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Survival analysis aims to study the occurrence of a particular event during
a follow-up period. Recently, many machine learning methods have been used
for analyzing right-censored data. Among these, survival trees are a useful
tool of recursive partitioning for defining homogeneous groups in terms of
survival probability. However, there are still some unclear points on how to
work with these methods from a practical point of view. Indeed, even if there
are a lot of proposed methods, many of these present little documentation,
mainly concerning the corresponding R functions. Moreover, there does not
exist an harmonization of all these proposals. This work aims to shed light
on the topic and to provide a practical guide for simulating survival data,
fitting survival trees and evaluating their performance with the statistical
software R.

keywords: Survival data, Recursive Partitioning, Machine Learning, Sim-
ulations.

1 Introduction

Survival analysis has been developed since the XVII century with the aim of studying
the occurrence of a particular event (endpoint) during a given observed period of time
(follow-up).
The particular feature of survival data is censoring. Censoring occurs when the endpoint
of interest has not been observed for a certain subject under study during the observation
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time; so, the only known thing about a censored subject is the last time he did not
experience the event (Collett, 2015).
Survival analysis is widely used in medicine for studying events as death or recurrence of
symptoms. However, it can also be used for many other settings as franchising research
(Perrigot et al., 2004), e.g. for predicting survival of a store, and criminology studies,
e.g. for predicting time until recidivism (Wang et al., 2019).
During the years many approaches have been proposed for analyzing survival data. In

particular, both the two cultures of statistical modeling (Breiman, 2001), i.e. statistical
and machine learning methods, have been used. Statistical models can be divided into
nonparametric, semiparametric and parametric. The former are the simplest ones and
are usually used to estimate the survival function of a group of subjects without the need
to use specific assumptions about the underlying distribution of the survival times. The
most used nonparametric methods are the Kaplan-Meier (Kaplan and Paul, 1958) and
the Nelson-Aalen (Nelson, 1969, 1972; Aalen, 1978) estimators. Among semiparametric
methods the most famous is the Cox proportional hazards (PH) regression model (Cox,
1972), which allows to estimate the hazard function on the basis of a set of explana-
tory variables without any assumption on the distribution of survival times. Finally,
parametric models are used to estimate the survival or hazard function on the basis
of a particular distributional assumption on survival times, e.g. Exponential, Weibull
and Gompertz distributions (Collett, 2015). Among machine learning methods several
approaches have been used; examples include survival trees, random survival forests,
neural networks and support vector machines (Wang et al., 2019).
This work focuses on survival trees, i.e. tree-based algorithms for censored data.

During the years many proposals have been advanced; many of these are extensions
of Classification and Regression Trees (CART) (Breiman et al., 1984) to survival data.
Survival trees were firstly developed by Gordon and Olshen in 1985 (Gordon and Olshen,
1985); following, many other suggestions have been introduced (Ciampi et al., 1986, 1987;
Segal, 1988; Davis and Anderson, 1989; LeBlanc and Crowley, 1992, 1993; Molinaro
et al., 2004), usually based on modifications of the splitting criterion and the pruning
algorithm.
In the following years other algorithms that modified the CART one have been pro-

posed. Among these there are conditional inference trees (Hothorn et al., 2006; Kundu
and Ghosh, 2021), the partitioning Deletion-Substitution-Addition algorithm (Lostritto
et al., 2012) and ROC-guided survival trees (Sun et al., 2020a).
Extensions of survival trees for interval-censored data and for left-truncated and right
censored data have also been provided (Fu and Simonoff, 2017a,b). Furthermore, other
recursive partitioning algorithms, different from CART, can be found in literature. Ex-
amples are model-based recursive partitioning (MOB) (Zeileis et al., 2008) and Bayesian
survival trees (Clarke and West, 2008). Finally, algorithms for discrete survival times
have also been proposed (Bou-hamad et al., 2009). For a structured review about sur-
vival trees please see Bou-Hamad et al., 2011.
Despite up to now many proposals have been advanced, it is still unclear which algo-

rithm performs better. Simulation studies are a powerful tool for fully understanding
and evaluating the behavior of statistical methods (Crowther and Lambert, 2012); there-
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fore, a key step in this setting is to perform simulations of survival data. Moreover, also
from a practical point of view there are some unclear points related to model fitting and
performance evaluation that need to be solved.

This work aims to provide a practical guide for simulating right-censored data, fitting
survival trees and evaluating their performance with the statistical software R (R Core
Team, 2021). In particular, interest has been focused on issues that can be met when (i)
generating censored data; (ii) fitting survival trees, with particular interest on relative
risk trees (LeBlanc and Crowley, 1992) and conditional inference trees (Hothorn et al.,
2006; Kundu and Ghosh, 2021); and (iii) evaluating models’ performance.

The article is organized as follows. In the next section the methodological framework
is presented. Then, Section 3 shows how to simulate right-censored data, how to fit
survival trees and how to evaluate their performance in R, with particular attention
to problems and possible solutions involved in these steps. Following, an example is
provided in Section 4. The paper ends with the final discussion.

2 Methodological framework

2.1 Survival data

In survival analysis, the ith subject is represented by a triplet (xi, τi, δi) in which (i) xi

is the vector of observed covariates; (ii) τi is the observed time (survival time ti for an
uncensored subject or censoring time ci for a censored one) and (iii) δi is a binary event
indicator that assumes value 1 if the subject is uncensored and 0 otherwise:

τi = min(ti, ci) =

{
ti if δi = 1

ci if δi = 0
.

2.2 Relative Risk Trees

Relative risk trees (RRTs) have been introduced by LeBlanc and Crowley in 1992
(LeBlanc and Crowley, 1992) as an extension of CART. This recursive partitioning al-
gorithm is based on the Cox PH model (Cox, 1972).

In particular, it exploits the connection between the proportional hazards full like-
lihood and the Poisson model likelihood, allowing to estimate survival trees by fitting
Poisson trees.

The algorithm splits the covariate space into regions that maximize the reduction in one-
step deviance realized by the split. The binary splitting continues until a large binary
tree is grown and then the tree is pruned through the cost-complexity pruning algorithm
of CART (Breiman et al., 1984).

The resulting node summary is the quantity in (1), which can be interpreted as the ratio
between observed and expected number of events in the node under the assumption of
no structure in survival times, providing an estimate of relative risk between different
nodes (LeBlanc and Crowley, 1992):
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θk =

∑
i∈Sk

δi∑
i∈Sk

Ĥ0
1
(ti)

, (1)

where SK is the index set of kth node, δi is the event indicator (equal to 1 for events and

0 for censoring) and Ĥ0
1
is an estimate of the cumulative baseline hazard (see LeBlanc

and Crowley, 1992).

2.3 Conditional Inference Trees - ctree Algorithm

Conditional inference trees have been firstly proposed by Hothorn et al. in 2006 (Hothorn
et al., 2006) to overcome the issue of selection bias of classical CART. Their proposal,
the ctree algorithm, is based on the theory of permutation tests developed by Strasser
and Weber (Strasser and Weber, 1999) and it can be applied to all kinds of outcomes,
including censored data.
Differently from CART, conditional inference trees based on the ctree algorithm

(CITs) are based on two different steps for variable and split point selection. In the
first step, the global null hypothesis of independence between any of the covariates and
the outcome variable is tested and the covariate with the strongest association to the
response (usually the one with the lowest p-value) is chosen as splitting variable. Once
a splitting variable is selected, the best split point is chosen by a splitting criterion, e.g.
the log-rank test (Peto and Peto, 1972). Finally, the recursive partitioning algorithm is
stopped when the null hypothesis of independence cannot be rejected.
At each terminal node the estimated Kaplan-Meier (K-M) survival curve (Kaplan and
Paul, 1958) and median survival time are provided.
Hothorn et al. showed that CITs, beyond overcoming the selection bias issue, have

a predictive performance equivalent to that of optimally pruned CART; thus, they rep-
resent a computationally efficient and intuitive solution also to the overfitting problem
(Hothorn et al., 2006).

2.4 Conditional Inference Trees - SurvCART Algorithm

Very recently another proposal for growing survival trees has been advanced by Kundu
and Ghosh in 2021 (Kundu and Ghosh, 2021). The proposed algorithm, SurvCART,
stands in the same conditional inference framework of ctree. The main differences
between the two algorithms are two. The first one is that while CITs use a nonparamet-
ric permutation test, conditional inference trees based on SurvCART (SCTs) assume a
particular distribution for survival times and incorporate it in the parameter instability
tests. The second difference is that SCTs allow to take into account also censoring het-
erogeneity. Thus, they represent a useful tool when censoring mechanism is dependent
on baseline covariates, inducing a condition of conditionally independent censoring (also
known as dependent censoring), so that censoring is independent of the time-to-event
distribution only conditional on the set of covariates.
In detail, the parameter instability test is performed for each variable to test het-

erogeneity on both the time-to-event and censoring distribution. The most significant
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variable (if exists) is selected and then the best cut-off value is chosen through the
maximization of a dissimilarity measure, usually the log-rank statistic (Peto and Peto,
1972). In particular, if the censoring distribution was found more heterogeneous than
the time-to event distribution for the chosen partitioning variable, the log-rank statis-
tic is computed assuming censoring as an event; otherwise the log-rank is evaluated as
usual. The procedure is then repeated until the parameter instability tests fail to reject
the null hypothesis of homogeneity. Once the tree has been grown, the median survival
time is estimated at each terminal node.

2.5 Performance Evaluation

Performance evaluation of survival methods can be carried out through many kinds of
measures. The most used (Rahman et al., 2017) are:

� discrimination measures, to assess the ability of the model to distinguish between
low and high risk subjects;

� overall performance measures, which quantify both discrimination and calibration
(agreement between the observed and the predicted outcomes), evaluating the
distance between observed and predicted outcome.

Among the discrimination measures the Concordance index (C-index), the time-dependent
Area Under Curve (AUC) and the Somer’s delta are noteworthy. Among the most used
overall performance measures there are the Brier Score (BS) and its integrated version,
the Integrated Brier Score (IBS). Finally, a scaled version of BS, the Index of Prediction
Accuracy (IPA) has been introduced recently.

Concordance Index. Concordance measures are the most used indices for evaluating
the discrimination ability of a model. C-index is a rank order statistic based on the ratio
of all the concordant pairs to the total comparable pairs (all possible combinations). The
most used C-index is that proposed by Harrell et al. in 1982 (Harrell et al., 1982). This
index deals with censored survival times only when censoring occurs later than an event.
Thus, survival times of two subjects can be compared only if (i) both the observations
are uncensored or if (ii) the observed event time of the uncensored observation is smaller
than the censoring time of the censored one.

Assuming to have a comparable pair of subjects (i, j), with ti and tj the actual observed
times and Ŝ(ti) and Ŝ(tj) the respective estimated survival times, the pair is concordant
if ti > tj and Ŝ(ti) > Ŝ(tj); otherwise, the pair is discordant. Similarly, if the model
outcome is the hazard function (e.g. Cox PH model), a pair is concordant if ti > tj and

ĥ(ti) < ĥ(tj) and discordant otherwise, with ĥ(ti) and ĥ(tj) the estimated hazards for
the ith and jth subject respectively.

The Harrell’s C-index uses as weight the number of comparable pairs at each time
point. It can then be evaluated as:

ĈH =
1

C

∑
t:δi=1

∑
j:ti<tj

I[Ŝ(ti) < Ŝ(tj)] =

∑
i ̸=j δiI(Ti < Tj)I(Ŝ(Ti) < Ŝ(Tj))∑

i ̸=j δiI(Ti < Tj)
(2)
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or, equivalently, as:

ĈH =
1

C

∑
t:δi=1

∑
j:ti<tj

I[ĥ(ti) > ĥ(tj)] =

∑
i ̸=j δiI(Ti < Tj)I(ĥ(Ti) > ĥ(Tj))∑

i ̸=j δiI(Ti < Tj)
, (3)

where C is the overall number of comparable pairs, I[·] is the indicator function, δi is
the indicator of event, Ti is the observed time for the ith subject and Ŝ(Ti) and ĥ(Ti)
are respectively the estimated survival and hazard function for the ith subject.

A modification to this index has been proposed by Uno et al. (Uno et al., 2011) for
considering also the pairs where the censored observed time is shorter than the event
time. To this extent the proposed index is based on censoring probability weights; in
particular, the used weight is C/G2, with C being the number of comparable pairs and
G the censoring distribution (Therneau and Atkinson, 2020). The index can then be
defined as:

ĈU =

∑n
i=1

∑n
j=1 δiĜ(Ti)

−2
I(Ti < Tj , Ti < κ)I(ĥ(Ti) > ĥ(Tj))∑n

i=1

∑n
j=1 δiĜ(Ti)

−2
I(Ti < Tj , Ti < κ)

(4)

where Ĝ(·) is the Kaplan-Meier estimator for the censoring distribution, G(t) = Pr(D >
t) (D censoring variable) and κ is a pre-specified time point such that Pr(D > κ) > 0.

A measure of concordance can then be evaluated at each time point using a time-
truncated version of the C-index (Gerds et al., 2013). The idea is to consider as events
only the subjects for which the event occurred before the time point of interest and
truncating the time-interval to that time point. So, all the subjects who experienced the
event after the specific time point are considered censored. Thus, the truncated C-index
measures the ability of the model to rank the event times that occurred before the time
point of interest (Gerds et al., 2013).

The C-index (both Harrell’s and Uno’s version) ranges between 0 and 1, with 0 and
1 indicating that all the pairs are discordant or concordant respectively. A value of 0.5
indicates that the model’s performance is equivalent to that of a flip coin.

Time-Dependent ROC Curves and Related Area Under the Curve. Time-
dependent AUC is another discrimination measure that is obtained evaluating the area
under the ROC curve at any time point. Therefore, AUC values can be provided as
a function of time. The main differences with classical ROC analysis are that (i) the
outcome of an observation can change over time, and (ii) the presence of censoring (Park
et al., 2021).
The AUC indicates the model’s performance for discriminating the binary outcome
(event/no event) at a given time point; values closer to 1 indicate better performance.

For evaluating the model’s performance during an interval of time the integrated
AUC can be obtained considering the integration of multiple time-dependent AUC val-
ues across the time period of interest.
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Somer’s delta. Somer’s delta (d) is an alternative measure of concordance that con-
siders not only concordant and discordant pairs, but also tied pairs for the predicted
outcome (i.e. pairs that have the same predicted survival or hazard) (Therneau and
Atkinson, 2020):

d =
NC −ND

NC +ND + TP
,

where NC and ND are respectively the number of concordant and discordant pairs and
TP is the number tied pairs for the predicted outcome. This index ranges between −1
and 1 and it is related to the Harrell’s C-index as follows:

CH =
d+ 1

2
. (5)

Brier Score and Integrated Brier Score. The BS is an index firstly introduced by
Brier et al. in 1950 (Brier et al., 1950) and then extended to censored data by Graf et al.
(Graf et al., 1999). This index quantifies the distance between observed (I(Ti > t∗)) and
predicted outcomes (Ŝ(t∗|Xi)) through a quadratic loss function. For compensating
loss of information due to censored data each individual contribution is then weighted
through the inverse of the respective censoring distribution.

For a fixed time point t∗, the individual contributions to BS can be distinguished into
three subgroups:

1. uncensored observations for which the event occurred before t∗, i.e. subjects for
which δi = 1 and τi = min(Ti, Ci) = Ti ≤ t∗;

2. all observations for which the event/censoring time occurred after t∗, i.e. subjects
for which τi = min(Ti, Ci) ≥ t∗ ∀ δi;

3. censored observations for which censoring occurred before t∗, i.e. subjects for which
δi = 0 and τi = min(Ti, Ci) = Ci ≤ t∗.

For subjects in the first group I(Ti > t∗) = 0, thus the contribution to the BS is
(0− Ŝ(t∗|Xi))

2; in the second group the contribution is instead (1− Ŝ(t∗|Xi))
2. For the

third group censoring occurred before t∗ so that their event status at t∗ is unknown and
its contribution to BS cannot be evaluated. Then, the BS can be evaluated as follows:

BS(t∗) =
1

n

n∑
i=1

I(τi ≤ t∗, δi = 1)(I(Ti > t∗)− Ŝ(t∗|Xi))
2

Ĝ(τi)
+

+
I(τi > t∗)(I(Ti > t∗)− Ŝ(t∗|Xi))

2

Ĝ(t∗)
=

=
1

n

n∑
i=1

I(τi ≤ t∗, δi = 1)(0− Ŝ(t∗|Xi))
2

Ĝ(τi)
+

I(τi > t∗)(1− Ŝ(t∗|Xi))
2)

Ĝ(t∗)
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Since the BS quantifies the distance between the observed and predicted outcome,
lower values indicate better performance. The BS can be evaluated at a single time
point t∗. If interest is on a given period of time it is possible to integrate the BS over
the time period of interest with respect to a weight function w(t), obtaining the IBS:

IBS(t∗) =

∫ t∗

0
BS(t)dw(t) .

Natural choices of w(t) are t/t∗ or (1− Ŝ(t))/(1− Ŝ(t∗)) (Graf et al., 1999).

Index of Prediction Accuracy. More recently a modification of BS has been proposed
to have a more interpretable index, the IPA (Kattan and Gerds, 2018). The index
is obtained rescaling the BS with the null model, i.e. the model without predictors
(estimated, in a no competing risk setting, with the K-M estimator), used as benchmark
value:

IPA = 1− model BS

null model BS
.

This formulation allows an easier interpretation of BS and also permits to distinguish
useful models from harmful and useless ones. An IPA value of 100% indicates a perfect
model, while a negative value indicates a useless or harmful model (Kattan and Gerds,
2018).

3 Performing Simulations in R with Survival Data

The main steps in a simulation study are three: (i) data simulation; (ii) model fitting
and (iii) performance assessment. There are many R packages that allow to carry out
these three steps; however, there are many unclear points on how to perform these
steps practically. In the next sections a presentation of many of the available packages,
together with possible related issues and solutions, is reported.

3.1 Data simulation

There are many packages that allow to simulate survival data in R. Among these there
are simsurv (Brilleman et al., 2021), survsim (Moriña et al., 2014), coxed (Kropko and
Jeffrey, 2019) and rocTree (Sun et al., 2020b) (see Table 1).

The simsurv package allows to simulate survival data from standard parametric dis-
tributions (Weibull, Exponential and Gompertz), two-component mixture distributions
or a user-defined hazard function. Under the proportional hazards assumption it allows
to consider a set of baseline (time-independent) covariates (randomly generated in a sep-
arate step). Furthermore, it can also take into account time-dependent covariates. With
this function, observations with an event time greater than the duration of follow-up are
defined as censored; so, only right-censored data are admitted.

Differently, the survsim package allows to simulate both event and censoring times
from a given set of standard distributions, i.e. Weibull, Log-Logistic and Log-Normal.
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Its particular feature is that, beyond simple survival data, it also allows to simulate
data with multiple and recurrent events. It also permits to generate baseline covariates
(possible distributions are Uniform, Normal and Bernoulli). However, it does not allow
to directly generate time-varying covariates.
The coxed package allows to simulate survival data from Cox PH regression model;

in addition it can also accept a user-supplied hazard function. It manages both time-
independent and time-dependent covariates (that can be generated separately). The
advantage is that the desired proportion of censoring can be fixed. Interestingly, it also
allows to consider right-censoring conditional on the covariates.

Finally, the rocTree package allows to simulate survival data from the hazard function
through different pre-specified scenarios, including the PH model and the Accelerated
Failure Time model (for more details see Sun et al., 2020b). Similarly to the other
packages, it also allows to consider time-dependent covariates. Finally, it permits to
specify a specific percentage of censoring (0%, 25% and 50% values are admitted).

Table 1: Packages and functions in R for simulating right-censored data

R package (function) Features

simsurv (simsurv)

Parametric distributions (Weibull, Exponential, Gompertz)

Two-component mixture dstributions

User-defined hazard/log-hazard function

Time-independent & time-dependent covariates

survsim Parametric distributions (Weibull, Log-normal, Log-logistic)

(simple.surv.sim) Simple Survival data

(mult.ev.sim) Multiple events

(rec.ev.sim) Recurrent events

coxed (sim.survdata)

Cox PH model

User-supplied hazard function

Time-independent & time-dependent covariates

Specific percentage of censoring

rocTree (simu)
Hazard function modeled by different scenarios

0%, 25% or 50% of censoring

After having presented some of the available R packages for simulating survival data,
the main steps to which pay attention when simulating survival data are shown below.

First step. Choice of the Data Generating Process. The first step when simulat-
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ing survival data is the choice of the correct Data Generating Process (DGP) depending
on the model of interest. Indeed, each model requires a particular specification of data.
If, for example, the focus is on the parametric PH model (for theoretical details see
Collett (2015)), a vector of coefficients associated to the explanatory variables has to
be defined together with the distribution of survival times. On the contrary, if inter-
est is in a recursive partitioning algorithm, the partitions induced by the theoretical
model should be defined. A way to do this is to define different parameters for the dis-
tribution of related survival times in each partition (an example is provided in Section 4).

Second step. Choice of the covariates. Once the DGP has been chosen, the
covariates to be entered in the model can be generated. In performing this step attention
has to be paid to the covariates features. For example, when the sample size is small there
is the risk that variables with too low variance (e.g. Bernoulli distribution with parameter
π equal to 0.1 or 0.9) lead to issues in model estimation and to singularities that would
not permit to perform the next steps (as model fitting or performance assessment). This
because it could happen, for example, to observe samples in which only 1 or 0 values are
observed in correspondence of the event.
Then, when simulating data from a survival regression model (e.g. the parametric

PH model), another related aspect to consider is the choice of covariates coefficients.
In a survival regression PH model the βj coefficient represents the estimated change in
the logarithm of the hazard ratio as the corresponding covariate Xj is increased by one
unit (if the variable is continuous), or the estimated logarithm of the relative hazard
for an individual in group j relative to an individual in the reference group (if Xj is
categorical). Usually, the exponential of β, representing an hazard ratio, is considered
due to the easier interpretation. It is better that the β coefficients do not assume too
high values because otherwise the effect size measured through hazard ratios would be
too high and the risk of overestimating the model performance increases in both the
training and test set.
This step is not necessary when dealing with recursive partitioning algorithms because

covariates coefficients have not to be specified in the survival data simulation phase.
Indeed covariates are only involved in the definition of partitions and in model fitting.
Once these two aspects have been considered, covariates can be generated.

Third step. Choice of the distribution of survival times. The key element for
right-censored data simulation, common for both the two DGPs, is the choice of the
distribution of survival times and correspondent parameters. In particular, it is impor-
tant to choose appropriate parameter values. For example, considering the Exponential
distribution, the λ parameter defines the theoretical hazard of the simulated data. When
choosing a value for this parameter, it is necessary to take into account that a too low
value would lead to very long survival times, while a too high one would lead to a great
reduction of event-free subjects during the follow-up. Consequently, depending on the
value of λ chosen for simulating survival data, a suitable value for the length of the
follow-up must be defined taking into account also the desired amount of censoring in
the simulated dataset. If λ is low a longer follow-up is required for observing more events
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than censored observations; similarly, if λ is high, a shorter observation time is needed
(see Table 2).

Table 2: Mean percentage of censoring for different values of follow-up length (maxtime)
and λ. Values obtained through bootstrap from 1000 simulated datasets of size
N=1000 for each combination of values

λ

maxtime 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5 77.871% 60.626% 47.177% 36.705% 28.578% 22.263% 17.348%

1.0 60.626% 36.705% 22.263% 13.540% 8.224% 4.985% 3.033%

1.5 47.177% 22.263% 10.544% 4.985% 2.364% 1.111% 0.526%

2.0 36.705% 13.540% 4.985% 1.844% 0.674% 0.249% 0.087%

2.5 28.578% 8.224% 2.364% 0.674% 0.190% 0.050% 0.015%

3.0 22.263% 4.985% 1.111% 0.249% 0.050% 0.011% 0.003%

3.5 17.348% 3.033% 0.526% 0.087% 0.015% 0.003% 0.001%

Moreover, an example is shown in Figure 1. The two curves represent the survival
function for two groups: the dashed line represents the survival probability of a sample
with survival time T ∼ Exp(0.4) and with a follow-up duration of 2.5 years; the solid
line, instead, represents survival for a group of observations with T ∼ Exp(3) and with
a follow-up length of 3.5 years. It can be seen that in the first case there are many
censored subjects (survival probability is equal to about 40% at the end of follow-up);
on the contrary, in the second group all observations experienced the event before the
end of follow-up.

When dealing with a parametric PH model only one distribution is required to be
assumed for the entire simulated sample. On the contrary, when dealing with tree-
based algorithms, as many distributions as the number of theoretical partitions must be
set. Of course, parameters close to each other will lead to a lower difference of effect
sizes in the data, with less separate and identifiable partitions, due to approximately
equal survival curves. So, it is important to test and distinguish situations in which
the effect sizes are close each other and those in which the effect sizes are more distant
to better evaluate model performance. An example is provided in Figure 2. The two
panels represent two different settings. The left graph shows three well distinguished
survival curves, obtained assuming exponentially distributed survival times with λ equal
to 2, 0.9 and 1 respectively. Differently, the right graph shows three survival curves
obtained assuming exponentially distributed survival times with λ equal to 0.8, 0.7
and 0.5 respectively, which are approximately equal each other. The tables reported
below each figure present the results obtained from a simulation study. In particular,
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Figure 1: Example of K-M survival curves for two different settings. The dashed vertical
line indicates the fixed duration of follow-up (maxtime) for the dashed survival
curve (T ∼ Exp(λ = 0.4),maxtime = 2.5). Similarly the solid vertical line
indicates the fixed maxtime for the solid survival curve (T ∼ Exp(λ = 3),
maxtime=3.5)

the tables report, for different sample sizes, the percentage of trees (grown using the
three tree algorithms) that identified the right theoretical partition. It can be seen that
when the effect sizes are distant and survival curves are well distinguished survival trees
perform well. Differently, when the effect sizes are close each other, the fitted survival
trees do not identify very often the right partition.

After having taken into account all these aspects, data can be simulated and then the
model can be fitted.

3.2 Model fitting

If the model of interest is a parametric PH model, the flexsurv package can be used. In
particular, the flexsurvreg function allows parametric modeling or regression for time-
to-event data by using both usual distributions (e.g. Exponential, Gamma, Weibull,
Log-Normal) and user-defined distributions (Jackson, 2016).

For what concerns recursive partitioning there are many R packages that allow to build
survival trees. Among these, many allow to grow trees as extensions of CART (see Table
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Figure 2: Survival curves in two different settings and results of a simulation study after
having grown Relative Risk Trees (through the rpart function in R), Condi-
tional Inference Trees with the ctree algorithm and Conditional Inference Trees
with the SurvCART algorithm. a) Example of distant effect sizes with three
well distinguished survival curves and related table reporting the percentage
of fitted trees identifying the right partitions (values from a simulation study).
b) Example of close effect sizes with approximately equal survival curves and
related table reporting the percentage of fitted trees identifying the right par-
titions (values from a simulation study)

3). Two of the most used functions are rpart in the homonymous package (Therneau
et al., 2015) and ctree (in the partykit package) (Hothorn et al., 2015b; Hothorn and
Zeileis, 2015), which allow respectively to grow RRTs (LeBlanc and Crowley, 1992) and
CITs (Hothorn et al., 2006). Finally, another noteworthy function is SurvCART in the
LongCART package (Kundu, 2021), which has been introduced very recently to grow SCTs
(Kundu and Ghosh, 2021).

Moreover, an extension of RRTs and CITs for left-truncated and right censored data
has been provided in the LTRCtrees package (LTRCART and LTRCIT functions) (Fu et al.,
2021). Other modified versions of CART for survival data are provided in the partDSA

and rocTree packages (Lostritto et al., 2012; Sun et al., 2020b). The first one allows
to implement the partitioning Deletion-Substitution-Addition algorithm, an algorithm
that grows trees on the basis of both “and” and “or” conjunction of predictors (Lostritto
et al., 2012); the second one, instead, grows survival trees maximizing a ROC-related
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measure (Sun et al., 2020a).
Finally, another interesting recursive partitioning algorithm, different from CART, is the
model-based algorithm, implementable with mob function (Zeileis and Hothorn, 2015) in
the partykit package, which fits a segmented parametric model by growing a tree in
which every leaf is associated with a specific model.
In this work only packages providing an extension to CART for right-censored data in

a setting of independent censoring are presented. In particular, the focus is on rpart,
ctree and SurvCART (due to the examined setting, for the last function only independent
censoring is considered). This choice has been taken for the following reasons:

1. The LTRCtrees package is based on the rpart and ctree functions; so, for right-
censored data LTRCART and LTRCIT provide identical results to those of rpart and
ctree. The only difference in the functions is that LTRCtrees requires to specify
a starting time (that, for right-censored data, can be set equal to 0);

2. The rocTree package provides a lot of splits and its computation time is slow. The
algorithm can be of interest but it seems that it still needs some improvements (e.g.
computation speed, clarity of the documentation);

3. The partDSA package provides little documentation for implementation of trees
for censored data.

Table 3: Packages and functions in R for fitting survival trees for right-censored data
(extensions of CART)

R package (function) Algorithm

rpart (rpart) Relative risk trees

partykit (ctree) Conditional inference trees

partDSA (partDSA) Partitioning Deletion-Substitution-Addition algorithm

LTRCtrees (LTRCART) RRTsa for left-truncated and right-censored data

LTRCtrees (LTRCIT) CITsb for left-truncated and right-censored data

rocTree (rocTree) ROC-guided survival trees

LongCART (SurvCART)
Conditional inference trees for accounting censoring
heterogeneity

a Relative Risk Trees; b Conditional Inference Trees with the ctree algorithm

Relative risk trees in R. Fitting a RRT requires, as already hinted, the use of the
rpart function in the homonymous package. The resulting output is a survival tree
whose terminal nodes contain (i) a measure of risk (LeBlanc and Crowley, 1992); (ii) the
ratio between the number of events and observations in the node; and (iii) the number
and percentage of observations included in the node (see Figure 3a). The function is
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easy to implement; however, some doubts emerge concerning the interpretation of the
node outcome. It should represent a measure of relative risk of the node with respect
to the overall sample. However, in the available R documentation there are not clear
examples about survival trees. It is straightforward to deduce that RRTs are grown as
Poisson trees, but it is not exactly clear what the “estimated response rate” (outcome
of a Poisson tree) means in survival analysis.
The most interesting elements (mainly to extract useful information for evaluating

the performance with simulated data) of an rpart object are the following: (i) frame, a
dataframe including the splitting variables used for growing the tree and the predicted
outcome in each corresponding node and (ii) splits, a matrix that reports, for con-
tinuous variables, the cut-off used for splitting a node. For categorical variables this
last matrix should be examined together with the csplit object (for more details see
Therneau et al. (2015)). In particular, these objects are the most useful to examine if
the fitted tree has the right structure we are simulating.

Conditional inference trees in R with ctree. Fitting a CIT can be done by using
the ctree function in the partykit package. The resulting tree is a survival tree whose
terminal nodes show the corresponding K-M survival curves (see Figure 3b). It is inter-
esting to know that it is possible to obtain a plot similar to that of ctree also for RRTs,
coercing the rpart object into a partykit one with the as.party function.
Moreover, as default node outcome it provides the median survival time, i.e. the time
point at which 50% of the population has experienced the event. It is important to note
that when the length of follow-up is shorter than the theoretical median survival time
the corresponding predicted value will be equal to +∞. For each observation it is also
possible to obtain the estimated K-M survival function through the use of the predict

function specifying type="prob".
The algorithm provides very intuitive results. The only drawback is that the inner

structure of a ctree object is quite complex and it seems that there is little documenta-
tion about it, making it difficult to extrapolate much information about trees structure.
A possible way to go inside the object is reported hereafter. An alternative to under-
stand how the tree has been grown and to extract the splitting variables is to look at
the results of the structural change test (default test used by the function for growing
the tree) through the sctest function in the strucchange package (Zeileis et al., 2015).
This function shows the results (test statistic and p-value) of the parameter stability
tests for any given node (Hothorn and Zeileis, 2015); therefore the most significant vari-
ables are easily identifiable. Moreover, the tree’s path can be extracted through the
partykit:::list.rules.party function. A tricky solution is to treat the resulting
outcome (a character) as a text to extract the corresponding cut-off values.

Conditional inference trees in R with SurvCART. As already hinted, SCTs can be
grown through the SurvCART function in the LongCART package. The resulting outcome
is a list of many arguments. Among these, the Treeout matrix contains all the necessary
information for evaluating, in a simulation study, if the fitted tree has the same structure
of the theoretical one. Indeed, it shows summary information for each node (both
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terminal and non-terminal) of the fitted tree. In particular, it includes the splitting
variable (var), the cut-off value used for binary partitioning (index) and the indicator
(True or False) of terminal node (Terminal).

Then, the SurvCART object also includes some rpart compatible objects, as frame,
splits and cptable. Finally, it includes the matrix subj.class, which also reports the
node assignment for each observation in the training set.

A simple plot can be obtained from this object, as shown in Figure 3c. The node
outcome is the median survival time. Similarly to CITs, if the observed median survival
time is greater than the length of follow-up, the algorithm returns NA. Moreover, K-
M curves for each terminal node can be easily obtained through the KMPlot.SurvCART

function.

The SurvCART function is easy to implement and, in addition, it is easily manageable
and interpretable.

Figure 3: Example of plots of survival trees. a) Plot of a Relative Risk Tree, obtained
through the rpart function. b) Plot of a Conditional Inference Tree obtained
with the ctree algorithm. c) Plot of a Conditional Inference Tree obtained
with the SurvCART algorithm

3.3 Performance evaluation

The last step involves performance evaluation of the resulting trees. Different packages
are available in R for evaluating the performance of survival trees (see Table 4). Among
these there are pec (Gerds, 2021), SurvMetrics (Zhou et al., 2022), Hmisc (Harrell Jr
and Dupont, 2006), survAUC (Potapov et al., 2012) and riskRegression (Gerds et al.,
2015).

More in detail, the C-index can be evaluated through: (i) Hmisc::rcorr.cens, (ii)
pec::cindex, (iii) SurvMetrics::Cindex and (iv) survAUC::UnoC. The time-dependent
AUCs can be instead evaluated through the AUC.hc and Score functions in the survAUC
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and riskRegression packages respectively. Furthermore, the BS can be evaluated
through the Brier function in the SurvMetrics package and pec function in the homony-
mous package. Moreover, the IBS can be evaluated through the SurvMetrics::IBS and
pec::pec functions. Finally, the riskRegression::IPA function allows to evaluate the
IPA; unfortunately it does not support survival trees. An important drawback when
evaluating these performance measures in R concerns little documentation about almost
all the available functions. Concerning this point, doubts emerged about three main
aspects:

1. The type of weights used for evaluating the indices (e.g. Harrell’s or Uno’s C-
index).

2. The type of predicted values required. For many functions it is not specified if
risk or survival predicted values are required, implying possible wrong evaluation
assessments. A clear example is provided by the C-index, that is a measure based
on ranking; providing either survival or risk estimates (two quantities that have
an inverse trend) would substantially change the results.

3. The censoring model used for evaluating the BS and IBS.

For what concerns the first point, after an in-depth analysis it has been verified
that Hmisc::rcorr.cens and SurvMetrics::Cindex evaluate Harrell’s C-index (Harrell
et al., 1982); while survAUC::UnoC provides Uno’s C-index (Uno et al., 2011). Moreover,
pec::cindex provides a time-truncated C-index, that can be seen as a general case of
Uno’s C-index (Gerds et al., 2013). Somer’s d can be easily obtained from Harrell’s
C-index, as shown in Equation (5); it is also provided by Hmisc::rcorr.cens (Dxy

quantity).

For the second point, it has been empirically verified, using simulated data, that Hmisc
and SurvMetrics require survival probabilities, while survAUC requires a risk estimate.
If it is not possible to obtain this measure from trees, a tricky solution is to provide
as argument a decreasing function (e.g. just the opposite) of survival probabilities,
maintaining therefore the right ranking (of course also the vice-versa holds).

For the last point, after the analysis of the SurvMetrics functions’ code (no informa-
tion was provided in the documentation) it has been verified that BS (and, consequently,
IBS) is evaluated using K-M estimator for obtaining the inverse probability censoring
weights (IPCWs). Differently, as it can be seen from pec documentation, this last one
allows the use of various censoring models (Gerds, 2021).

An important difference between pec and the other packages is that it requires to
transform the fitted model in a compatible one. Two functions exist for RRTs and
CITs, i.e. pecRpart and pecCtree. In particular, the last function grows CITs through
the oldest version of the package, i.e. party (Hothorn et al., 2015a). Unfortunately
pec does not work with SCTs (introduced more recently than pec). Differently from
pec all the other packages only require a vector of predicted values. Unfortunately, also
the main classical functions for obtaining predictions, as predict, are not compatible
with SurvCART. Future research will involve the construction of a new function that
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allows to evaluate SCTs’ performance. However, it is still possible to evaluate an overall
concordance measure for SCTs extracting the estimated median survival time for each
observation from the subj.class matrix of the SurvCART object.

Another issue concerning performance assessment is related to the estimation of sur-
vival probabilities at given time points. A possible solution is to use the predictSurvProb
function in pec; however, in some specific cases (e.g. when all subjects in a node ex-
perienced the event) this function returns erroneously NA (see the Example in Sup-
plementary File 1, available at https://bodai.unibs.it/ml4sd/). This implies the
impossibility of evaluating many metrics; future research work will address this aspect.
Also due to this reason, pec::cindex and survAUC::UnoC do not provide the same

results for survival trees, even if they should (during a simulation study it has been
verified, for example, that the two functions provide the same results if a Cox PH
regression model is assessed). In particular, it seems that pec presents some problems
after given time points.
Finally, for all the functions that allow to evaluate BS and IBS, an issue related to esti-

mated survival probability was encountered. Indeed, as already hinted, predictSurvProb
(the function used internally by pec and used for providing survival probabilities to
SurvMetrics) returns, for example, NA after the time point in which the last events
occurred in a node with only uncensored subjects. The presence of these values implies,
then, the impossibility of estimating these indices after that time point. The solution to
this problem is deferred to future research work.

Table 4: Packages and functions in R for performance evaluation of survival trees

R package (function) Performance measure

Hmisc (rcorr.cens) Harrell’s Concordance index & Somer’s d

SurvMetrics (Cindex) Harrell’s Concordance index

pec (cindex) Time-Truncated Concordance index

survAUC (UnoC) Uno’s Concordance index

riskRegression (Score) Time-dependent AUC

survAUC (AUC.hc) Time-dependent AUC

SurvMetrics (Brier)
Brier Score at a single time-point with Kaplan-Meier
IPCW

pec (pec) Brier Score

SurvMetrics (IBS) Integrated Brier Score with Kaplan-Meier IPCW

pec (pec) Integrated Brier Score

In addition to all these measures, in a simulation study it is interesting to examine
how many fitted trees report the right data structure as well. To this extent it is also



Electronic Journal of Applied Statistical Analysis 497

interesting to consider all the possible equivalent structures of a tree. Indeed, a same
partition can be induced by trees with a different structure. An example of this is
reported in Figure 4. The figure shows that two different trees, with different number of
terminal nodes, lead to the same partition. Indeed, in the less parsimonious tree (right
side figure) the observations in the two nodes corresponding to the same theoretical
partition, i.e. X2 = 1 ∩X1 ≥ 0 and X2 = 1 ∩X1 < 0, come from the same distribution
(they have the same λ parameter).

Figure 4: Example of two equivalent trees induced by the same theoretical partition.
X1 is a continuous variable split into two partitions by the cut-off 0; X2 is a
dichotomous variable. Each partition is characterized by a given parameter λ.
The two resulting trees have a different structure (different root node, different
order of splitting variables, different number of terminal leaves) but they are
equivalent

4 Example

Below a practical example of how simulating survival data, fitting RRTs, CITs and SCTs
and evaluating their performance with R is provided (additional code and interpretation
of results is available at https://bodai.unibs.it/ml4sd/ - Supplementary File 1).

Firstly, a set of covariates is generated. In particular, 10 covariates were randomly
generated: the first half followed a Standard Normal distribution (X1, X2, X3, X4 and
X5) and the second half a Bernoulli distribution with different probability parameters p
ranging respectively from 0.3 to 0.7 with steps of 0.1 (X6, X7, X8, X9 and X10).

> n_rv <- 10 # Number of covariates

> prob_rvar <- seq(0.3,0.7,0.1) # Parameters for the Bernoulli r.v.
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> N <- 1000 # Sample size

> library(mvtnorm)

> set.seed(70522)

> Norm_RV <- rmvnorm(n=N, mean=rep(0,n_rv/2), sigma=diag(n_rv/2))

> library(MultiRNG)

> set.seed(70522)

> Ber_RV <- draw.correlated.binary(no.row=N, d=n_rv/2, prop.vec=prob_rvar,

corr.mat=diag(n_rv/2))

> cov <- as.data.frame(cbind(Norm_RV,Ber_RV))

> colnames(cov) <- paste0("X", 1:n_rv)

Since the aim is to fit recursive partitioning models, different distributions for survival
times in the terminal nodes must be assumed. In this example a Data Generating process
with a tree structure was used; the tree was characterized by three terminal nodes with
the following partitions and distribution of the survival times:

� X6 = 1: Ti ∼ Exp(2);

� X6 = 0 and X1 ≥ 0: Ti ∼ Exp(0.9);

� X6 = 0 and X1 < 0: Ti ∼ Exp(0.1).

> node1 <- cov[,"X6"]==1

> node2 <- cov[,"X6"]==0 & cov[,"X1"]>=0

> node3 <- cov[,"X6"]==0 & cov[,"X1"]<0

Finally, the follow-up duration was fixed equal to 3 years.

> maxtime <- 3

> tvec <- seq(1,maxtime,0.1)

During a simulation study many datasets of different sample sizes should be examined.
After the covariates have been randomly generated, survival data can be simulated. For
simulating survival data the simsurv package was used. This function requires the fol-
lowing arguments: (i) the distribution assumed for survival times; (ii) the corresponding
parameters; (iii) a dataframe x with the set of covariates (if not - as in the recursive
partitioning setting - only an id column is required); (iv) maxt, that corresponds to
the length of follow-up (up to now called maxtime); and (v) the seed to use in order to
get reproducible results. As outcome a dataset with three columns (id, eventtime and
status) is returned.

> simdata <- as.data.frame(matrix(data=NA, nrow=N, ncol=2))

> colnames(simdata) <- c("eventtime","status")
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> library(simsurv)

# Node1

> simdata[node1,1:2] <- simsurv(dist="exponential", lambda=2,

x=as.data.frame(1:sum(node1)), maxt=maxtime, seed=7052022)[,2:3]

# Node2

> simdata[node2,1:2] <- simsurv(dist="exponential", lambda=0.9,

x=as.data.frame(1:sum(node2)), maxt=maxtime, seed=7052022)[,2:3]

# Node3

> simdata[node3,1:2] <- simsurv(dist="exponential", lambda=0.1,

x=as.data.frame(1:sum(node3)), maxt=maxtime, seed=7052022)[,2:3]

> data <- cbind(simdata,cov) # Dataset with survival data and covariates

> data[,8:12] <- lapply(data[,8:12], as.factor)

Once the different datasets have been simulated, they can be split in training and test
set and survival trees can be fitted using the training set:

> set.seed(70522)

# To take a similar percentage of events in the training and test sets:

> library(caret)

> trainset <- createDataPartition(y=data$status, p=0.5, list=F)

> data_train <- data[trainset,]

> data_test <- data[-trainset,]

Below a code example for fitting RRTs, CITs and SCTs.

# Relative risk trees

The rpart function uses Poisson trees for building a RRT. The required arguments
are: (i) a survival formula, i.e. a formula with a Surv object (in the survival package
(Therneau and Lumley, 2015)) as dependent variable; (ii) a training set; and (iii) usual
control options (e.g. minsplit, minimum number of observations in a node; xval,
number of cross-validations). The resulting tree can then be pruned with the usual cost-
complexity algorithm used by CART (prune function) using a suitable value for the
complexity parameter (cp), e.g. the one that leads to the lowest cross-validation error.

> library(survival)

> library(rpart)

> RRT <- rpart(formula=Surv(eventtime, status)~., data=data_train,

control=rpart.control(usesurrogate=2, minsplit=20, xval=10))

# Pruning RRT

> minerr <- which.min(RRT$cptable[,"xerror"])
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> bestcp <- RRT$cptable[minerr,"CP"]

> pruned_RRT <- prune(tree=RRT, cp=bestcp)

# Plotting RRT

> library(rpart.plot)

> rpart.plot(x=pruned_RRT, type=5, tweak=1.0, gap=0.02, branch.lty=2)

# An alternative way of plotting RRT

> library(partykit)

> plot(as.party(pruned_RRT))

# Conditional Inference Trees with ctree

The ctree function in partykit allows to grow a CIT. It requires as arguments: (i)
a survival formula, (ii) a training set and (iii) some control options as the test statistics
for variable and split-point selection (teststat and splitstat respectively), the signif-
icance level for variable selection (alpha) and the minimum sum of weights in a node in
order to be considered for splitting (minsplit). Many other options can be set as shown
in the help of the function.

> library(partykit)

> CIT <- ctree(formula=Surv(eventtime, status)~., data=data_train,

control=ctree_control(minsplit=20))

# Plotting CIT

> plot(CIT)

# Conditional Inference Trees with SurvCART

SCTs can be grown using the SurvCART function in LongCART package. It requires that
training data includes an "id" column and that categorical variables are numerically
coded. Once the training dataset has been formatted following these requirements, trees
can be grown. The input arguments are: (i) the data on which training the algorithm
(data); (ii) the name of the “id” variable (patid); (iii) the name of the time variable
(timevar); (iv) the name of the status variable (censorvar); (v) a vector including the
names of the partitioning variables to use (gvars) and (vi) a vector indicating the type of
each partitioning variable (tgvars). This argument assumes value 1 if the corresponding
variable in gvars is continuous and 0 if the variable is categorical. Moreover, it is neces-
sary to specify (vii) the assumed distribution for survival times (time.dist). By default
censoring is considered homogeneous (as in this hypothesized setting) and the related
argument, censdist, is set equal to NA. However, it is also possible to set a particular
distribution for censoring when the interest is also in censoring heterogeneity. Possible
assumptions for both the time-to-event and censoring distributions are "exponential",
"weibull", "lognormal" and "normal". Finally, control options can be set, as the sig-
nificance level of the parameter instability test (alpha), and the minimum number of
observations in a node (minsplit).

### Data pre-processing

> data_train_SCT <- data_train
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> id <- 1:nrow(data_train_SCT)

> data_train_SCT <- cbind(data_train_SCT,id)

> data_train_SCT[,paste0("X",6:10)] <-

lapply(data_train_SCT[,paste0("X",6:10)], as.numeric)

> data_train_SCT[,paste0("X",6:10)] <-

data_train_SCT[, paste0("X",6:10)]-1

> library(LongCART)

> SCT <- SurvCART(data=data_train_SCT, patid="id", timevar="eventtime",

censorvar="status", gvars=paste0("X",1:10),

tgvars=c(1,1,1,1,1,0,0,0,0,0), time.dist="exponential",

cens.dist="NA", minsplit=20)

# Plotting SCT

> par(xpd=TRUE)

> plot(SCT, compress=TRUE)

> text(SCT, use.n=TRUE)

# Plotting Kaplan-Meier curves estimated in the terminal nodes

> KMPlot.SurvCART(x=SCT, type=1)

Performance evaluation

Once all the trees are fitted their performance can be evaluated. Beyond the above-
mentioned performance measures (C-index, time-dependent AUC, BS and IBS), the
size and the structure of fitted trees can be compared to those of the theoretical one
(considering also equivalent structures). For doing that it is necessary to extract the
needed information from the resulting objects. This means, for example, working with
the frame matrix of rpart, or with the Treeout matrix of SurvCART. An example of R
code has been provided at https://bodai.unibs.it/ml4sd/ - Supplementary File 2.

Then, for evaluating classical performance measures in the test set, the following
functions can be used. Only examples for RRTs and CITs are shown below (due to the
impossibility of using predict, predictSurvProb and pec for SCTs).

# C-index

Harrell’s C-index can be evaluated through rcorr.cens and Cindex in Hmisc and
SurvMetrics respectively. The first one requires as first object a vector of survival
predictions (one for each observation) and a Surv object. The function returns a vector
containing the C-index value and Somer’s d Dxy. It also provides other information like
the number of comparable ("relevant"), concordant ("concordant") and uncertain
("uncertain") pairs.

If it is not possible to obtain survival estimates (but only risk ones) a possible solution,
as already hinted, is to replace risk predictions with a decreasing function of these values.
This is due to the fact that concordance is a rank measure and so it is based only on the
ordering of predicted values. To obtain an overall measure of concordance for RRTs, the
predict function can be used. It returns for each observation the corresponding node
outcome (measure of risk).
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### Risk predictions for RRT

> pred_risk_RRT <- predict(object=pruned_RRT, newdata=data_test)

### Survival outcome in the test set

> ySurv_test <- Surv(data_test$eventtime, data_test$status)

> library(Hmisc)

> C_ind_RRT <- rcorr.cens(x= -pred_risk_RRT, S=ySurv_test)

For an overall C-index for ctree it is possible to estimate the median survival time
for each observation and to provide it to the function. If Inf values are returned, a
possible solution is to replace them with a value greater than all the other observed
median survival times (valid only for evaluating ranking measures).

### Survival predictions for CIT

> pred_surv_CIT <- predict(object=CIT, newdata=data_test, type="response")

# Replacement of Inf values with a value greater than all the others:

> pred_surv_CIT[which(pred_surv_CIT==Inf)] <-

max(pred_surv_CIT[-which(pred_surv_CIT==Inf)])+3

> C_ind_CIT <- rcorr.cens(x=pred_surv_CIT, S=ySurv_test)

The SurvMetrics::Cindex requires the same arguments of rcorr.cens, i.e. a Surv

object and a vector of predicted survival probabilities or survival times:

> library(SurvMetrics)

> C_ind_RRT <- Cindex(object=ySurv_test, predicted= -pred_risk_RRT)

> C_ind_CIT <- Cindex(object=ySurv_test, predicted=pred_surv_CIT)

If, instead, interest is on the C-index at given time points, a truncated C-index can
be evaluated. The first thing to do is to evaluate a matrix of predicted survival prob-
abilities at the different time points. These probabilities can be obtained with the
pec:::predictSurvProb function. This last function returns a matrix in which for each
observation (row) the survival probability is evaluated at given time points (columns). It
is compatible with a pec object; then, the rpart and ctree objects have to be converted
with pecRpart and pecCtree. Below an example for both rpart and ctree is provided;
in this last case pec converts it in a party object, as already hinted.

> library(pec)

> RRT_pec <- pecRpart(formula=Surv(eventtime, status)~., data=data_train,

cp=bestcp)

### Survival predictions for RRT

> pred_RRT_pec <- predictSurvProb(object=RRT_pec, newdata=data_test,

times=tvec)

> colnames(pred_RRT_pec) <- paste0("time=", tvec)

> CIT_pec <- pecCtree(formula=Surv(eventtime, status)~., data=data_train)

### Survival predictions for CIT
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> pred_CIT_pec <- predictSurvProb(object=CIT_pec, newdata=data_test,

times=tvec)

> colnames(pred_CIT_pec) <- paste0("time=", tvec)

Once the survival probabilities have been estimated, a single column of the survival
probabilities matrix has to be provided to the R functions. The idea is to evaluate an
index similar to the one used by pec (shown hereafter). In particular, for each time
point the status indicator δi is set equal to 1 only for those subjects who experienced
the event before the time point of interest. Then, the time interval is truncated; thus all
times (eventtime) greater than the given time point (tvec[i]) are considered equal to
this last one, used as upper bound of the time interval:

> C_ind_RRT_vec <- C_ind_RRT_vec1 <- rep(NA, length(tvec))

> C_ind_CIT_vec <- C_ind_CIT_vec1 <- rep(NA, length(tvec))

> for(i in 1:length(tvec))

> {

> eventtime <- data_test$eventtime; status <- data_test$status

> status[eventtime>tvec[i]] <- 0

> eventtime[eventtime>tvec[i]] <- tvec[i]

> ySurv <- Surv(eventtime, status)

> C_ind_RRT_vec[i] <- rcorr.cens(x=pred_RRT_pec[,i], S=ySurv)

> C_ind_RRT_vec1[i] <- Cindex(object=ySurv, predicted=pred_RRT_pec[,i])

> C_ind_CIT_vec[i] <- rcorr.cens(x=pred_CIT_pec[,i], S=ySurv)

> C_ind_CIT_vec1[i] <- Cindex(object=ySurv, predicted=pred_CIT_pec[,i])

> }

Uno’s C-index can be evaluated through the UnoC function in the survAUC package.
This function requires three arguments: (i) a Surv object containing the outcome of the
training set; (ii) a Surv object containing the outcome of the test set and (iii) a vector
of predicted risk values for the test set.

### Survival outcome in the training set

> ySurv_train <- Surv(data_train$eventtime, data_train$status)

> library(survAUC)

> UnoC_RRT <- UnoC(Surv.rsp=ySurv_train, Surv.rsp.new=ySurv_test,

lpnew=pred_risk_RRT)

> UnoC_CIT <- UnoC(Surv.rsp=ySurv_train, Surv.rsp.new=ySurv_test,

lpnew= -pred_surv_CIT)

Finally, an alternative function for evaluating the concordance index is cindex in the
pec package, that as already hinted evaluates the time-truncated C-index (Gerds et al.,
2013). The function requires as arguments: (i) a list of models for which evaluating
the performance index; (ii) the formula used for growing the tree; (iii) the dataset on
which evaluating the performance and (iv) a vector of times on which evaluating the
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index. Different methods for estimating IPCWs are available; among these there are
the Cox regression PH model ("cox") and the K-M estimator ("marginal") (default
method). Below an example of code for evaluating performance of both RRTs and CITs
at different time points. The procedure used by cindex in pec is similar to that shown
above with the rcorr.cens and Cindex functions.

> library(pec)

> TruncC_RRT_CIT <- cindex(object=list("RRT"=RRT_pec, "CIT"=CIT_pec),

formula=Surv(eventtime, status)~., data=data_test,

eval.times=tvec)

Computational issues could occur when there are some NAs in the matrix of predicted
survival probabilities (see the example in the Supplementary File 1).

# Time-dependent AUC

Time-dependent AUCs can be evaluated through Score and AUC.hc functions in
riskRegression and survAUC packages respectively. The first function requires (i)
a list of models to evaluate (object); (ii) the metrics; (iii) the used formula; (iv) the
data; (v) the censoring model to use; (vi) a vector of times on which evaluating the
measure of interest. Unfortunately, Score provides an error related to the inner func-
tion predictRisk when evaluating a ctree object. Firstly, it is important to point out
that the function requires a party object and not a partykit one. Secondly, instead
of extracting a measure of risk, it seems that it extracts for each observation the size of
the corresponding node. The problem can be solved modifying this function, extracting
a measure of risk from the tree (e.g. K-M hazard estimate - see Supplementary File 1).
Below an example for evaluating time-dependent AUCs for an rpart object with Score

is provided.

> library(riskRegression)

> AUC_Score_RRT <- Score(object=list("RRT"=pruned_RRT), metrics="AUC",

formula=Surv(eventtime, status)~X1+X2+X3+X4+X5+X6+X7+X8+

X9+X10, data=data_test, cens.model="km", times=tvec)

Differently, survAUC::AUC.hc requires a Surv object containing the outcome of the
training data; a Surv object containing the outcome of the test set and a vector of risk
predictions. Attention has to be paid to this function. During some applications on real
data it provided values greater than one!

> library(survAUC)

> AUC_hc_RRT <- AUC.hc(Surv.rsp=ySurv_train, Surv.rsp.new=ySurv_test,

lpnew=pred_risk_RRT, times=tvec)

> AUC_hc_CIT <- AUC.hc(Surv.rsp=ySurv_train, Surv.rsp.new=ySurv_test,

lpnew= -pred_surv_CIT, times=tvec)
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# Brier Score and Integrated Brier Score
Two of the available packages for evaluating BS and IBS are SurvMetrics and pec.

The two functions in SurvMetrics require (i) a Surv object evaluated in the test set;
(ii) a vector (for BS) or a matrix (for IBS) of survival probabilities of each observation in
the time point(s) of interest and (iii) the time point (or vector of time points) at which
evaluating the two indices. The package uses K-M IPCWs. An example is provided
below for evaluating the BS at time 1 and the IBS for both RRT and CIT.

> library(SurvMetrics)

> brier_RRT_1 <- Brier(object=ySurv_test, pre_sp=pred_RRT_pec[,1],

t_star=1)

> ibs_RRT <- IBS(object=ySurv_test, sp_matrix=pred_RRT_pec,

IBSrange=tvec)

> brier_CIT_1 <- Brier(object=ySurv_test, pre_sp=pred_CIT_pec[,1],

t_star=1)

> ibs_CIT <- IBS(object=ySurv_test, sp_matrix=pred_CIT_pec,

IBSrange=tvec)

The two indices can also be evaluated through the pec function in the homonymous
package. Differently from SurvMetrics it allows to specify a different censoring model
than K-M ("marginal"). Other possibilities are "cox", "nonpar" and "aalen" (Gerds,
2021). BS and IBS can be evaluated as follows (for the example I evaluated BS at time
1):

> library(pec)

> bs_1 <- pec(object=list("RRT"=RRT_pec, "CIT"=CIT_pec), data=data_test,

formula=Surv(eventtime, status)~., times=1, exact=F,

cens.model="marginal")

> ibs <- pec(object=list("RRT"=RRT_pec, "CIT"=CIT_pec), data=data_test,

formula=Surv(eventtime, status)~., times=tvec,

cens.model="marginal")

Issues emerged, as already said in Subsection 3.3, with these functions when NA occurred
in the estimated survival probabilities (see the example in the Supplementary File 1).

5 Discussion

In conclusion, survival trees are a useful and interesting method for defining subgroups
of subjects according to their survival experience. However, even if there are a lot of
proposed methods, many of these present little documentation mainly concerning the use
of R packages and functions for fitting survival trees and evaluating their performance.
Moreover, there does not exist an harmonization of all these proposals, making the
approach to this kind of new methods for survival analysis difficult. Furthermore, it
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also emerged that evaluating performance for this kind of methods is quite complex due
to little documentation and computational issues. This work aims to shed light on the
topic and to provide a practical guide with some hints for simulating right-censored data,
fitting recursive partitioning algorithms and evaluating their performance in R. Future
research work is still needed to solve some of the identified drawbacks and it will involve,
among the others, the possibility of assessing SCTs performance and the evaluation of
performance indexes as the Brier score and its integrated version when NA values occur
in the estimated survival probabilities.

Supplementary Materials

Supplementary Materials are available online at https://bodai.unibs.it/ml4sd/.

Acknowledgements

I would like to thank Prof. Paola Zuccolotto and Dr. Marco Sandri for their precious
help in developing this research work. Thanks also to the two anonymous reviewers for
their useful comments that have substantially improved the quality of the manuscript.

References

Aalen, O. (1978). Nonparametric inference for a family of counting processes. The
Annals of Statistics, pages 701–726.

Bou-Hamad, I., Larocque, D., and Ben-Ameur, H. (2011). A review of survival trees.
Statistics surveys, 5:44–71.

Bou-hamad, I., Larocque, D., Ben-Ameur, H., Mâsse, L. C., Vitaro, F., and Tremblay,
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