
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v15n3p574

Restricted ridge estimator in the Inverse Gaus-
sian regression model
By Alsarraf, Algamal

Published: November 20, 2022

This work is copyrighted by Università del Salento, and is licensed un-
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The Inverse Gaussian regression (IGR) model is a well-known model in
application when the response variable positively skewed. Its parameters are
usually estimated using maximum likelihood (ML) method. However, the ML
method is very sensitive to multicollinearity. Ridge estimator was proposed in
Inverse Gaussian regression model. A restricted ridge estimator is proposed.
Simulation and real data example results demonstrate that the proposed
estimator is outperformed ML and Inverse Gaussian ridge estimator.
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1 Introduction

The Inverse Gaussian regression (IGR) has been widely used in industrial engineering,
life testing, reliability, marketing, and social sciences (Bhattacharyya and Fries, 1982;
Ducharme, 2001; Folks and Davis, 1981; Fries and Bhattacharyya, 1986; Heinzl and Mit-
tlböck, 2002; Lemeshko et al., 2010; Malehi et al., 2015). Specifically, IGR model is used
when the response variable under the study is positively skewed (Babu and Chaubey,
1996; Chaubey, 2002; Wu and Li, 2012). When the response variable is extremely skew-
ness, the IGR is preferable than gamma regression model (De Jong et al., 2008). In
dealing with the IGR, it is assumed that there is no correlation among the explanatory
variables. In practice, however, this assumption often not holds, which leads to the
problem of multicollinearity. In the presence of multicollinearity, when estimating the
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regression coefficients for IGR using the maximum likelihood (ML) method, the esti-
mated coefficients are usually become unstable with a high variance, and therefore low
statistical significance with incorrect signs (Alheety and Kibria, 2014; Batah et al., 2009;
Jou et al., 2014). Numerous remedial methods have been proposed to overcome the prob-
lem of multicollinearity. The ridge regression method (Hoerl and Kennard, 1970). has
been consistently demonstrated to be an attractive and alternative to the ML estimation
method. Ridge regression is a shrinkage method that shrinks all regression coefficients
toward zero to reduce the large variance (Asar and Genç, 2016). The ridge regression
performance greatly relies on the choice of shrinkage parameter. Consequently, choos-
ing a suitable value of the shrinkage parameter is an important part of ridge regression
model fitting (Söküt Açar and Özkale, 2016). Several methods, which they are based
on the original ridge regression of (Hoerl and Kennard, 1970), are available for estimat-
ing the ridge shrinkage parameter in the literature (Alkhamisi et al., 2006; Yasin et al.,
2013; Hamed et al., 2013; Hefnawy and Farag, 2014; Khalaf and Shukur, 2005; Kibria,
2003; Muniz and Kibria, 2009; Algamal, 2018b,a; Mohammed and Algamal, 2021; Al-
gamal et al., 2018; Qasim and Algamal, 2020; Algamal and Lee, 2017a; Algamal, 2017;
Algamal et al., 2016b, 2017b; Algamal, 2012; Rashad and Algamal, 2019; Algamal et al.,
2017a, 2016a; Algamal and Asar, 2020; Qasim et al., 2018; Algamal and Alanaz, 2018;
Yahya Algamal, 2019; Shamany et al., 2019; Lukman et al., 2021a,b; Noeel and Algamal,
2021).

2 Inverse Gaussian ridge regression model

The Inverse Gaussian distribution is a continuous distribution with two positive parame-
ters: location parameter ,µ, and scale parameter, τ , denoted as IG(µ, τ). Its probability
density function is defined as

f(y, µ, τ) =
1√

2πy3τ
exp

[
− 1

2y

(
y − µ

µ
√
τ

)2
]
, y > 0. (1)

The mean and variance of this distribution are, respectively, E(y) = µ and var(y) =
τ µ3.
Inverse Gaussian regression model is considered a member of the generalized linear

models (GLM) family, extending the ideas of linear regression to the situation where
the response variable is following the Inverse Gaussian distribution. Following the GLM
methodology, Eq. (1) can re-write in terms of exponential family function as
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3) − (1/2) ln(τ) and yθ−a(θ)
ϕ = 1

τ
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}
. Here, τ rep-

resents the dispersion parameter and 1/µ2 represents the canonical link function. In
GLM, a monotonic and differentiable link function connects the mean of the response
variable with the linear predictor ηi = xTi β, where xi is the ith row of X and β is a
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(p + 1) × 1 vector of unknown regression coefficients. Because ηidepends on β and the
mean of the response variable is a function of ηi, then E(yi) = µi = g−1(ηi) = g−1(xTi β).

Related to the IGR, the µ = 1/
√
xTi β. Another possible link function for the IGR is log

link function, µ = exp(xTi β). he model estimation of the IGR is based on the maximum
likelihood method (ML). The log likelihood function of the IGR under the canonical link
function is defined as

ℓ(β) =

n∑
i=1

{
1

τ

[
yix

T
i β

2
−
√
xTi β

]
− 1

2τyi
− ln τ

2
− ln(2πy3i )

}
. (3)

The ML estimator is then obtained by computing the first derivative of the Eq.(3) and
setting it equal to zero, as

∂ℓ(β)

∂β
=

n∑
i=1

1

2τ

yi − 1√
xTi β

 xi = 0. (4)

Unfortunately, the first derivative cannot be solved analytically because Eq.(4) is non-
linear in β. The iteratively weighted least squares (IWLS) algorithm or Fisher-scoring
algorithm can be used to obtain the ML estimators of the IGR parameters. In each
iteration, the parameters are updated by

β(r+1) = β(r) + I−1(β(r))S(β(r)), (5)

where S(β(r)) and I−1(β(r)) are S(β) = ∂ℓ(β)/∂β and I−1(β) =
(
−E

(
∂2ℓ(β)/∂β∂βT

))−1
evaluated

at β(r)), respectively. The final step of the estimated coefficients is defined as

β̂IGR = B−1XT Ŵ m̂, (6)

where B = (XT ŴX), Ŵ = diag(µ̂3
i ), m̂ is a vector where ith element equals to m̂i =

(1/µ̂2
i ) + ((yi − µ̂i)/µ̂

3
i ), and µ̂ = 1/

√
xTi β̂. The covariance matrix of β̂IGR equals

cov(β̂IGR) =
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= τ B−1, (7)

and the MSE equals

MSE (β̂IGR) = E(β̂IGR − β̂)T (β̂IGR − β̂)

= τ tr[B−1]

= τ
∑p

j=1
1
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where λj is the eigenvalue of the B matrix and the dispersion parameter, τ , is
estimated by (Uusipaikka, 2008).
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. (9)
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In the presence of multicollinearity, the matrix XT ŴX becomes ill-conditioned leading
to high variance and instability of the ML estimator of the IGR. As a remedy, the ridge
estimator (IGRR)

β̂IGRR = (XT ŴX + kI)−1XT ŴXβ̂ML

= (XT ŴX + kI)−1XT Ŵ v̂,
(10)

where k ≥ 0. The ML estimator can be considered as a special estimator from Eq.
(10) with h = 0. Regardless of hvalue, the MSE of the β̂IGRRis smaller than that of
β̂MLbecause the MSE of β̂IGRRis equal to

MSE(β̂PRE) = τ

p∑
j=1

λj

(λj + k)2
+

p∑
j=1

αj

(λj + k)2
, (11)

where αj is defined as the jthelement of γ β̂MLand γ is the eigenvector of the XT ŴX

matrix. Comparing with the MSE of Eq.(10), MSE(β̂PRE) is always small for k > 0.

3 The proposed estimator

In addition to the sample information, there are some exact or restrictions for the un-
known parameter of the model exist which may help to reduce the multicollinearity
problem. Therefore, suppose that we have some prior information about β in the form
of independent linear restrictions as:

Hβ = h, (12)

where Hdenotes a q × (p+ 1) (q ≤ p+ 1)known matrix and h shows a q x Ivector of
pre-specified know constants. Considering such a restriction, Duffy and Santner (1989a).
defined the restricted maximum likelihood estimator (RMLE) with the following from:

β̂RMLE = β̂MLE − (XT ŴX)−1HT (H(XT ŴX)−1HT )−1(Hβ̂MLE − h) (13)

Based on the Eq. (10) and Eq. (7), we propose a restricted Inverse Gaussian ridge
estimator (RIGRE) which is given as follows:

β̂RIGRE = (XT ŴX + kI)−1XT Ŵ v̂ − (XT ŴX + kI)−1HT
[
H(XT ŴX + kI)−1HT

]−1[
H(XT ŴX + kI)−1XT Ŵ v̂ − h

]
(14)

It is easy to see that when the biasing parameter, k = 0, Eq. (14) becomes the RMLE
in Eq. (13). The restricted ridge estimator was studied by several authors, such as
(Alheety and Kibria, 2014; Asar et al., 2017; Duffy and Santner, 1989b; Kurtoğlu and
Özkale, 2019; Nagarajah et al., 2015; Najarian et al., 2013). The MSE of β̂RIGRE is
defined as

MSE (β̂RPRE) = τ

p∑
j=1

(λj(λj + k − hjj)
2

(λj + k)4
+ k

 p∑
j=1

αj(λj + k − hjj)

(λj + 1)2

2

, (15)
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4 Simulation results

In this section, a Monte Carlo simulation experiment is used to examine the perfor-
mance of the new estimator with different degrees of multicollinearity. The response
variable is drawn from Inverse Gaussian distribution yi ∼ IG(µi, τ)with sample sizes
n = 50, 100 and 150, respectively, whereτ ∈ {0.5, 1.5, 3}. The explanatory variables
xTi = (xi1, xi2, ..., xin) have been generated from the following formula

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (16)

where ρ represents the correlation between the explanatory variables and wij ’s are in-
dependent pseudo-random numbers. Three values of the number of the explanatory
variables: 4, and 7, and three different values of ρ corresponding to 0.90, 0.95, and 0.99
are considered. Depending on the type of the link function, µi, the log link functions is
investigated.

The log link function is defined as

µi = exp(xTi β), i = 1, 2, ..., n. (17)

Here, the vector β is chosen as the normalized eigenvector corresponding to the largest
eigenvalue of the XTWX matrix subject to βTβ = 1 (Kibria, 2003). In addition, the
wij in Eq. (16) are generated from normal distribution (0,1). The estimated average
MSE is calculated as

MSE(β̂) =
1

R

R∑
i=1

(β̂ − β)T (β̂ − β), (18)

where R equals 1000 corresponding to the number of replicates used in our simulation.
All the calculations are computed by R program.
According to Asar et al. (2017), two restricted matrices are explained as

Hp=4 =

(
1 0 −3 2

1 −2 1 −1

)
and Hp=7 =

(
1 0 −3 1 −1 2 1

1 −2 1 −1 0 1 1

)
with h =

(0, 0).Inaddition, themethodofdeterminingthevalueofkisdefinedask=(1/2max).
The estimated MSE of Eq. (15) for ML, IGRR, and our proposed estimator, RIGRE,

for the combination of n, p, τ , and ρ, are respectively summarized in Tables 1, 2, and
3. Several observations can be made. First, in terms of ρ values, there is increasing
in the MSE values when the correlation degree increases regardless the value of n, p, τ .
However, RIGRE performs better than IGRR and ML. For instance, in Table 1, when
p = 4, n = 150, and ρ = 0.99, the MSE of RIGRE was about 28.91% and 22.15% lower
than that of ML and IGRR respectively.
Second, regarding the number of explanatory variables, it is easily seen that there is

increasing in the MSE values when the p increasing from four variables to seven variables.
Although this increasing can affected the quality of an estimator, RIGRE is achieved
the lowest MSE comparing with ML and IGRR, for different n, ρ, τ .

Third, with respect to the value of n, The MSE values decreases when n increases,
regardless the value of ρ, p, τ . However, RIGRE still consistently outperforms IGRR by
providing the lowest MSE.
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Fourth, in terms of the value of the τ and for a given values of ρ, p, n, RIGRE is always
show smaller MSE comparing with the other methods.

To summary, all the considered values of n, ρ, p, τ , RIGRE is superior to IGRR, clearly
indicating that the new proposed estimator is more efficient.

Table 1: Table 1: MSE values when τ = 0.5

ML IGRR RIGRE

ρ

p = 4 n = 50 0.9 5.0774 4.8304 3.9631

0.95 5.7054 5.4584 4.5914

0.99 6.1034 5.8564 4.9893

n =
100

0.9 3.4484 3.2014 2.3344

0.95 4.5234 4.2764 3.409

0.99 4.7154 4.4684 3.6014

n =
150

0.9 3.2914 3.0444 2.1771

0.95 3.5014 3.2542 2.3874

0.99 4.2564 4.009 3.1424

p = 7 0.9 5.1824 4.9354 4.0684

n = 50 0.95 5.8014 5.5544 4.6874

0.99 6.2164 5.9691 5.1024

0.9 3.7174 3.4704 2.6034

n =
100

0.95 4.8604 4.6134 3.7464

0.99 5.1854 4.9384 4.0714

0.9 3.6274 3.3804 2.5134

n =
150

0.95 3.9024 3.6554 2.7884

0.99 4.4604 4.2134 2.9464
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Table 2: Table 2: MSE values when τ = 1.5

ML IGRR RIGRE

ρ

p = 4 n = 50 0.90 5.1011 4.8541 3.9873

0.95 5.7291 5.4822 4.6151

0.99 6.1271 5.8801 5.0131

n =
100

0.90 3.4721 3.2251 2.3581

0.95 4.5471 4.3001 3.4331

0.99 4.7391 4.4922 3.6251

n =
150

0.90 3.3151 3.0681 2.2011

0.95 3.5251 3.2781 2.4111

0.99 4.2801 4.0331 3.1661

p = 7 n = 50 0.90 5.2061 4.9592 4.0921

0.95 5.8251 5.5781 4.7111

0.99 6.2401 5.9931 5.1261

n =
100

0.90 3.7411 3.4941 2.6271

0.95 4.8841 4.6371 3.7701

0.99 5.2091 4.9621 4.0951

n =
150

0.90 3.6511 3.4041 2.5371

0.95 3.9261 3.6791 2.8121

0.99 4.4841 4.2371 3.3701
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Table 3: Table 3: MSE values when τ = 3

ML IGRR RIGRE

ρ

p = 4 n = 50 0.90 5.299 5.052 4.185

0.95 5.927 5.68 4.813

0.99 6.325 6.078 5.211

n =
100

0.90 3.67 3.423 2.556

0.95 4.745 4.498 3.631

0.99 4.937 4.69 3.823

n =
150

0.90 3.513 3.266 2.399

0.95 3.723 3.476 2.609

0.99 4.478 4.231 3.364

p = 7 n = 50 0.90 5.404 5.157 4.29

0.95 6.023 5.776 4.909

0.99 6.438 6.191 5.324

n =
100

0.90 3.939 3.692 2.825

0.95 5.082 4.835 3.968

0.99 5.407 5.16 4.293

n =
150

0.90 3.849 3.602 2.735

0.95 4.124 3.877 3.01

0.99 4.682 4.435 3.568

5 Real application

To demonstrate the usefulness of the IGLE in real application, we present here a chem-
istry dataset with (n, p) = (65, 15), where n represents the number of imidazo[4,5-
b]pyridine derivatives, which are used as anticancer compounds. While p denotes the
number of molecular descriptors, which are treated as explanatory variables (Algamal
et al., 2015). The response of interest is the biological activities (IC50). Quantitative
structure-activity relationship (QSAR) study has become a great deal of importance in
chemometrics. The principle of QSAR is to model several biological activities over a
collection of chemical compounds in terms of their structural properties (Algamal and
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Lee, 2017b). Consequently, using of regression model is one of the most important tools
for constructing the QSAR model.

First, to check whether the response variable belongs to the Inverse Gaussian distri-
bution, a Chi-square test is used. The result of the test equals to 5.2762 with p-value
equals to 0.2601. It is indicated form this result that the Inverse Gaussian distribution
fits very well to this response variable. That is, the following model is set

ŷIC50 = exp(

15∑
j=1

xj β̂j). (19)

Second, to check whether there is a relationship among the explanatory variables
or not. It is obviously seen that there are correlations greater than 0.90 among MW,
SpMaxA D, and ATS8v (r = 0.96), between SpMax3 Bh(s) and ATS8v (r = 0.92), and
between Mor21v with Mor21e (r = 0.93).

Third, to test the existence of multicollinearity after fitting the Inverse Gaussian re-
gression model using log link function and the estimated dispersion parameter is 0.00103,
the eigenvalues of the matrix XT ŴX are obtained as 1.884×109,3.445×106, 2.163×105,
2.388 × 104, 1.290 × 103, 9.120 × 102,4.431 × 102, 1.839 × 102, 1.056 × 102, 5525, 3231,
2631, 1654, 1008, and 1.115. The determined condition number CN =

√
λmax/λmin of

the data is 40383.035 indicating that the severe multicollinearity issue is exist.

The estimated IGR coefficients, standard errors which are computed by using boot-
strap with 500 replications, and MSE values for the ML, IGRR and RIGRE estimators
are listed in Table 4. According to Table 4, it is clearly seen that the RIGRE estima-
tor shrinkages the value of the estimated coefficients efficiently. Additionally, in terms
of the calculated standard errors, the RIGRE and IGRR show substantial decreasing
comparing with ML.
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Table 4: Table 4: The estimated coefficients and MSE values for the used estimators

ML IGRR RIGRE

β̂1 -2.286
(0.147)

-1.8741
(0.007)

-1.259
(0.127)

β̂2 0.441
(0.151)

0.510
(0.001)

0.031
(0.132)

β̂3 0.575
(0.175)

0.416
(0.008)

0.224
(0.103)

β̂4 -3.476
(0.313)

-2.034
(0.008)

-0.131
(0.229)

β̂5 -2.432
(0.160)

-2.12
(0.004)

-1.007
(0.132)

β̂6 5.121
(0.387)

0.004
(0.003)

0.173
(0.225)

β̂7 6.211
(0.317)

2.308
(0.003)

2.418
(0.225)

β̂8 3.206
(0.388)

2.66
(0.003)

1.974
(0.225)

β̂9 -0.365
(0.326)

-0.225
(0.081)

-0.207
(0.227)

β̂10 2.006
(0.225)

1.0687
(0.103)

0.887
(0.230)

β̂11 -3.681
(0.115)

-2.067
(0.103)

-1.687
(0.025)

β̂12 2.147
(0.357)

1.687
(0.302)

1.874
(0.215)

β̂13 -0.664
(0.314)

-0.508
(0.266)

-0.484
(0.230)

β̂14 0.121
(0.387)

0.114
(0.003)

0.103
(0.225)

β̂15 5.661
(0.311)

4.528
(0.153)

3.607
(0.025)

MSE 4.509 3.177 2.639
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6 Conclusion

In this paper, a restricted ridge estimator of IGR was proposed. This proposed estimator
allows us to handle multicollinearity. According to Monte Carlo simulation studies, the
restricted estimator has better performance than maximum likelihood estimator and
Inverse Gaussian ridge estimator, in terms of MSE. Additionally, a real data application
is also considered to illustrate benefits of using the new estimator in the context of IGR.
The superiority of the new estimator based on the resulting MSE was observed and it
was shown that the results are consistent with Monte Carlo simulation results.
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