
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v16n3p541

The Formation of Portfolio with Fuzzy Approach
and Multi-objective Method
By Jana, Rosadi and Supandi

15 December 2023

This work is copyrighted by Università del Salento, and is licensed un-
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Forming a portfolio in the investment process is a crucial component. It
is because investors want maximum profit while expecting a minimum level
of risk. The portfolio composition is inseparable from the weighting of each
observed stock. In fact, mathematically, there are still problems when trying
to fulfill the preferences that investors want. The research objective was the
formation of a portfolio using a fuzzy approach and a multi-objective method.
This model simultaneously maximized the return and risk of the prepared
portfolio. The result was the formation of a portfolio with two categories,
namely risk-seeking and risk-averse, equipped with a λ value of each method,
the weight of each stock, the expected return, and risk. Parameter λ was
the value obtained from selecting the risk level determined by the investor.
Parameter λ was used to assess the level of risk and the expected return on
the portfolio preparation. The last section compared the weights, expected
return, and risk values of the two methods. As a result, investors in the
risk seeker category have the potential to get higher expected returns when
using the multi-objective method. In contrast, the fuzzy approach produces
the possibility of a higher expected return for investors in the risk-averse
category.
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1 Introduction

A portfolio is a collection of assets in the form of investments that individuals or Com-
pany institutions can own (Ta et al., 2020; Subekti et al., 2022; Pramono et al., 2022).
The investment can be in the form of tangible assets and financial assets. Investments
in tangible assets include gold, property, business capital, etc.(Jreisat, 2018; Sumer and
Ozorhon, 2021). Meanwhile, investments in financial assets include stocks, deposits,
bonds, mutual funds, etc (Maghyereh and Abdoh, 2020). Each share proportion in the
portfolio is referred to as portfolio weight (Raihan and Saepudin, 2018). Forming a
portfolio by minimizing risk and maximizing profit often encounters obstacles such as
many shares being compared for purchase, investor preferences regarding investment
objectives, and so on (Caviezel et al., 2012; Manik and Sukandar, 2021). In fact, one of
the most popular topics in applied finance is portfolio selection, which is choosing the
most suitable combination of securities to fulfill investors’ goals (Huang, 2008).

On the other hand, investors’ expectations regarding financial parameters based on
portfolio decision-making are often vaguely stated. For example, an investor expects
significant profits to exceed 30% of the total investment or controllable losses to be
significantly less than 15% (Gupta et al., 2014). It indeed poses its challenges in terms
of methodological in forming a portfolio that is under the preferences of investors.

In these conditions, the fuzzy set theory will be more helpful. It is more evident
that modeling a portfolio selection will depend on the development results of fuzzy set
theory. Furthermore, the advantages include theory fuzzy accommodating ambiguity
and uncertainty and providing flexibility in the decision-making process by combining
investor preferences and expert knowledge. Bellman and Zadeh (1970) define fuzzy scope
decision-making by integrating fuzzy objectives and fuzzy constraints. Unlike classical
set theory, there is no clear boundary between elements included or not included in the
set in fuzzy set theory.

Another method of portfolio formation can be formed using multi-objective optimiza-
tion. Multi-objective optimization can be viewed as a solution with considering various
aspects. Duan (2007); Subekti and Kusumawati (2015); Septiano et al. (2019); Goli
et al. (2019); Garćıa Garćıa et al. (2020); Yu et al. (2021) state that the preparation of a
portfolio with multi-objective optimization is based on maximizing the expected return
and minimizing the risk obtained. Maximizing expected returns and minimizing risk
are done simultaneously. This method gives investors a choice in allocating investment
funds based on their respective characteristics. The characteristics can be included in
the risk-averse or risk-seeking category.

This paper examined the formation of a portfolio with a fuzzy approach and a multi-
objective method by considering the bi-objective portfolio optimization model based on
the mean-variance framework proposed by Markowitz (1952). The model simultaneously
maximized profits and minimized losses on the observed stock. Some relevant references
for the fuzzy framework of portfolio selection using the mean-variance model were Ra-
maswamy (1998); Parra et al. (2001); Zhang and Nie (2005); Bilbao-Terol et al. (2006).
Thus, the formulation of a bi-objective fuzzy portfolio selection problem was based on
the level of vague investor aspirations regarding portfolio returns and risks to determine
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a satisfying portfolio selection strategy (Subekti and Kusumawati, 2015). It took into
account that an investor determined preferences based on their experience and knowl-
edge so far. Furthermore, the final part compared the performance of the fuzzy portfolio
according to the investors’ characteristics. The grouping of investor categories is done so
that investors can directly use the results obtained according to the type of investment
style.

The main contributions in this research consisted of 1) simulating real-time data in
portfolio arrangement with a fuzzy and multi-objective approach with several investor-
type criteria, and 2) comparing the performance results of the fuzzy and approach meth-
ods, multi-objective optimization was seen from the weight, expected return, and risk
obtained.

2 Method

2.1 Fuzzy Portfolio Selection Model

This model simultaneously maximized portfolio returns (f1(x)) while minimizing port-
folio risk (f2(x)) which was formulated with (Almahdi and Yang, 2017; Kalayci et al.,
2019):

max(f1(x)) =

n∑
i=1

rixi (1)

min(f2(x)) =
n∑

i=1

n∑
j=1

σijxixj (2)

With constraint function
n∑

i=1

xi = 1 (3)

and

xi ≥ 0, i = 1, 2, 3, ..., n (4)

with ri = E[Ri], σij = E[(Ri − ri)(Rj − rj)] The linear membership function of the
expected return of the portfolio is defined as follows:

µf1(x) =


1 , if f1(x) ≥ fR

1
f1(x)−fL

1

fR
1 −fL

1
, if fL

1 < f1(x) < fR
1

0 , if f1(x) ≤ fL
1

(5)

with fL
1 was the lowest lower limit, and fR

1 was the highest upper bound of a portfolio
return that investors wanted (see Figure 1).
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Figure 1: The purpose of the fuzzy portfolio return

Meanwhile, the linear membership function of portfolio risk is defined as follows
(Gupta et al., 2014; Ciavolino and Calcagǹı, 2016):

µf2(x) =


1 , if f2(x) ≥ fL

2
fR
2 −f2(x)

fR
2 −fL

2
, if fL

2 < f2(x) < fR
2

0 , if f2(x) ≤ fR
2

(6)

with fR
2 was the lowest lower limit, and fL

2 was the highest upper bound of a portfolio
risk that investors wanted (see Figure 2).

Figure 2: The purpose of fuzzy portfolio risk

It was based on the Bellman and Zadeh (1970) maximization approach and fuzzy mem-
bership functions. The fuzzy bi-objective optimization model for the portfolio selection
problem is formulated as follows:

max λ

Constraint function
λ ≤ µf1(x),
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λ ≤ µf2(x),
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, 3, ..., n

0 ≤ λ ≤ 1

2.2 Fuzzy Interactive Approach Stages

The stages of solving the fuzzy interactive approach to the problems above are as follows
(Gupta et al., 2014):

1. We are developing a mathematical model that is return and covariance variance
matrix.

2. Solving the max (f1(x)) and min(f2(x)) problems as a single-purpose problem in
terms of the return and risk objective functions, taking into account the constraint
functions if the solution was under the stage, so it should be stopped, if not,
continued to step 3.

3. Evaluating the objective function of the solution obtained and determining the
worst lower limit (f1

L) and the best upper limit (f1
R) for return purposes; as well

as the best lower limit (f2
L) and the worst upper bound (f2

R) for risk purposes.

4. We are determining the linear membership function for return and risk.

5. Maximizing λ with constraint function:

λ < µf1(x),

λ < µf2(x),
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, 3, ..., n,

0 < λ < 1

Then, the processes were completed. The process was stopped if the settlement
results were in line with investors’ expectations. Otherwise, both objective func-
tions were re-evaluated. The role of λ in this method is as the objective function
to be maximized. In the return objective function, the current worst lower bound
with a new objective value was compared. If the new value was higher than the
worst lower limit, it was set as the new limit bottom; otherwise, it used the old
value. On the other hand, the current worst upper bound is compared to the new
goal value for risk purposes. If the new value was lower than the worst upper limit,
it was set as the new upper limit. If not, an old value was used. If there were no
change in the boundary of the two objective functions, then it would be stopped.
If not, it should be continued to stage 4 and repeat the solution process.



546 Jana, Rosadi and Supandi

2.3 Multi-objective Portfolio Selection Model

The method employed a multi-objective portfolio and principally aimed to maximize
return and minimize risk. Maximizing Rp = rTw and minimizing σp = wT

∑
w with

constraint function 1Tw = 1 (Ruiz-Torrubiano and Suárez, 2015; Hoyyi and Ispriyanti,
2015; Seyedhosseini et al., 2016). It was equivalent to minimizing (−rTw,wT

∑
w) with

1Tw = 1. Then, adding the two weighting coefficients a1 > 0 and a2 > 0 to get the
minimum equation of −rTw + wT

∑
w.

Furthermore, a multi-objective optimization was solved using the Lagrange function
as follows:

L = −r + 2kwT
∑

w + λ(1Tw − 1) (7)

In finding the optimal solution of w, equation 7 was derived concerning w and then
equated to zero.

dL

dw
= −r+ 2k

∑
w+ λ1p = 0 (8)

By transposing the results of equation 8, it is obtained:

w =
1

2k
(
∑

)−1(r− λ1p) (9)

Substituting equation 9 into equation 1Tpw = 1 which obtained:

λ =
1Tp (

∑
)−1r − 1

1Tp (
∑

)−11p
(10)

The steps of the multi-objective portfolio method included (Di Asih and Purbowati,
2009; Pradana et al., 2015):

1. Determining the mean and variance of observed stock returns. The mean and
variance of returns are obtained from daily stock data observed over a certain
period.

2. Determining the variance and covariance matrix. The variance-covariance matrix
is prepared based on the variance value and covariance of return on assets.

3. Generating various k-values. The value of k is determined by gradation to get a
simulation of the investor category.

4. Specifying the λ parameter. The lambda value is obtained using Equation 10.

5. Determining the weight of each stock that depended on the k and λ values. Inter-
pretation of simulation results.

6. Determining the expected return and risk. This is obtained using the Rp = rTw
and σp = wT equations after the weight of each portfolio is obtained.

The role of λ is as a Lagrange multiplier, which is then used to determine the weighting
of the formed portfolio. In the end, get the return and risk of the existing portfolio.
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3 Results and Discussion

3.1 Data

The data used were stock data from PTBA.JK, MNCN.JK, EXCL.JK, BMRI.JK, and
ADHI.JK in LQ-45. The data period was daily stock data for the entire eight months.
The selection of stock members of the LQ-45 is due to the most active and liquid stocks
on the daily transfer market. The following in table 1 was the mean return data and
mean-variance of the data used:

Table 1: Mean Return and Variance of Stock Data Owned

No. Stocks Mean Return Variance

1 PTBA.JK 0.000392381 0.000511556

2 MNCN.JK 0.000288736 0.000732135

3 EXCL.JK 0.000722567 0.000706930

4 BMRI.JK 0.000327829 0.000450177

5 ADHI.JK 0.001529785 0.001341421

Meanwhile, the variance and covariance matrices are as follows:

Table 2: Matrix of variance and covariance of Stock Data owned

Stocks PTBA.JK MNCN.JK EXCL.JK BMRI.JK ADHI.JK

PTBA.JK 0.000514 0.000220 0.000225 0.000164 0.000284

MNCN.JK 0.000220 0.000735 0.000272 0.000211 0.000466

EXCL.JK 0.000225 0.000272 0.000710 0.000184 0.000270

BMRI.JK 0.000164 0.000211 0.000184 0.000452 0.000260

ADHI.JK 0.000284 0.000466 0.000270 0.000260 0.001347

The value of the covariance variance matrix in Table 2 showed the relationship between
stocks’ positive values. It meant that if one stock went up, other stocks also tended to
increase and vice versa.

3.2 Portfolio Development with Fuzzy

Step 1
We formulate the model according to equations 1 and 2, constraint functions 3 and 4.

max f1(x) = 0.000392381x1 + 0.000288736x2 + 0.000722567x3

+0.000327829x4 + 0.001529785x5
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and

min f2(x) = 0.000514x1x1 + 0.000735x2x2 + 0.000710x3x3

+0.000452x4x4 + 0.001347x5x5 + 0.000220x1x2

+0.000223x1x3 + 0.000164x1x4 + 0.000284x1x5

+0.000272x2x3 + 0.000211x2x4 + 0.000466x2x5

+0.000184x3x4 + 0.000270x3x5 + 0.000260x4x5

Constraint function:

x1 + x2 + x3 + x4 + x5 = 1

xi ≥ 0, i = 1, 2, ..., 5.

Step 2
Determining the worst lower (biggest) limit and the best upper (smallest) limit for the
return and risk functions, respectively, the problem solved was as a single objective as
follows:
Return Function

max f1(x) = 0.000392381x1 + 0.000288736x2 + 0.000722567x3

+0.000327829x4 + 0.001529785x5

Constraint function:

x1 + x2 + x3 + x4 + x5 = 1

xi ≥ 0, i = 1, 2, ..., 5.

Obtained solution (x1) is presented in table 3:
Risk Function

min f2(x) = 0.000514x1x1 + 0.000735x2x2 + 0.000710x3x3

+0.000452x4x4 + 0.001347x5x5 + 0.000220x1x2

+0.000223x1x3 + 0.000164x1x4 + 0.000284x1x5

+0.000272x2x3 + 0.000211x2x4 + 0.000466x2x5

+0.000184x3x4 + 0.000270x3x5 + 0.000260x4x5

Constraint function:

x1 + x2 + x3 + x4 + x5 = 1

xi ≥ 0, i = 1, 2, ..., 5.

Obtained solution (x2) is presented in table 3:
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Table 3: Proportion of assets in the portfolio acquired for a single purpose

Allocation

PTBA.JK MNCN.JK EXCL.JK BMRI.JK ADHI.JK

x1 0.0 0.0 0.0 0.0 1.0

x2 0.2790079 0.1528888 0.1759434 0.3385981 0.05356192

Step 3
The evaluation of the two objective functions on the solution obtained, namely x1 and
x2. The function value of objectives is presented in table 4. Thus, the worst lower
(biggest) limit and the upper limit (smallest), the best, of the two objective functions
are obtained as follows:

0.000289 ≤ f1(x) ≤ 0.00153

0.00045 ≤ f2(x) ≤ 0.001341

Table 4: Return and risk objective function values in the two solutions obtained

x1 x2

Return (f1(x)) 0.001530 0.000289

Risk (f1(x)) 0.001341 0.000450

Step 4
The formation of membership functions for return and risk is as follows:
The linear membership function of the portfolio’s expected return is:

µf1(x) =


1 if, f1(x) ≥ 0.001530

f1(x)−0.000289
0.001530−0.000289 if, 0.000289 < f1(x) < 0.001530

0 if, f1(x) ≤ 0.000289

The linear membership function of portfolio risk is:

µf2(x) =


1 if, f2(x) ≤ 0.000450

0.001341−f2(x)
0.001341−0.000450 if, 0.000450 < f2(x) < 0.001341

0 if, f2(x) ≥ 0.001341

Step 5
Formulating the model as in step 5 is presented as follows:

max λ
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Constraint function

0.000392381x1 + 0.000288736x2 + 0.000722567x3

+0.000327829x4 + 0.001529785x5 − 0.001530λ ≥ 0.000289

0.000514x1x1 + 0.000735x2x2 + 0.000710x3x3

+0.000452x4x4 + 0.001347x5x5 + 0.000220x1x2

+0.000223x1x3 + 0.000164x1x4 + 0.000284x1x5

+0.000272x2x3 + 0.000211x2x4 + 0.000466x2x5

+0.000184x3x4 + 0.000270x3x5 + 0.000260x4x5

+0.5335λ ≤ 0.001341

x1 + x2 + x3 + x4 + x5 = 1

xi ≥ 0, i = 1, 2, ..., 5.

0 ≤ λ ≤ 1

The computational results presented in tables 5 and 6 presented the proportion of
assets in the portfolio for each share obtained.

Table 5: Summary of portfolio selection results

λ Return (f1(x)) Risk (f1(x))

0.6351346 0.001260756 0.0007974948

Table 6: Proportion of assets in the portfolio with Fuzzy

Allocation

PTBA.JK MNCN.JK EXCL.JK BMRI.JK ADHI.JK

0.0000001 0.00000002 0.3332791 0.00000007 0.6667207

Table 5 shows the expected return and risk values from the iteration results with the
fuzzy stage first. Table 6 is the weighting for each share used in the portfolio preparation.
The value obtained stopped if it matched the investors’ preferences and goals. Suppose
the investor was not satisfied with the solution obtained and would like to improve
it further. As desired by investors, individual goals, namely return, can be increased;
however, due to the nature of the multi-objective problem, improvement in one goal could
produce effects detrimental to other purposes. Therefore, the researchers could modify
the obtained solution depending on the investor’s preference for both objectives. In this
process, the lower and upper limits and the aspiration level of the selected objective
function were modified.
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3.2.1 Investor Risk Seeking Category with Fuzzy Portfolio

The type of investor in the risk-seeking category occurred when the solutions offered
in table 6 did not match investor preferences. Thus, further iterations were needed
regarding the expected return selection simulation under the wishes and goals of an
investor. In this case, the expected return value was taken close to the maximum from
the return data owned. The selection of the lower limit of the expected return was as
much as ten parts. Next, a simulation was given, and the λ, value was calculated return,
risk, and weight of each stock observed for each portfolio.
The following is a simulation result of the proportion of assets in the portfolio obtained

by varying the lower limit of the expected return (see Table 7 and 8).

Table 7: λ value, Return, and Risk of Each Portfolio

Boundary λ Return Risk

f1(x) f2(x)

Portfolio 1 0.001116102 ≤ f1(x) ≤ 0.001529 0.2158558 0.001446361 0.001140539

Portfolio 2 0.001157470 ≤ f1(x) ≤ 0.001529 0.1933457 0.001453289 0.001156449

Portfolio 3 0.001198839 ≤ f1(x) ≤ 0.001529 0.1710450 0.001460538 0.001173336

Portfolio 4 0.001240207 ≤ f1(x) ≤ 0.001529 0.1489439 0.001468091 0.001191192

Portfolio 5 0.001281575 ≤ f1(x) ≤ 0.001529 0.1270314 0.001475933 0.001210012

Portfolio 6 0.001322943 ≤ f1(x) ≤ 0.001529 0.1052974 0.001484048 0.001229788

Portfolio 7 0.001364312 ≤ f1(x) ≤ 0.001529 0.8373191e-01 0.001492422 0.001250517

Portfolio 8 0.001405680 ≤ f1(x) ≤ 0.001529 0.6232695e-01 0.00150104 0.001272193

Portfolio 9 0.001447048 ≤ f1(x) ≤ 0.001529 0.4107344e-01 0.00150989 0.001294811

Portfolio 10 0.001488417≤ f1(x) ≤ 0.001529 0.4086077e-01 0.001509565 0.001293973

Table 8: Proportion of Assets in Portfolio with Fuzzy Risk Seeking Category

Allocation

PTBA.JK MNCN.JK EXCL.JK BMRI.JK ADHI.JK

Portfolio 1 0.3322335e-08 0.2077097e-08 0.1033470 0.1371295e-08 0.8966530

Portfolio 2 0.2075730e-08 0.1426042e-08 0.9476508e-01 0.000000 0.9052349

Portfolio 3 0.000000 0.000000 0.8578490e-01 0.000000 0.9142151

Portfolio 4 0.6797864e-08 0.4297187e-08 0.7642770e-01 0.2809224e-08 0.9235723

Portfolio 5 0.5829635e-08 0.4165660e-08 0.6671311e-01 0.2247406e-08 0.9332869

Portfolio 6 0.1739046e-08 0.1296429e-08 0.5666008e-01 0.000000 0.9433399

Portfolio 7 0.3487255e-08 0.2618113e-08 0.4628635e-01 0.2352754e-08 0.9537136

Portfolio 8 0.000000 0.000000 0.3560967e-01 0.000000 0.9643903

Portfolio 9 0.6934179e-08 0.1044837e-07 0.2464595e-01 0.3828818e-08 0.9753540

Portfolio 10 0.1142187e-08 0.2254951e-08 0.2504903e-01 0.000000 0.9749510
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The portfolios that have been compiled were choices to adjust investors’ desire to
make a profit. The expected profit was represented by f1(x) and the risks that might
occur were represented by f2(x). For each portfolio was equipped with a weight and λ
value for each stock analyzed. Indeed, more portfolios on offer would allow flexibility for
investors to diversify investment assets according to their respective objectives.

3.2.2 Risk-Averse Investor Category with Fuzzy Portfolio

The case of investors with the risk-averse type was the medium criteria risk-taker. The
simulation was presented with selecting risks taken from the observed stocks with the
middle category. The simulation used ten data intervals to see the movement of the
weights value of λ, expected returns, and risks from the compiled portfolio.

The following is the simulation result of the proportion of investment assets in the
built portfolio with risk-averse criteria (see Table 9 and 10). The simulation results for

Table 9: λ Value, Return, and Risk of Each Portfolio

Boundary λ Return Risk

f1(x) f2(x)

Portfolio 1 0.0007472583 ≤ f2(x) ≤ 0.0010443397 0.4551905 0.001446361 0.001140539

Portfolio 2 0.0007769664 ≤ f2(x) ≤ 0.0010443397 0.4298995 0.001453289 0.001156449

Portfolio 3 0.0008066746 ≤ f2(x) ≤ 0.0010443397 0.4049451 0.001460538 0.001173336

Portfolio 4 0.0008363827 ≤ f2(x) ≤ 0.0010443397 0.3803143 0.001468091 0.001191192

Portfolio 5 0.0008660909 ≤ f2(x) ≤ 0.0010443397 0.3559938 0.001475933 0.001210012

Portfolio 6 0.0008957990 ≤ f2(x) ≤ 0.0010443397 0.3319705 0.001484048 0.001229788

Portfolio 7 0.0009255071 ≤ f2(x) ≤ 0.0010443397 0.3082313 0.001492422 0.001250517

Portfolio 8 0.0009552153 ≤ f2(x) ≤ 0.0010443397 0.2847629 0.00150104 0.001272193

Portfolio 9 0.0009849234 ≤ f2(x) ≤ 0.0010443397 0.2615525 0.00150989 0.001294811

Portfolio 10 0.0010146316≤ f2(x) ≤ 0.0010443397 0.2385876 0.001509565 0.001293973

the risk-averse investor category showed that the λ value decreases with an increased
risk that might be borne. In this case, ADHI.JK stock weight tended to dominate while
the other stocks fluctuated.

3.3 Multi-objective Portfolio Preparation

The preparation of a portfolio with a multi-objective approach was also divided into two
categories of investor characteristics. The first characteristic was risk-seeking, marked
by the relatively small k-value because they tended to dare to take risks in investing k-
value for the risk-seeking category. It ranged from 0.001 ≤ k ≤ 1, which was divided into
ten parts to be used in the preparation of the portfolio. The second characteristic was
risk-averse, which was moderate in risk-taking in investment. k-values in this category
were in the interval 2 ≤ k ≤ 10, divided into ten parts.
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Table 10: Proportion of Assets in Portfolio with Fuzzy Risk-Averse Category

Allocation

PTBA.JK MNCN.JK EXCL.JK BMRI.JK ADHI.JK

Portfolio 1 0.000000 0.000000 0.1621924 0.000000 0.8378076

Portfolio 2 0.000000 0.000000 0.1588807 0.000000 0.8411193

Portfolio 3 0.000000 0.000000 0.1549313 0.000000 0.8450687

Portfolio 4 0.000000 0.000000 0.1503687 0.000000 0.8496313

Portfolio 5 0.1060086e-07 0.5286434e-08 0.1452176 0.1356185e-08 0.8547824

Portfolio 6 0.7888612e-08 0.3849293e-08 0.1395033 0.000000 0.8604967

Portfolio 7 0.4257331e-08 0.1985612e-08 0.1332507 0.000000 0.8667493

Portfolio 8 0.1629161e-07 0.7621452e-08 0.1264847 0.1492405e-08 0.8735153

Portfolio 9 0.1764430e-08 0.000000 0.1192296 0.000000 0.8807704

Portfolio 10 0.5364400e-08 0.3351487e-08 0.1115093 0.2647106e-08 0.8884907

3.3.1 Categories of Investors with Multi-objective Risk Seeking

Formation of a risk-seeking portfolio began by dividing the value of 0.001 ≤ k ≤ 1 into
ten parts, then specified the parameter values of λ, weight, expected return, and risk for
each portfolio. The following table 11 is the k-value used and λ value obtained:

Table 11: k and λ values in Risk Seeking Category

No k Selected Value λ

1 0.0010000 0.0003973873

2 0.1108889 0.0003337174

3 0.2207778 0.0002700474

4 0.3306667 0.0002063775

5 0.4405556 0.0001427076

6 0.5504444 7.903767e-05

7 0.6603333 1.536775e-05

8 0.7702222 -4.830218e-05

9 0.8801111 -0.0001119721

10 0.9900000 -0.000175642

Next, the k and λ values calculated each developed portfolio’s weight, expected return,
and risk.

The simulation results used a multi-objective portfolio approach with the risk-seeking
category. The greater the k-value, the value of expected return and risk of each portfolio
decayed slowly (see Table 12). Indeed, this condition made it easier for investors to
choose the portfolio obtained in determining the allocation of investment according to
preference.
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3.3.2 Risk-Averse Investor Category with Multi-objective

The formation of a risk-averse portfolio began by dividing the value of 2 ≤ k ≤ 10 into
ten parts, then specified the parameter values of λ, weight, expected return, and risk for
each portfolio. The following table 13 shows the k and λ values which are obtained:

Table 13: k and λ values of the Risk-Averse Category

No k Selected Value λ

1 2.000000 -0.0007608388

2 2.888889 -0.001275863

3 3.777778 -0.001790888

4 4.666667 -0.002305913

5 5.555556 -0.002820937

6 6.444444 -0.003335962

7 7.333333 -0.003850987

8 8.222222 -0.004366011

9 9.111111 -0.004881036

10 10.000000 -0.005396061

Next, with the k and λ values, each developed portfolio calculated the weight, expected
return, and risk.
In the case of the risk-averse investor category, the weight of each stock tended to

be higher equally. However, it still provided an opportunity for a short sale in some of
the portfolios presented. It can be seen in the risk-seeking case that MNCN.JK shares
weighted lower compared to other observed stocks. Meanwhile, the shares of BMRI.JK
had the highest weight. In this type of stock, there was no joint short sale with EXCL.JK,
PTBA.JK and ADHI.JK shares, which were marked with a positive weight value. In
the case of MNCN.JK shares, there was a short sale in portfolios 1 and 2 (see Table 14).

3.4 Discussion and Conclusion

In this section, the researchers compared portfolio selection with fuzzy and multi-objective
approaches for two types of investors, i.e., risk-seeking and risk-averse. Some of the as-
pects presented in the comparison were the respective weights of stocks, expected returns,
and risks in each portfolio.

3.4.1 Weighting in the Risk Seeking Category

This section would compare the weights and properties of each observed stock. Fur-
thermore, it would be analyzed regarding the characteristics of the two methods offered.
Figures 3 and 4 compare the resulting weights of portfolio formation with a fuzzy and
multi-objective approach.
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Figure 3: Portfolio Weight with Fuzzy Method

Figure 4: Portfolio Weight with Multi-objective Method

The average weight used in the fuzzy method descends on forming a portfolio third
and fourth. Meanwhile, the other portfolios were almost consistent with relatively close
numbers. The multi-objective method was only on the eighth and ninth portfolios, which
experienced a difference in the mean distribution with other portfolios.

3.4.2 Expected Return and Risk in the Risk Seeking Category

Expected return and risk were fundamental pillars for investors. Therefore, the expected
return and risk values of each method needed to be seen and scrutinized. Figures 5 and
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6 compare the expected return and risk values from the fuzzy approach and the multi-
objective method.

Figure 5: Expected Return with Fuzzy Approach and Multi-objective Method

Figure 6: Risk with Fuzzy Approach and Multi-objective Method

Both methods had the same expected return intersection in the eighth portfolio. It
could be seen from the intersection of the two lines formed. It showed the formation of
the eighth portfolio with profit expectations of the same magnitude as both methods.
The multi-objective method tended to have a higher expected return and had a declin-
ing pattern. Meanwhile, the expected return value tended to be stable with the fuzzy
approach and increased slowly.
The risk in the risk-seeking category for the two methods intersected in portfolio 7.



Electronic Journal of Applied Statistical Analysis 559

It meant that in the 7th portfolio, both the fuzzy approach and the multi-objective
method had the same level of risk. Meanwhile, in the 8th to 10th portfolio, the risk of
the multi-objective method was under the portfolio formed by using a fuzzy approach.

3.4.3 Weighting in the Risk Averse Category

The subsequent discussion was the comparison of the average weight of the shares result-
ing from the formation portfolio with two methods in the risk-averse category. Figures 7
and 8 are visualizations of the comparison of the average weights of each observed stock.

Figure 7: Portfolio Weight with Fuzzy Method

Figure 8: Portfolio Weights with Multi-objective Method
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Through the Fuzzy method, the formation of the average weight on the observed
stocks tended to be stable in the 1st- 4th portfolios. However, it was more dynamic and
fluctuated on the 5th − 10th portfolio. The highest average portfolio weight occurred
in the eighth portfolio. It was slightly different from using the multi-objective method.
This method tended to be stable in the 4th- 7th portfolio. Meanwhile, the 1st- 3rd and 8th-
10th portfolios tended to be stable up and down. The highest average weight occurred
in the 5th and 10th portfolios; meanwhile, the lowest was in the 1st and 8th portfolios.

3.4.4 Expected Return and Risk in the Risk Averse Category

In choosing the best portfolio seen from the risk-averse category, one practical aspect
was the value of the expected return and the risk that would be accepted. Figures 9 and
10 describe each formed portfolio’s expected return and risk values.

Figure 9: Expected Return with Fuzzy Approach and Multi-objective Method

Figure 10: Risk with Fuzzy Approach and Multi-objective Method
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Each portfolio’s expected return and risk values had a corresponding line. In this case,
the fuzzy approach had an expected return higher than the multi-objective method. The
risk value of the portfolio also had the same tendency; namely, the fuzzy approach was
much riskier than the multi-objective method for each structured portfolio.
Portfolio selection used two methods, namely the fuzzy approach and the multi-

objective method, which had several characteristics of its own regarding the expected
value return and the resulting risk. In this case, two categories of investors were distin-
guished: namely, risk-seeking (f1(x) ≤ 0.001529) and risk-averse (f1(x) ≤ 0.0010443397)
for the fuzzy approach. The multi-objective method of risk-seeking classification was
marked with a value 0.001 ≤ k ≤ 1 and risk-averse with a value 2 ≤ k ≤ 10.

The result was that the multi-objective method of expected return value in the risk-
seeking category was above the expected return value generated by the fuzzy approach.
Furthermore, it was commensurate with the resulting risk. However, in the risk-averse
category, the expected return value with the fuzzy method was above the expected
return value of the multi-objective method. It also corresponded to the resulting risk.
Indeed, this thing became an additional preference of investors in the portfolio selection
process in terms of methods and types of expected categories. This condition is because
this method opens up opportunities to follow the extent to which investors want to
get profits. These results also reinforce Subekti and Kusumawati (2015); Chen and
Wei (2019); Mehlawat et al. (2020) findings, but the main difference in the findings of
this study is the offer of a more diverse choice of portfolio schemes to suit investors’
wishes. The following research gap is the development of fuzzy applications for portfolio
preparation by considering multi-periods and accommodating short selling.
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