MCMC method and T-K approximation method denoted by θM , λM and θTK , λTK ,
respectively. We present the BCI and HPD intervals of θ and λ with respectively
coverage probability and shape for various sample sizes and presented in Table 4. We
use statistical software R for computation purposes throughout the study. On the behalf
of the simulation study, we conclude that

1. The MSE and AB decrease with the increase in sample sizes.

2. The MSE and AB are less in the case of Bayesian than that of the classical ap-
proach.

3. The MCMC and T-K approximation methods perform equally well under different
sample sizes.

4. We see an improvement in MSE and AB in the case of T-K approximation only for a
large sample size. That indicates the better performance of the T-K approximation
method over the MCMC method.

5. For interval estimation, it can be concluded that BCI and HPD intervals provide
narrower limits compared to asymptotic confidence intervals.

6. We observed that the length of ACI is greater than Bayesian intervals. And, the
length of the BCI interval is greater than the HPD intervals.

HPD ≤ BCI ≤ ACI

7. The shape values based on Bayesian confidence intervals are greater than one,
which indicates that the distribution of parameters is positively skewed.

5.1 Single Sample Based Study

Here we consider a simulated sample for analysis to show that how one can use the results
obtained in the previous sections, to solve a real life problem. In this scenario, we consider
that individual and censoring time follow InvMWD with parameters θ and λ. For
simulated data from the considered InvMWD population, we consider θ = 2 and λ = 1.5
and generate an observed sample under random censoring of size n = 40. The observed
sample is 0.3182, 0.3694+, 0.378, 0.3922+ ,0.4066+, 0.4332, 0.4351+, 0.4399, 0.443,
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Table 3: The ML and Bayes estimates of θ and λ along with their MSE and AB for
different sample sizes taking θ = 1.65 and λ = 0.85.

n θ̂ λ̂ θ̃M λ̃M θ̃TK λ̃TK

Estimate 1.6558 0.8417 1.6582 0.8891 1.6675 0.8734

50 MSE 0.0363 0.0153 0.0360 0.0137 0.0394 0.0142

AB 0.1587 0.0998 0.1470 0.0939 0.1581 0.0941

Estimate 1.6490 0.8461 1.6724 0.8795 1.6533 0.8816

60 MSE 0.0311 0.0114 0.0281 0.0124 0.0280 0.0129

AB 0.1387 0.0851 0.1293 0.0892 0.1322 0.0885

Estimate 1.6525 0.8465 1.6832 0.8727 1.6686 0.8698

80 MSE 0.0267 0.0089 0.0258 0.0097 0.0211 0.0088

AB 0.1310 0.0766 0.1238 0.0811 0.1165 0.0741

Table 4: The ML and Bayes estimates of θ and λ along with their MSE and AB for
different sample sizes taking θ = 0.85 and λ = 1.15.

n θ̂ λ̂ θ̃M λ̃M θ̃TK λ̃TK

Estimate 0.8545 1.1597 0.8909 1.1930 0.8780 1.1704

50 MSE 0.0114 0.0217 0.0108 0.0190 0.0115 0.0182

AB 0.0843 0.1162 0.0830 0.1121 0.0858 0.1082

Estimate 0.8511 1.1516 0.8840 1.1879 0.8766 1.1739

60 MSE 0.0097 0.0155 0.0119 0.0189 0.0090 0.0151

AB 0.0780 0.0990 0.0851 0.1070 0.0763 0.0946

Estimate 0.8418 1.1517 0.8709 1.1709 0.8715 1.1670

80 MSE 0.0078 0.0118 0.0077 0.0124 0.0075 0.0108

AB 0.0699 0.0863 0.0667 0.0890 0.0686 0.0819

0.4457+, 0.4931+, 0.4449, 0.4552, 0.4607, 0.4701, 0.4749, 0.4868, 0.5095, 0.5254, 0.5373,
0.5392+, 0.5405, 0.5520+, 0.5557+, 0.5569, 0.5813, 0.6106, 0.6107+, 0.6300+, 0.6308,
0.6362, 0.6369, 0.6375, 0.6963, 0.7118, 0.7524, 0.7578, 0.8257+, 0.8416+, 0.9386+, where
y+ denoting the observed censored time. On the basis of the observed sample, the
estimated values of parameters and other functions are obtained. We consider the hyper-
parameter values as the same in the simulation study. Figure 4 shows the cumsum and
acf plot of simulated data and similarly Figure 5 present the data iteration and marginal
posterior density plot of given data. Figures are given in Appendix. The ML and Bayes
estimates of parameters and related functions are presented in Table 5.
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Table 6: The ML and Bayes estimated values, ACI, BCI, HPD for θ and λ, ETT and
OBTT for simulated data set.

Estimate Value θ̂ λ̂

ML 2.0733 1.5611

ACI (1.8421, 2.3044) (1.3748, 1.7474)

BETK 2.0864 1.5842

BEMC 2.0834 1.5872

BCI (1.6233, 2.6649) (1.2155, 2.0766)

HPD (1.5956, 2.6246) (1.2033, 2.0281)

ETT 1.3521

OBTT 0.9386

6 Real Data Study

In this section, we illustrate estimation procedures as discussed in the previous sections
with the help of real data. The survival times (in days) of 72 guinea pigs were reported
by Bjerkedal et al. (1960). The authors discussed a detailed description of the study of
guinuea pigs experiment which is conducted in the Tuberculosis Research Laboratory,
Chamblee, Ga. In this study, two independent studies on the survival of experimen-
tal animals infected with a variable number of virulent human tubers are studied. In
this study, groups of animals infected with different numbers of virulent tubercles are
compared. Material is provided by two independent studies comprising a total of 1414
guinea pigs randomly allocated into two experimental groups to unchallenged control
groups and challenged with different numbers of virulent human tubercle bacilli. The
number of animals included in the present material was 467 for study M with an aver-
age weight at the challenge was 475 grams and 947 for study P with an average weight
at the challenge was 467 grams. In the two experiments, equal numbers of males and
females were classified according to weight and randomized among the six experimental
groups (regimens) of each study. In the case of the infection by the same dose in a
group of livestock or animals, at the first death of an animal in a group, it shows the
least resistance and most resistance for the last to die in the same group and defines the
survival time of pigs. All the animals have provided the same number of tubercle bacilli
doses. The author considered the proposed method in the studies (i) causes of death
other than tuberculosis, (ii) failure of the challenge to be ineffective, and (iii) variation
in the number of bacilli in challenge doses from the same bacterial suspension. Finally,
they show a relationship between survival time and the number of tubercular bacilli
responsible for infection and also compare the studies carried out by M and P groups.
They obtain the mean survival time for survivals groups.

The nature of hazard of data is found to be uni-modal and shown by Kundu and
Howlader (2010). The same data set is used for analysis purpose by Tomer and Panwar
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(2020). In the Figure 6 and 7, ECDF and QQ plots are given and it can be seen that
the survival time of guinea pigs time data fits InvMWD well. Further, the K-S test
statistics (D) is found to be 0.2223 along with p value greater than 0.05, indicates that
there is no evidence to reject the hypothesis that the considered model is suitable for
the data. Also, for ease of analysis we divide the observations by 100. Further, we
artificially introduce the random censoring in the data by generating 72 censoring time
points uniformly in the range of observations by fixing seed value 100. The random
censored samples are obtained as: 0.12, 0.15, 0.22, 0.24, 0.24, 0.32, 0.32, 0.33, 0.34, 0.38,
0.38, 0.43, 0.44, 0.48, 0.52 0.53, 0.54, 0.54, 0.55, 0.56, 0.57, 0.57+, 0.58, 0.58, 0.59, 0.59+,
0.60, 0.60, 0.60 0.60, 0.61, 0.62, 0.63, 0.65, 0.65, 0.67, 0.68, 0.70, 0.70, 0.72, 0.73, 0.76,
0.76, 0.81 0.83, 0.84, 0.84+, 0.85, 0.87, 0.88+, 0.89+, 0.91, 0.96, 0.96+, 0.98, 0.98+,
1.01+, 1.04+, 1.10, 1.21, 1.31+, 1.42+, 1.43, 1.46, 1.62+, 1.74+, 1.74+, 1.75, 1.75,
1.78+, 2.11, 2.65+, where y+ denoting the censored time. There are 56 observations
which are observed as exact failure time and 16 as randomly censored. For this sample
ML and Bayes estimates are given in Table 7. The estimates under Bayesian approach
are calculated under non-informative priors. Figure 8 shows the cumsum and acf plot of
simulated data and similarly Figure 9 shows the data iteration and marginal posterior
density plot of given data. All figures are given in Appendix.

Table 7: The ML and Bayes estimates for guinea pigs data set

Estimate Value θ̂ λ̂

ML 3.0588 0.4632

ACI (2.4813, 3.6363) (0.3350, 0.5914)

BETK 3.0861 0.4701

BEMC 3.0943 0.4724

BCI (2.5575, 3.6951) ( 0.3626, 0.6046)

HPD (2.5565, 3.6868) ( 0.3618, 0.5987)

ETT 2.3049

OBTT 2.6500

7 Concluding Remarks

In this study, we discuss the estimation procedure of InvMWD under the random
censoring setup. We obtain the probability of failure of an item before censoring time
for different combinations of parameter values. Also, we calculate the observed and
expected time on the test under complete and censored scenarios. Parameter estimators
along with their confidence intervals under classical and Bayesian approaches are derived.
In the simulation study, it is observed that the parameters are consistent with increase
in sample size as the mean square error and absolute bias reduce. Finally, simulated and
survival data are analyzed in support of the proposed model. The parameter estimates
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along with interval estimates are reported for the real data. All the results are found
to be satisfactory and support the proposed study. In some real life situations the
dependence assumption between lifetime and censored time observations may be more
feasible, we recommend this for future work. Further the presence of covariates in the
model may be challenging to deal with.
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Appendix
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Figure 4: Cumsum and ACF plots based on posterior distribution for simulated data.
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Figure 5: Trace and density plots based on posterior distribution for simulated data.
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Figure 6: ECDF plot for guinea pigs data.
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Figure 7: QQ plot for guinea pigs data.
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Figure 8: Cumsum and ACF plots based on posterior distribution for guinea pigs data.
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Figure 9: Trace and density plots based on posterior distribution for guinea pigs data.


