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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 15, Issue 03, November 2022, 588-605
DOI: 10.1285/i20705948v15n3p588

Classes of Colors and Timbres: A
Clustering Approach

Maria Mannone* a,b, Veronica Distefanob, and Giovanni Santinic

aUniversity of Palermo, Engineering Department, Italy
bCa’ Foscari University of Venice, DAIS and ECLT, Italy

cXi’an Jiaotong-Liverpool, Suzhou, China

Published: November 20, 2022

Similarities between different sensory dimensions can be addressed consid-
ering common “movements” as causes, and emotional responses as effects. An
imaginary movement toward the “dark” produces “dark sounds” and “dark
colors,” or, toward the “bright,” “brighter colors” and “brighter sounds.”
Following this line of research, we draw upon the confluence of mathematics
and cognition, extending to colors and timbres the gestural similarity conjec-
ture, a development of the mathematical theory of musical gestures. Visual
“gestures” are seen here as paths in the space of colors, compared with paths
in the space of orchestral timbres. We present an approach based on cluster-
ing algorithm to evaluate the association between color bands and orchestral
timbres. The analysis is based on 8 indicators which represent and describe
participants’ background and associations to be tested. The indicators in-
clude socio-demographic information and color class options from the color
space, to associate with each given timbre class. We clustered responders
into homogeneous groups where the within-group-object dissimilarity is min-
imized and the between-group-object dissimilarity is maximized. The parti-
tions are obtained with k-modes. While participants’ background does have
an influence in their answers, the overall behaviors confirms the existence
of different space regions for different timbres, supporting our hypothesis of
perceived similarities similarities between color and timbre classes. In fact,
the cluster analysis confirms identifiable blocks. Our pioneering study on a
small dataset may open the way toward a future and deeper comprehension
of complex color-timbre perceived connections.
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1 Introduction

Nature or nurture? Individual or collective? Particular or universal? Several questions
arise while investigating art in light of science, especially while dealing with colors and
sounds. Inspiration and irrationality may lead to special artwork that can be later ratio-
nally investigated. Vice versa, scientific concepts can lead to the creation of new artworks
and experiments. Seeking similarity also means researching the uniqueness within the
variety. Associations between colors and sounds can be contextualized in the framework
of synesthesia and crossmodal correspondences (Corno, 2011; Marks, 1987). In psy-
chology, “synesthesia” denotes automatic and involuntary multisensory perception—one
hears a sound and sees a precise color, consistently associated with that sound. Cross-
modal correspondences are “systematic associations found across seemingly unrelated
features from different sensory modalities” (Parise, 2016). Every synesthetic subject is
consistent in their associations even after long periods. Conversely, crossmodal corre-
spondences, the audiovisual-object theory (Kubovy and Schutz, 2010), and the hypoth-
esis of a supramodal brain (Rosenblum et al., 2016) concern multisensory association
shared among different people. Synesthesia aroused the interest of artists and scientists:
Messiaen (Bernard, 1986), Scelsi (Castanet and Cisternino, 2001), Kandinsky (Cooper,
2013; Cytowic, 1995; Ione and Tyler, 2003; Kandinsky et al., 1994; Robert, 1975), Ligeti
(Ligeti et al., 2004; Peacock, 1985), Scriabin, Baudelaire, Rimbaud, Nabokov, Eisen-
stein, Hockney, Feynman, Locke (Locke, 1689), Leibniz, Darwin, Sachs (Bernard, 1986;
Ione and Tyler, 2003; Jewanski et al., 2009; Peacock, 1985), Ciurlionis (Crnjanski and
Tomač, 2019), Berlioz (Barbiere et al., 2007).

Here, we deal with color synesthesia (chromesthesia). It has been shown that arts
can improve the quality of people lives (Michalos, 2005); synesthesia and crossmodal
correspondences help understand connections between arts, and thus they can further
advance the positive action of multimodal artworks.

Former experiments. Several studies agree regarding musical instruments and col-
ors associations (Jones, 1973). Other works focus on the strength of color-saturation and
loudness (Panek and Stevens, 1966), as well as color-saturation and pitch (Huang, 1998a).
Correspondences between certain characteristics of vision and hearing are investigated
(Marentakis, 2020; Marks, 1974); including higher pitch / louder sound, color luminos-
ity / sound loudness, saturation / timbre / duration associations (Caivano, 1994), color
luminosity / space location, timbre/visual shape correspondences (Adeli et al., 2014).
Some experiments investigate similarities and differences between synesthetic and non-
synesthetic people, also involving eye-movements, attention, and emotions (Hagtvedt
and Brasel, 2016; Bresin, 2005; Barbiere et al., 2007). Musical-spatial analogies might
also be asymmetrical: e.g., musical changes in one direction evoke significantly stronger
spatial analogies than their opposites (Eitan and Granot, 2005). Other studies (Crn-
janski and Tomač, 2019) investigate the association between color brightness, lines, and
timbres, and the relationship between sound pitch and color saturation for product



590 Mannone, Distefano, Santini

choices (Huang et al., 2019).
Mathematical and computational approaches. Colors and timbres admit a

common mathematical description: a superposition of simple elements with opportune
coefficients—Fourier series for sound, color superposition for light, a Fourier-like series
and transform for colors (Guan et al., 2014). Some studies focus on the physics of
color, seeking for analogies with the physics of complex sounds (Isaac, 2018). Machine
learning is used to automatically associate colors and images (Lee et al., 2019), using
interactive interfaces (Peacock, 1985), and Virtual Reality color-scanners (VR), such as
the Synesthesizer, a synthesizer based on cross-synthesized physical models regulated
by machine learning (Santini, 2019). In the pioneering study by Grey (Grey, 1977), a
space of timbres is defined, where the more similar the timbres, the closer the points
in the space. Grey proposed a hierarchical clustering approach to build up clusters
or closely-related timbres. This computational approach is very close to the orchestral
music practice, where instruments are clustered in “sections” according to their main
characteristics. Reuter et al. (Reuter et al., 2018) considered a palette of given colors,
and asked 40 participants to choose orchestral sounds (instruments and ranges, from a
given set) that, in their opinion, were best matching each color.
Our approach. We aim to verify the presence of any timbre-bands/color-bands

associations through a clustering approach. In fact, we focus on classes comparisons,
rather focusing on one-to-one correspondences, which may be highly subjective. Our
study is thus inspired by loose associations, to be described with fuzzy logic (Isaac,
2018), category theory (Mac Lane, 1971), and gestural similarity (Mannone, 2018). We
hypothesize that color-timbre associations are mediated by a common perceptive reaction.
In this sense, our research is connected with Palmer’s studies (Palmer et al., 2013), where
emotion is seen as a connection between sound and color. Because we focus on classes of
colors and timbres, and, consequently, classes of participants’ answers and thus classes of
participants grouped according to their answers, we choose to consider all questionnaire
answers as a categorical/nominal variables (Ammar E. Z., 2012).
While (Reuter et al., 2018) considers one-to-one associations, in our experiment we

consider instead classes of colors as color bands, with orchestral timbres already grouped
into characteristic orchestral features. We also gave participants the opportunity to
choose, through a color picker, the precise tonality they judged to be the best match.
Our findings confirm some of the results of (Reuter et al., 2018), regarding the correspon-
dence between low pitches (and close harmonic, as for the low-register piano cluster of
note) and dark colors, and “brilliant” sound with more luminous colors, light colors and
high-register winds, yellow-ish and reddish colors with trumpets and trombones (evident
in associations 2, 7, and 8 of our experiment).
The main characteristics of our study are the chance of choosing the precise color in
the space of colors; the theoretical hypothesis of classes correspondence rather than
one-to-one correspondence, and thus the use of categorical information; the underlying
hypothesis of perceptive similarity.
In this context, amongst clustering methods, the k-modes method is widely exploited

while dealing with categorical data, for its clarity of use and its suitability for big data
analysis. We apply the k-modes method to a small dataset.
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The paper is structured as follows. In Section 2, we summarize the theoretical back-
ground and the research framework of our study. In Section 3, we describe the adopted
clustering algorithm with the motivation of our choices. In Section 4, we present and
discuss our results. Finally, Section 5, ends the paper, envisaging further and future
lines of research.

2 Theoretical background

While music and mathematics are apparently seen as distant disciplines, from Pythagoras
their intersection are numerous, and they inspire today’s scientific research. A branch
of mathematical music theory focuses on musical gestures (Mazzola and Andreatta,
2007; Arias, 2018; Clark, 2020), described through the formalism of category theory
(Mac Lane, 1971). Category theory is an abstract branch of mathematics, whose basic
components are points and arrows are points and arrows (morphisms) between them,
to model abstract transformations. Categories are nowadays applied in different fields,
including physics, chemistry (Spivak, 2014), and music (Mazzola and Andreatta, 2007).

In the framework of gesture theory, it has been developed a study on gestural similar-
ity (Mannone, 2018). In a nutshell, it is a mathematical and perceptive condition where
specific visual sketches and musical sequences appear as being produced by the same
creator gesture, and thus perceived as “similar.” The “gestural similarity conjecture”
has been verified in some preliminary experiments (Mannone and Papageorgiou, 2020),
see the upper side of Figure 1.

"  
Note. Drawings by M. M. 

Figure 2 
Color picker 

Figure 1: Triangular diagrams to synthesize the conjecture of gestural similarity (up)
and of chromo-gestural similarity (down).

We focus here on relationships between “points” and “gestures” in the space of timbres
and in the space of colors. Gestures in the space of colors are transitions from a color to
another one. Gestures in the space of timbres are transitions from a timbre to another
one. Their formalism and mutual interactions have also been described through cat-
egories, and in particular, through bicategories and bigroupoids, because each gesture
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can be inverted (Mannone et al., 2022). Thus, ‘colors’ and ‘timbres’ can be compared
through the common notion of ‘gesture’ (Figure 1, bottom).

In this article, we present an experimental study to verify the amount of perceived
associations between portions of color space and portions of timbre space. In this re-
search, meant to explore the conditions of chromo-gestural similarity, we do not consider
any one-to-one mapping or any direct correspondence between sound and color, but an
‘indirect’ comparison based on perceptive similarity. We can depict the perception of
a synesthetic person as an arrow picking up some points from the space of colors, and
mapping them onto some points of the space of timbres—always the same target, as in
a function. However, the arrows for the non-synesthetic person do not reach the same
target all the time, but a range of targets. Such a range of targets for one person, and
for another person as well, lies within an equivalence class.

3 Methods

3.1 Clustering method

Clustering techniques are an example of unsupervised machine learning. We use clus-
tering techniques to divide a data population into a certain number of groups, where
observations within a cluster are more similar to each other than to the observations
in other clusters. Clustering methods, developed in statistics and machine learning,
are used for data processing in several fields of application, that include image process-
ing, medicine, economics, and medicine (McLachlan and Basford, 1988; Melnykov and
Maitra, 2010; Ramey, 1985), including Covid-19 pandemic data (Keser and Kocakoç,
2021). We use clustering techniques to divide a data population into a certain number
of groups, where observations within a cluster are more similar to each other than to the
observations in other clusters. Cluster analysis is an unsupervised learning technology
to identify hidden patterns across data. Input data are not labeled, and the division into
classes maximizes intra-class similarity and minimizes inter-class similarity.

Each clustering technique is characterized by a unique and precise notion of similarity
and a specific metric (Hartigan and Wong, 1979). Clustering algorithms can be classified
into two classes: hierarchical algorithms and partitioning algorithms.

In hierarchical clustering, clusters are formed by iteratively dividing the patterns
through a divisive or an aggregative approach (Nielsen, 2016). Once defined a mea-
sure of similarity between two groups of points, such as a metric and a linkage, one can
perform splitting and merging procedures (Hartigan and Wong, 1979).

The metric allows one to evaluate the distance between each pair of points within
the clusters. The linkage, a function of the metric, permits to measure the similarity
between two clusters.

Partitioning algorithms assign data to a certain number of clusters by iteratively
optimizing some objective function (Reynolds et al., 2009). In this study, we choose to
focus on a partition algorithm known as k-modes type clustering for categorical data,
presented by Huang (Huang, 1998a). The k-modes algorithm is an adaptation of the
k-means algorithm. It has been designed to cluster categorical data sets (Bai et al.,
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2012; Kim and Hyunchul, 2008). According to Huang (Huang, 1998a), the k-modes
is in general faster than the k-means thanks to the fewer number of iterations needed
to converge (Wilde et al., 2020; Dorman and Maitra, 2020). The k-modes introduces
the following modifications: replaces cluster means with cluster modes; uses a simple
matching dissimilarity measure for categorical objects, and utilizes a frequency-based
method for updating clustering modes, minimizing the cost function.

With respect to the k-means, the k-modes introduces the following modifications: it
“uses a simple matching dissimilarity measure for categorical objects, it replaces means
of clusters with the modes, and it uses a frequency-based method to update the modes”
(Huang, 1998a).

Aiming to subgroup the population and identify patterns across data, we define the
number K of clusters and we select the k initial modes. Then, we allocate every object
to the nearest mode. After a small number the iterations, the algorithm converges.
Similarly as the k-means, the k-modes algorithm provides locally optimal solutions, that
are heavily dependent on the initial mode or on the objects’ order; this fact constitutes
the main disadvantage of the considered method.

The considered distance between categorical objects in the k-mode algorithm is the
simple match dissimilarity measure. According to (Huang, 1998a, 289), the algorithm
can be described as follows:

Let X be a set of categorical objects described by m categorical attributes,
{A1, A2, ..., Am}. The mode of X is defined to be a vector Q = [q1, q2, ..., qd]
such that the function is minimized, where the distance is defined as:

D(X, Q) =

n∑
i=1

d1(Xi, Q) (1)

The simple-matching dissimilarity measure (Kaufman and Rousseeuw, 1990; Huang,
1998a,b) is a well-known measure used for categorical data. According to (Çilingtürk and
Ergüt, 1977; Kaufman and Rousseeuw, 1990), the simple matching distance is defined
as follows. Let X and Y be two categorical objects, characterized by m attributes. The
simple matching distance (Kaufman and Rousseeuw, 1990) between X and Y is given
by

d(X,Y ) =
m∑
k=1

δ(xk, yk), δ(xk, yk) =

{
0 (xk = yk)

1 (xk ̸= yk)

In our research, we can consider the versions with and without weights, 30 as the
maximum number of iterations.

Categorical data clustering plays a major role in social, economic or medical fields, to
find similar patterns in a defined population, identify decisions and targets for healthcare,
measure attitude and options in social sciences. For the process of data clustering, the k-
modes algorithm has been widely used, mainly due to its easiness of implementation and
capacity to handle big data amount. Variations of the k-modes algorithm include mixture
models for categorical data, fuzzy models, an iterative initial points refinement algorithm
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for categorical data, a genetic clustering algorithm (Gk-mode). Many algorithms have
been proposed for the clustering of categorical data (Saha and Das, 2015; Liu et al.,
2020). Here, we focus on the classic k-modes algorithm, because it is the most suitable
tool for the analysis of a categorical dataset, obtaining subgroups based on elements’
dissimilarities. For our analysis, we also consider centroids and voxel representations.
In our study, the number of clusters for k-modes clustering is set to k = 4. We

choose 4 clusters because we are considering groups of 4 colors for each task. In fact,
we evaluated people behavior accordingly to their answers to the color picking task and
the band association task.
We calculate distances through the simple-matching method (Hamming distance).

The steps to perform the k-modes clustering are summarized in Algorithm 1. All analysis
have been performing using the R statistical software.

Algorithm 1 k-modes pseudocode

1: Choose a value of k
2: Select initial centres (modes)
3: Calculate the distances between objects to the cluster modes
4: Update the modes value and repeat the step to calculate the distances
5: while Changing cluster membership do
6: Repeat the process
7: end while

3.2 Questionnaire

We prepared an online anonymous form, a questionnaire “Sound and Color Associa-
tions,” with multiple-answer questions, open questions, sound examples, and color pick-
ers. A few general questions were followed by a 2-part experiment with 4+4 associations
to be made. The form is available in the folder at https://tinyurl.com/uyrzr79s.
The first questions regarded artistic activity, age range, and synesthetic experiences,
respectively. We had the following demographic questions in the first part of our ques-
tionnaire:

� Q1. Are you a musician or a visual artist?

1. Musician

2. Visual Artist

3. Both musician and visual artist

4. None of the two

� Q2. What’s your age range?

1. 8-17

2. 18-29

3. 30-44
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4. 45-60

5. 60+

� Q3. Are you a synesthetic subject/have had synesthetic experiences?

1. Yes

2. No

3. I don’t know

The second part of the questionnaire (containing eight questions) regarded an associ-
ation task. Participants were asked to associate given timbre combinations and colors,
without any explanations. During this association task, participants listened to a single
chord orchestrated differently. The different orchestrations were simulated with a sound
library.
The first part of the association task (four questions, Associations 1-4) regarded sound-

color free associations; the second part (other four questions, Associations 5-8) regarded
color-band and sound associations.
The first four associations allowed the use of a color picker (Figure 2), outputting

hexadecimal color values. Those values were then translated into RGB (Red Green
Blue) coordinates.

"  
Note. structure of the Associations 1-4 

Figure 3 
Color bands 

Figure 2: Structure of questionnaire for associations 1-4. Clicking on the color box,
participants were able to use the color picker.

Each answer to each one of these questions is a point in the space of colors. To highlight
color classes, we divided the color space into cubic boxes, grouping close answers (in
fact, space closeness corresponds to tone/luminosity/hue closeness). The color of the
so-obtained voxels depends upon the centroid of the colors it contains. Opacity depends
on the concentration of these answers: the more the choices of ’black,’ the more black
and the less transparent the corresponding voxel will be. In this way, we converted a
continuous variable, the coordinates of each color, into 125 voxels, which we consider
as a categorical variable because of our choice to focus on classes. Voxels have been
obtained through a Python code.
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The remaining four associations presented, each of them, four gradients of colors (as
a collection of four colored squares) to choose from (Figure 3). In this case, the output
was a number between 1 and 4, according to the chosen set of colored squares.

"  
Note. structure of the Associations 5-8 

Figure 4 
Structure of the email data collection 

"  

Figure 5 
Associations 1-4 

Figure 3: Structure of questionnaire for associations 5-8

Regarding sound samples, we chose a C-Major chord for all musical samples. The
orchestration of the sound samples, and the indicated score loudness (which influences
on timbres), is the following:

1. Sound for Association 1: 2 flutes, 2 oboes, 1 clarinet, Violin I, Violin II, f

2. Sound for Association 2: Full orchestra, ff

3. Sound for Association 3: 3 Clarinets, p

4. Sound for Association 4: Piano, f (low-pitch chord)

5. Sound for Association 5: 1 flute, 1 oboe, 1 clarinet, Violin I, Violin II, pp

6. Sound for Association 6: 3 flutes, p (relatively high-pitch chord)

7. Sound for Association 7: 3 trumpets, f

8. Sound for Association 8: 2 trombones, 3 celli, f.

The expected results were indicatively warm/brilliant colors for Associations 1 and
3, colder/darker colors for Associations 2 and 4, and, for the gradient association-task
(Associations 5-8), the sequence 3-1-2-4. Fluctuations are also given to different color-
screen characteristics.

4 Results

We had 52 participants to our experiment, recruited over emails and social networks
during the first decade of June 2020.

Population. Concerning the population, the 62.2% is constituted by musicians, while
the 25.5% was not a musician nor a visual artist. The age range is comprised, for the
41.2%, between 18-29 years, while the 37.3% declared to belong to the range 30-44; the
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11.8% is between 45 and 60 years old. With a reference to synesthetic experiences (Q3),
it is interesting to note that the most part of participants (45.1%) declared of not having
had any of such experience, while the 31.4% declared of not knowing.
Amongst participants who declared of being a musician, the 43.8% replied “No” regard-
ing the Q3 question. The 53.8% of non-musicians and non-visual artists replied “No” to
Q3, while the 38.5% of them replied “I don’t know.”
The expected associations for Associations 4-5-7-8 were the options 3-1-2-4, respec-

tively. Concerning these questions, musicians provided the following answers: the 50%
selected the option 3 for Association 5; for Association 6, the 40.6% selected the option 1;
for Association 7, the 56.3% chose option 2, and for Association 8, almost all musicians
chose the option 4. Thus, we find that the most part of musicians chose the expected
associations.
Cluster population is divided in the following way: cluster 1 includes the 17.6% of

participants; cluster 2 the 23.51%; cluster 3 the 49%, and cluster the 9.8%.
Observing the cluster population with respect to question Q1, clusters 1 and 2 are

constituted by musicians for the 88.9% and 75%, respectively. In cluster 3, there is an
equidistribution between musicians, visual artists, and both of them. In cluster 4, the
80% of people are neither musicians not visual artists.
Each picture in Figure 4 shows the colors associated to the first four sounds (Associa-

tions 1–4), as distribution of associations in the RGB (Red Green Blue) space. The RGB
space can be described as a portion of 3D space with coordinates between 0 and 255
along the x (red), y (green), and z (blue) axes. These coordinates express the amount
of the three primary colors included in a given color. For example, black has RGB coor-
dinates (0, 0, 0), while white (255, 255, 255). As the RGB space provides more than 16
million combinations, we found that a quantization of answers could be more expressive.
In fact, respondents would unlikely be able to distinguish between a yellow (255, 255,
0) and a yellow (254, 254, 0). For this reason, we decided to use voxels, i.e., volumetric
pixels. Each voxel is a cube that samples the RGB space at a fixed step. The details of
participants’ subgroups for each association task can be found in the folder “clusters” of
the repository at https://tinyurl.com/uyrzr79s. As an example, in Figure 5 we show
participants’ answers to the Association task 4, clustered according to their answers to
the other questions.

Algorithm 2 voxel partition pseudocode

1: Divide each axis in 5 equal parts
2: Create a voxelArray of 125 voxels based on the quantized coordinates
3: Import the .csv file with color associations
4: for each voxel in voxelsArray do
5: Calculate number n of color choices that fall inside the cube volume
6: Assign alpha value according to n
7: end for
8: Render the colored voxel with transparency values

In order to construct the voxels, we divided each axis in 5 equal segments, by finding 6
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(a): Colors associated with 2 flutes, 2 oboes,
1 clarinet, Violin I, Violin II, f.

(b): Colors associated with a full-orchestra
chord, ff.

(c): Colors associated with a 3-clarinet
chord, p.

(d): Colors associated with a low-pitch pi-
ano chord, f.

Figure 4: Color associations for each timbre (part I of the test, Associations 1–4), cor-
responding to a different orchestration of a C-major chord. The more intense
the color of a cube, the more frequent the answers in that portion of space.
Colors in (c) are similar to (a) but more “bright.” Space distributions of (c)
and (d) are almost complementary.

equally distant integers between 0-255 (extremes included). Thus, we sampled the RGB
space in 125 voxels. Each voxel was associated with the color given by the coordinates
of the center of each cube. We then used a python script to process a .csv file containing
the answers for each association. From the online form described in 3.2, we gathered
color information in hexadecimal format. Therefore, we had first to convert hexadecimal
values into RGB coordinates. After that, for each association, we counted how many
responses were falling inside each voxel.

The number of answers would provide a value for the transparency of the cube (0
answers = invisible). Algorithm 2 reports a pseudo-code for the creation of voxels. In
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(a) (b)

(c): Black-ish colors: the most expected an-
swers.

(d): This partition contains green, a less
expected association for the proposed
timbre.

Figure 5: Partition of color selections displayed in Figure 4 (d), that is, Association 8,
according to participants’ replies to the second part of the test. Despite fluc-
tuations, almost none of the participants selected “brilliant” or very luminous
colors for this question, confirming our expectation of a “dark” color associa-
tion.

order to represent the cluster distribution described in 3.1, we added one column in the
.csv file. Numbers from 1 to 4 were used to indicate the inclusion of each row (i.e.,
respondent) in one of the four clusters. For each voxel’s transparency value, we only
counted respondents assigned to one cluster at a time.

To visually summarize the overall behavior of participants (Figure 4), for each one of
the first four associations we also computed the centroid of color choices, shown in Figure
6. The centroid is meant to provide the “baricenter” of the selections, indicating the point
of minimal distance from all choices. The computation was realized by calculating the
geometric centroid (mean of coordinates) of color choices in the RGB space, where each
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choice is a point in that space. As expected, we find that centroids for Association 1 and

Figure 6: Centroids of color choices for associations 1-4.

Association 3 are close (with a little brighter color for Association 3), while the centroid
for Association 2 belongs to a warm color region, and the centroid for Association 4 is a
very dark color.
Participants were also asked to associate some sounds (the same chords played by

different orchestral combinations) with a color band amongst four color bands (Table
1). The expected answers (as the best match) to each question were: 3, 1, 2, 4. The
majority of participants chose the third answer (third color-band choice) to the first
question (first sound), the first answer to the second question, the second answer to the
third question, and the fourth answer to the fourth question. In particular, the third
and fourth sounds were more distinctly associated with the expected questions.

Table 1: For each timbre, participants selected a color band. The expected color-band
selection was 3-1-2-4 for timbres 1-2-3-4, respectively. The number of partici-
pants that selected these options are highlighted in bold.

color bands timbre 1 timbre 2 timbre 3 timbre 4

1 16 25 6 3

2 12 7 31 7

3 24 17 9 2

4 0 3 6 39

5 Discussion and Conclusions

We faced the problem of associations between colors and sounds, investigating the cor-
respondence between orchestral-section chords and blurred color bands. We started
from the gestural similarity conjecture applied to colors. Here, we consider as gestural
generators unseen paths in the space of parameters, moving toward “warm and bril-
liant” and then toward “dark and cold,” or again “dark and warm.” The parameter
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spaces are the conceptual space of colors and timbres, with “gestures” as paths, to be
compared according to common perceptive/emotional reactions to visual and auditory
stimuli. We designed an experiment comparing points in the space of sounds and points
in the space of colors. Participants filled an online questionnaire with some kind of
color associations. Our results confirmed the expectations, showing a variability cir-
cumscribed within recognizable regions of the color space. Color-distribution analogies
reflected timbral analogies. Our results strongly suggest the emergence of multi-sensory
properties.

Further research will focus on chromatic/timbric transitions. From a computational
point of view, the next objective will be to replicate the analysis while increasing the
number of participants. With more people and more parameters, we might catch more
nuances of timbre-color perceived connections, as an overall greater diversity with re-
spect to the considered small dataset. Working with an increased observed population
will allow us to explore eventual macro-connections of classes of colors and classes of tim-
bres. Future studies may uncover less-expected patterns of behavior which may emerge
from a wider sample. From a computational point of view, we can combine our analysis
with graphic techniques for centroid-based categorical data clustering (Manisera, 2011).
We also aim to compare different clustering techniques. Our study can lead to a fu-
ture predictive model, to design a sonification technique based on shared timbre-color
similarities. For instance, a neural-network model can be fed with the results of our
study, to refine the choice of color and timbre features and automatically predict pos-
sible well-working associations. The statistical approach may for example be borrowed
from (Athanasiadis and Ioannides, 2021).

The sense of the present research ultimately is aiming to know more on the arts and
on our own perception of complex phenomena such as timbres and colors. Are our senses
and our ‘artistic perception’ giving us information about nature and physics? Our study
can lead to new signs of progress in multisensory data exploration, sound/visual design,
and ultimately, human-perception knowledge.
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