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1 Introduction

In fuzzy set theory, the determination of uncertainty distributions of fuzzy values is an
important problem and needs to be estimated with available information about fuzzy
values. Maximum Entropy Method (MaxEnt) can successfully solve this problem by
maximizing the Shannon entropy measure subject to moment constraints. Following
that, the idea was introduced and generalized to fuzzy entropy measures which maxi-
mize the value of fuzzy entropy subject to some moment constraints.
The methods of Generalized Maximum Fuzzy Entropy studies the membership function
based on moments constraints. This methodology introduces special functions on the
given compact set of moment vector functions in the form of two distributions, referred
to in the literature as MinMaxFE and MaxMaxFE, which gives the least and the great-
est values of the entropy based on membership function values.
Maximum entropy principle (classical) was proposed by Jaynes (1957),Jaynes (2003) to
determine the distribution for information and determine the probability constraint, he
called this distribution “maximum entropy probability distribution” or “least unbiased
probability distribution”.
The Maximum entropy principle approach did not have clear mechanism for taking this
uncertainty in consideration. Jaynes (1957) found this problem and spoke about it in his
paper, and he proposed three ways to solve it. The first is to ignore this problem. The
second is to generalize the maximum entropy approach. The third solution is adding
extra variance constraints. It appears that the first and last solutions cannot be proven,
while the second solution follows the laws of probability. (Cheeseman and Stutz (2005))
With no information about the distribution, the best candidate is the distribution that
maximizes uncertainty. However, if some information is available of the moments of the
distribution and using the mathematical expression of the entropy of the distribution, it
is obvious to generalize it and pick the distribution with the highest uncertainty.
In this manuscript, we focus on studying and formulating the generalized maximum
fuzzy entropy methods for Intuitionistic Fuzzy Entropy (IFE); and we introduce what
we called Generalized Maximum Intuitionistic Fuzzy Entropy (GMIFE) methods.
The center of attention in this field and s special concern of such entropies is the one
introduced by Vlachos and Sergiadis (2007). In section 2 we present an introduction of
entropy optimization methods. In section 3, we introduced and studied the generalized
maximum methods of fuzzy entropy and intuitionistic fuzzy entropies and studied the
existence of the solution subject to moment constraints through Lagrange multiplier
method. In section 4, we set two real life data examples to the application of the meth-
ods. And finally we setup our conclusions and finding remarks.

2 Entropy Optimization Methods

In entropy optimization theory, the method of generalized maximum fuzzy entropy
(GMFE) consists of finding the distribution that maximizes the entropy based on some
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constraints. Jaynes (2003) stated that the natural choice would be to pick the distribu-
tion with the highest entropy, called the MFE distribution. Jaynes’s exact words were:
“If the information incorporated into the maximum-entropy analysis includes all the con-
straints actually operating in the random experiment, then the distribution predicted
by maximum entropy is overwhelmingly the most likely to be observed experimentally.”
Computing the MFE distribution has applications in randomized rounding and the de-
sign of approximation algorithms. More precisely, it has been shown how to improve the
approximation ratio for the symmetric and the asymmetric traveling salesman problem
via MFE distributions (Asadpour and Saberi (2007)). Often, it is important to effi-
ciently compute the MFE distribution; for example, the zero-information moment closure
method (Smadbeck and Kaznessis (2013)), a recent approximate dynamic programming
method for constrained Markov decision processes, as well as the approximation of the
channel capacity of a large class of memoryless channels. Sutter et al. (2019) dealt with
iterative algorithms that require the numerical computation of the MFE distribution in
each iteration step. Also, the applications spread to cover modeling of stochastic data
(Sutter et al., 2019), Statistical Physics, Biology (Uddin et al., 2019) and psychology
(Ciavolino et al., 2014) and regression models (Ciavolino and Calcagǹı, 2016, 2014).
Shannon (1948) stated that a straightforward application of calculus can be used to
derive maximum entropy (ME) distributions. Maximizing the fuzzy entropy measure
subject to some conditions is studied in the literature as a method for deriving the forms
of minimal information prior distributions or as know as well by Generalized Maximum
Fuzzy Entropy (GMFE) methods. Among others, Jaynes (1957), Zellner and Highfield
(1988) and Jaynes (2003) has studied examples of discrete entropies. On the other
hand, Lisman et al. (1972), Al-Talib and Al-Nasser (2018) considered continuous cases.
Akaike (1983) studied the difference between the entropies of the product of two ran-
dom variables and their mutual entropy; they showed that the minimum information
prior distribution that maximizes such criterion will maximize the dependence between
these variables. Sutter et al. (2019) considered the problem of estimating a probabil-
ity distribution that maximizes the entropy while satisfying a finite number of moment
constraints, possibly corrupted by noise.

3 Generalized Maximum Fuzzy Entropy Methods

The aim of GMFE method is to maximize the entropy of fuzzy sets by finding two
distributions of membership functions. For illustration, Nihal and SHAMİLOV (2017);
a newer version of a three article series (Shamilov et al. (2016), Shamilov and İnce
(2016),ŞAMİLOV et al. (2017)) studied De Luca and Termini (1972) fuzzy entropy (de-
noted below by EDT (A)) and they followed these steps:
1. Obtain MFE measure which maximizes the value of fuzzy entropy, which is subject
to moment constraints, by Lagrange multipliers method.
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Maximize

EDT (A) = − 1

n

n∑
i=1

[
µA(xi) lnµA(xi) +

(
1− µA(xi)

)
ln
(
1− µA(xi)

)
,

]
. (1)

subject to
n∑
i=1

µA(xi)gj(xi) = µj , j = 0, 1, ...,m. (2)

where, µk are moments values of µA(xi) with respect to moments functions gk(xi), and
m ≤ n.

2. Generate two distributions denoted by MinMaxFE and MaxMaxFE, which
are the moment functions giving the least and the greatest value of MFE, respectively.
The process of obtaining the distributions is defined in Step 2, is referred to as the
Generalized Maximum Fuzzy Entropy Methods. The solution of De Luca and Termini
measure exists and was found given that several conditions are satisfied (Shamilov et al.
(2016),ŞAMİLOV et al. (2017)).

3.1 Generalized Maximum Intuitionistic Fuzzy Entropy

The investigation of the IFE under the main purpose; to reduce the uncertainty of IFS
by finding two bivariate distributions of membership functions and non-membership
functions.
In fuzzy theory, Maximum Fuzzy Entropy (MFE) problem consists of maximizing the
fuzzy entropy measure that is subject to its constraints. Vlachos and Sergiadis (2007)
introduced their version of intuitionistic fuzzy entropy, and it has been the center of
attention in any articles. Denoted by EV S and given by,

EV S(A) = − 1

n ln 2

n∑
i=0

[
µA(xi) lnµA(xi) + vA(xi)vA(xi)

+
(
1− πA(xi)

)
ln
(
1− πA(xi)

)
− πA(xi) ln 2

] (3)

where, πA(xi) = 1− µA(xi)− vA(xi).
Maximization Vlachos and Sergiadis’s intuitionistic fuzzy entropy (EV S) consists of max-
imizing the entropy measure with respect to membership function µA(x) with finite
number of the fuzzy values µA(xi), i = 0, 1, ..., n and the non-membership function vA(x)
with finite number of the fuzzy values vA(xi), i = 0, 1, ..., n. In more details, we consider
maximizing EV S subject to the constraints:

n∑
i=0

µA(xi)gj(xi) = µj , j = 0, 1, ...,m.

n∑
i=0

vA(xi)hj(xi) = vj , j = 0, 1, ...,m.

(4)
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where, g0(x) = h0(x) = 1;µ0 = v0 = 1; µj and vj are the expected value of the fuzzy
values µA(xi) and vA(xi) with respect to the linearly independent moment functions
gj(xi) = hj(xi), respectively for j = 1, ...,m; i = 0, 1, ..., n;m < n.
Using Lagrange multiplier method the optimization function is given by

U = − 1

n ln 2

×
n∑
i=1

[
µA(xi) lnµA(xi) + vA(xi) ln vA(xi) +

(
1− πA(xi)

)
ln
(
1− πA(xi)

)
− πA(xi) ln 2

]

−
m∑
j=0

λj

[
n∑
i=0

µA(xi)gj(xi)− µj

]
−

m∑
j=0

δj

[
n∑
i=0

vA(xi)hj(xi)− vj

]
(5)

This can be rewritten as

U = − 1

n ln 2

n∑
i=1

[
µA(xi) lnµA(xi) + vA(xi) ln vA(xi)

+
(
µA(xi) + vA(xi)

)
ln
(
µA(xi) + vA(xi)

)
− (1− µA(xi)− vA(xi)) ln 2

]
−

m∑
j=0

λj

[
n∑
i=0

µA(xi)gj(xi)− µj

]
−

m∑
j=0

δj

[
n∑
i=0

vA(xi)hj(xi)− vj

]
(6)

To start with finding the optimal values of the optimization function, we derive U with
respect to µA(xi), we get

∂U

∂µA(xi)
=

[
− lnµA(xi)− 1 + ln

(
µA(xi) + vA(xi)

)
+ 1− ln 2−

m∑
j=0

λjgj(xi)

]
.

Simplifying the derivative and equating it to zero, we get

ln

(
µA(xi) + vA(xi)

µA(xi)

)
− ln 2−

m∑
j=0

λjgj(xi) = 0

so,
µA(xi) + vA(xi)

µA(xi)
= 2 + e

∑m
j=0 λjgj(xi),

hence,
µA(xi) + vA(xi) = 2µA(xi) + µA(xi)e

∑m
j=0 λjgj(xi),

which directly follows

µA(xi) =
vA(xi)

1 + e
∑m

j=0 λjgj(xi)
, i = 0, 1, ..., n. (7)



Electronic Journal of Applied Statistical Analysis 299

The second derivative is given as

∂U2

∂µ2A(xi)
=

−vA(xi)

µA(xi)(µA(xi) + vA(xi))
(8)

as, µA(xi) and vA(xi) are always greater than zero, then the second derivation is
negative; that is mean µA(xi) in Equation 7 is what makes the EV S as large as possible.
Deriving the optimization function with respect to λ we get,

∂U

∂λ
= −

n∑
i=0

µA(xi)gj(xi)− µj , j = 0, 1, ...,m. (9)

Now, deriving the optimization function with respect to vA(xi);

∂U

∂vA(xi)
= ln(vA(xi))− ln

(
µA(xi) + vA(xi)

)
+ ln 2−

m∑
j=0

δjhj(xi),

simplifying it and equating to zero, we get

ln

(
µA(xi) + vA(xi)

µA(xi)

)
− ln 2 +

m∑
j=0

δjhj(xi) = 0,

hence,

vA(xi) =
µA(xi)

1− e
∑m

j=0 δjhj(xi)
, i = 0, 1, ..., n. (10)

Now, the second derivative follows to be

∂U2

∂v2A(xi)
=

−µA(xi)

vA(xi)(µA(xi) + vA(xi))
, (11)

µA(xi) and vA(xi) are always greater than zero, then the second derivation is negative.
Deriving the optimization function with respect to δ we get ,

∂U

∂δ
= −

n∑
i=0

vA(xi)hj(xi)− vj , j = 0, 1, ...,m. (12)

Also,
∂U2

∂µA(xi)∂vA(xi)
=

∂U2

∂vA(xi)∂µA(xi)
=

−1(
µA(xi) + vA(xi)

)2 < 0.

Depending on Equations 9 and 12, the eigenvalues of the Hessian matrix forµA(xi) and
vA(xi) negative, where the Hessian matrix is a square matrix of second order partial
derivatives of a scalar-valued function, which means that matrix is negative defined.
The direct conclusion of this result is that the IFE of Vlachos and Sergiadis is convex
and reaches its maximum value at a critical point.
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The produced solution of the maximization problem is((
µA(x0), vA(x0)

)
,
(
µA(x1), vA(x1)

)
, ...,

(
µA(xn), vA(xn)

))
, such that

µA(xi) =
v∗A(xi)

1 + e
∑m

j=0 λjgj(xi)
, i = 0, 1, ..., n.

vA(xi) =
µ∗A(xi)

1 + e
∑m

j=0 δjhj(xi)
, i = 0, 1, ..., n.

(13)

where, µ∗A(xi) and v∗A(xi) are initial values of the membership and non-membership
function.

Substituting the solution in the optimization function presented in equation (3.5), we
get the MFE.

U(g, h) =

− 1

n ln 2

n∑
i=1

[
v∗A(xi)

1 + e
∑m

j=0 λjgj(xi)
ln

v∗A(xi)

1 + e
∑m

j=0 λjgj(xi)

+
µ∗A(xi)

1 + e
∑m

j=0 δjhj(xi)
ln

µ∗A(xi)

1 + e
∑m

j=0 δjhj(xi)

+

(
v∗A(xi)

1 + e
∑m

j=0 λjgj(xi)
+

µ∗A(xi)

1 + e
∑m

j=0 δjhj(xi)

)
ln

(
v∗A(xi)

1 + e
∑m

j=0 λjgj(xi)
+

µ∗A(xi)

1 + e
∑m

j=0 δjhj(xi)

)

−

(
1−

v∗A(xi)

1 + e
∑m

j=0 λjgj(xi)
−

µ∗A(xi)

1 + e
∑m

j=0 δjhj(xi)

)
ln 2

]
+

m∑
j=0

λjµj +

m∑
j=0

δjvj .

(14)

The formula of the MFE depends on the moment functions gj(x), hj(x); j = 0, 1, ...,m,
the Lagrange multipliers λj , δj ; j = 0, 1, ...,m and the moment fuzzy values µj , vj , hence
the maximum value of the IFE measure is considered to be a joint function of g and h.

3.2 Moment Vector Function and GMIFE Methods

Based on the literature of entropy optimization distribution, the estimated values of
µA(xi) and vA(xi)which produce the minimum of 3 generates a distribution which is the
closest to the membership and non-membership functions, such distribution is referred
to MinMaxFE distribution. On the other hand, the values which generates the furthest
distribution to the membership and non-membership functions is referred to MaxMaxFE.
Both of these distributions depend on finding the moment vector functions gj(x), hj(x); j =
0, 1, ...,m, which minimize or maximize the function U(g, h) .
To clarify, the MinMaxFE and MaxMaxFE are distributions giving minimum and max-
imum values of U(g, h) respectively among all moment vector functions gj(x), hj(x); j =
0, 1, ...,m.
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Entropy optimization distributions methods to model statistical data depends on the
suitable choice of moment functions and the decision of their elements are very impor-
tant. It is also important to have criteria to compare various moment sets for suitability.
As we said briefly earlier, the choice of the moment functions is left to the researcher
as it could define some known statistical distributions such as normal, beta, gamma,
exponential and Laplace distributions, which maximize the entropy subject to certain
constraints. Also, Nihal and SHAMİLOV (2017), presented the concept of relative suit-
ability of moment function sets via MinMaxFE and MaxMaxFE distributions. It is
important to state that their findings and restrictions are taking into account in our
choice of moment functions.
Now, we present the Entropy Optimization Problems (EOP) and the Generalized En-
tropy Optimization Problems (GEOP) as defined in the literature,

EOP: Let p(x) be a probability distribution function of a random variable X, L be an
entropy optimization measure and g is a given moment vector function generating ‘m′ of
moment constraints. It is required to obtain the distribution corresponding to g, which
gives extremum value to L.

GEOP: Let p(x) be a probability distribution function of a random variable X, L be
an entropy optimization measure and K be a set of given moment vector functions. It is
required to choose moment vector functions g(0), g(1) ∈ Ksuch that g(0) defines entropy
optimization distribution f (0)(x) closest to p(x).
g(1) defines entropy optimization distribution f (1)(x) furthest from p(x) with respect to
entropy optimization measure L.

Considering that the optimization function presented in 14 has a solution 13 (say,

pi =
(
µA(xi), vA(xi)

)
, i = 0, 1, ..., n) subject to the constraints and depending on the

moment vector function (g, h) =
(
(1, 1), (g1, h1), ..., (gm, hm)

)
.

If the distribution p(0) =
(
p
(0)
1 , p

(0)
2 , ..., p

(0)
n

)
is given, then the moment values µj , vj , j =

0, 1, ...,m will be found using moment vector function (g, h).
So, Let us define compact set Kr = (g0, h0), (g1, h1), ..., (gm, hm), then the optimization
function U(g, h) reaches its optimum values in this set, because of the continuity prop-
erty. (Nihal and SHAMİLOV (2017),Shamilov et al. (2016),ŞAMİLOV et al. (2017)).

Define,

min
(g,h)∈K

U(g, h) = U(g(1), h(1)) and max
(g,h)∈K

U(g, h) = U(g(2), h(2))

It is straightforward to state

U(g(1), h(1)) ≤ U(g(2), h(2)).

The moment vector function g(1), h(1) which gives the minimal value of U(g, h), gen-
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erates the distribution(
µ(1), v(1)

)
=
((
µ(1)(x0), v

(1)(x0)
)
,
(
µ(1)(x1), v

(1)(x1)
)
, ...,

(
µ(1)(xn), v(1)(xn)

))
Such distribution is the MinMaxFEm distribution. Note that, the subscript m to denote
the length of the moment vector function.
Similarly,(

µ(2), v(2)
)

=
((
µ(2)(x0), v

(2)(x0)
)
,
(
µ(2)(x1), v

(2)(x1)
)
, ...,

(
µ(2)(xn), v(2)(xn)

))
is the MaxMaxFEm distribution provided that it corresponds to the moment vector
function g(2), h(2) that gives the maximal values of U(g, h) .
Obtaining these two distributions are to be called Generalized Maximum Intuitionistic
Fuzzy Entropy Methods (GMIFEM).

The following theorem summarizes these findings in what we call the existence theo-
rem.

Theorem 3.1 The possibility of maximizing 3 with respect to its constraints 4 requires
the fulfillment of the following conditions:

• Moment functions gj(x); j = 0, 1, ...,m are linearly independent;

• Moment functions hj(x); j = 0, 1, ...,m are linearly independent;

• The inequality m < n is satisfied;

• Moment values µ̃j , j = 0, 1, ...,m are given in the form of equalities

n∑
i=0

µ̃A(xi)gj(xi) = µ̃j , j = 0, 1, ...,m.

• Moment values ṽj , j = 0, 1, ...,m are given in the form of equalities

n∑
i=0

ṽA(xi)hj(xi) = ṽj , j = 0, 1, ...,m.

3.3 Finding the Solution

In order to calculate MinMaxFEm and MaxMaxFEm distributions for fuzzy data, it is
required to following the steps:

1. Determine the moments vector function and (g, h) =
(
(1, 1), (g1, h1), ..., (gm, hm)

)
.

according to fuzzy data.

2. Calculate the moment values µj and vj subject to each moments vector function
E(g0(x)), E(g1(x)), ..., E(gm(x)) and E(h0(x)), E(h1(x)), ..., E(hm(x)).
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3. Obtain the values of the Lagrange multipliers λj , δj by substituting the solution of
µA(xi) and vA(xi) found in 13 into constraints 4, using initial points of the Lagrange
multipliers λj , δj ; j = 0, 1, ..., n.

4. Determine MinMaxFEm and MaxMaxFEm distributions corresponding to selected
MFE characterizing moments vector functions.

5. Among obtained distributions choose the accepted Generalized Maximum Intu-
itionistic Fuzzy Entropy distributions.

It is noted that the selection of moment functions set is important in the application of
MFE method. In our investigation, MFE characterizing moments E{x}, E{lnx}, E{(lnx)2},
E{ln(1 + x)}, E{ln(1 + x2)} are acquired by experimental way (see, Shamilov et al.
(2016)).
In order to obtain MinMaxFEm and MaxMaxFEm (m = 1, 2, 3) distributions, we should
choose the moment vector functions giving the maximum and minimum values to the
MFE functional U(g, h).

4 Real data applications of life

In this chapter we discuss MinMaxFEm and MaxMaxFEm distributions, results are
obtained for the membership function and non-membership function values in fuzzy
data sets of three real life applications on the IFE and we will study the GMIFE and
their results accordingly. It should be noted that mentioned distributions are calculated
by using MATLAB program.
In this section we illustrate the methods of GMIFE to two real life applications, for
similar choices of moment vector functions (g, h). Here, as explained in a Section (3.3);
we used the moment functions

g0(x) = 1, g1(x) = x, g2(x) = lnx, g3(x) = (lnx)2, g4(x) = ln(1 + x), g5(x) = ln(1 + x2),

and

h0(x) = 1, h1(x) = x, h2(x) = lnx, h3(x) = (lnx)2, h4(x) = ln(1 + x), h5(x) = ln(1 + x2).

According to suggested method,

K0 =

{
g0 g1 g2 g3 g4 g5

h0 h1 h2 h3 h4 h5

}

all combinations of r elements of K0 taken m elements at a time are denoted by K0,m.
In each of the following applications, the performance of MinMaxFEm and MaxMaxFEm
distributions is tested using various criterias such as Root Mean Square Error (RMSE),
Chi-Square (χ2), and MFE measure (MFE). The best distribution function can be
determined according to the lowest values of RMSE, χ2 and MFE measure. It is
obtained through comparison of the MinMaxFEm and MaxMaxFEm distributions by
using the given criteria.
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4.1 Defuzzification of Intuitionistic Fuzzy Sets Example

Radhika and Parvathi (2016) studied the process of converting a fuzzy quantity to precise
quantity, such process is referred to as defuzzification. A special concern in their article
is intuitionistic defuzzification (converting membership and non-membership values to
crisp), and they listed seven types to such conversions. In one application, Radhika
and Parvathi (2016) considered the gray levels extracted from images to form a two-
dimensional gray matrix. In image processing, the statistical method of examining image
texture that considers the spatial relationship of pixels is the gray matrix (also known as
gray-level co-occurrence matrix (GLCM) and known as the gray-level spatial dependence
matrix).
A3×3 gray matrix extracted from an image whose gray values vary from 0 to 256 is

A =

 50 120 192

202 220 166

256 32 64


With corresponding fuzzy values;

(
µA(xi), vA(xi)

)

A =

(0.3896, 0.6094) (0.9990, 0.0000) (0.4990, 0.5000)

(0.4206, 0.5781) (0.2803, 0.7188) (0.7021, 0.2969)

(0.0000, 0.9990) (0.2490, 0.7500) (0.4990, 0.5000)


MFE values subject to moment constraints generated by elements of K0,m , m = 1, 2, 3
are studied and investigated briefly. In the table below, we present MinMaxFEm and
MaxMaxFEm in the case when m = 1.

Table 1: Entropy of calculated MFE values subject to two moment functions

Moment Functions (g1(x), h1(x)) Fuzzy Entropy(
(1, 1), (x, x)

)
0.9902(

(1, 1), (lnx, lnx)
)

0.9909(
(1, 1), ((lnx)2, (lnx)2)

)
0.9903(

(1, 1), (ln(1 + x2), ln(1 + x2)
)

0.9908

Tables 2 and 3 show that in the sense of RMSE and χ2 criteria each of MinMaxFEm,
(m = 1, 2, 3) distribution is better than each of MaxMaxFEm ,(m = 1, 2, 3) distribution.
Also, from these tables, MinMaxFE1 distribution show better fitting in terms of almost
all criteria than other MinMaxFEm and all MaxMaxFEm (m = 1, 2, 3) distributions.
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4.2 Medical Diagnosis

Let us consider the example discussed by Vlachos and Sergiadis (2007), (same data as
in De et al. (2001); Szmidt and Kacprzyk (2001)). Similarity and dissimilarity between
symptoms and diseases in medical diagnosis brought the attention of many researchers
in medical fields to fuzzy set theory and in particular to intuitionistic fuzzy set and its
entropy.

The application studied here consists of a set of diagnoses D = {Viral fever, Malaria,
Typhoid, Stomach problem, Chest pain}, and a set of symptoms S = {Temperature,
Headache, Stomach pain, Cough, Chest pain}. Each element of the tables, is given in
the form of a pair of numbers corresponding to the membership and non-membership
values.( Data are presented in Table 4).
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Table 4: Entropy of calculated MFE values subject to two moment functions

Symptoms Diagnosis
(
µA(xi), vA(xi)

)

Temperature

Viral fever

Malaria

Typhoid

Stomach problem

Chest problem

(0.4, 0.0)

(0.7, 0.0)

(0.3, 0.3)

(0.1, 0.7)

(0.1, 0.8)

Headache

Viral fever

Malaria

Typhoid

Stomach problem

Chest problem

(0.3, 0.5)

(0.2, 0.6)

(0.6, 0.1)

(0.2, 0.4)

(0.0, 0.8)

Stomach pain

Viral fever

Malaria

Typhoid

Stomach problem

Chest problem

(0.1, 0.7)

(0.0, 0.9)

(0.2, 0.7)

(0.8, 0.0)

(0.2, 0.8)

Cough

Viral fever

Malaria

Typhoid

Stomach problem

Chest problem

(0.4, 0.3)

(0.7, 0.0)

(0.2, 0.6)

(0.2, 0.7)

(0.2, 0.8)

Chest pain

Viral fever

Malaria

Typhoid

Stomach problem

Chest problem

(0.1, 0.7)

(0.1, 0.8)

(0.1, 0.9)

(0.2, 0.7)

(0.8, 0.1)

Next, MFE values subject to moment constraints generated by elements of K0,m,m =
1, 2, 3 . For illustration, we present fuzzy entropy of calculated MFE values subject
to two moment functions. In these tables, corresponding to minimum and maximum
values of MFE measure MinMaxFEm and MaxMaxFEm,m = 1, 2, 3 distributions are
represented with bold font.

Table 5 shows that (g0, h0), (g
(1), h(1)) = ((1, 1), (lnx, lnx)) ∈ K0,1 gives to least value

to U(g, h), consequently corresponding distribution is MinMaxFE1 and (g0, h0), (g
(2), h(2)) =
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((1, 1), (x, x)) ∈ K0,1 gives to greatest value to U(g, h), consequently corresponding dis-
tribution is MaxMaxFE1.

Table 5: Entropy of calculated MFE values subject to two moment functions

Moment Functions (g1(x), h1(x)) Fuzzy Entropy(
(1, 1), (x, x)

)
0.7844(

(1, 1), (lnx, lnx)
)

0.7158(
(1, 1), ((lnx)2, (lnx)2)

)
0.7684(

(1, 1), (ln(1 + x2), ln(1 + x2)
)

0.7258

Tables 6 and 7 show that the RMSE and χ2 of MinMaxFEm, (m = 1, 2, 3) distribution
is better than each of MaxMaxFEm, (m = 1, 2, 3) distribution. Moreover, MinMaxFE3

distribution shows better fitting in terms of almost all criteria MinMaxFEm and all
MaxMaxFEm distributions.

5 Conclusion

In the present study, we proved the convexity property of new MIFE measure, then it
is formulated a Maximum Fuzzy Entropy Problem and proposed sufficient conditions
for existence of its solution. A special functional U(g, h) depended on moment vector
functions g and h is defined by applying Lagrange multipliers method.

According to obtained results, for this fuzzy data in applications, MinMaxFEm and
MaxMaxFEm,m = 1, 2, 3 distributions are compared by using different criterias in terms
of modeling data. It is shown that each of MinMaxFEm,m = 1, 2, 3 distribution is more
suitable in modeling fuzzy data than each of MaxMaxFEm,m = 1, 2, 3 distributions in
the sense of RMSE, χ2 and MFE criteria.
Consequently, the obtained results are shown that developed methods can be applied
successfully in fuzzy data analysis.
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