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The modern engineering design optimization relies heavily on high-fidelity
computer. Even though, the computing ability of computers have increased
drastically, design optimization based on high-fidelity simulations is still time
consuming and impractical. Surrogate modeling is a technique to replace
the high-fidelity simulations. This paper presents a novel approach, named
weighted ensemble of surrogates (WESO) for computationally intensive op-
timization problems, The focus is on multi-modal functions to identify its
global optima with relatively few function evaluations. WESO search mech-
anism falls in two steps, explore and fit. The “explore” step is based on
exploring the whole design region by generating sample points (agents) us-
ing Latin hypercube sampling (LHS) technique to gain prior knowledge about
the function of interest (learning phase). The “fit” step is to train and fit a
weighted ensemble of surrogate models over the promising region (training
phase) to mimic the computationally intensive true function and replace it
with a surrogate model (cheap function). The surrogates are then utilized
to select candidates’ decision variable points at which the true objective
function and constraints’ functions to be evaluated. Weights are then de-
termined, assigned and an ensemble of surrogate gets constructed using the
candidate sample points where optimization can be carried out. WESO has
been evaluated on classical benchmark functions embedded in larger dimen-
sional spaces. WESO was also tested on the aerodynamic shape optimization
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of turbo-machinery airfoils to demonstrate its ability in handling computa-
tionally intensive optimization problems. The results showed to what extent
combinations of models can perform better than single surrogate models and
provide insights into the scalability and robustness of the approach. WESO
can successfully identify near global solutions, faster than other classical
global optimization algorithms.

keywords: Surrogate models, optimization, response surface model, radial
basis function, Kriging, computational design

1 Introduction

High-fidelity computer simulations such as Finite Element Analysis (FEA) and Compu-
tational Fluid Dynamics are used substantially in modern engineering design optimiza-
tion (CFD). Physical features of modeled systems can now be well predicted, and physical
tests are being replaced by virtual and computer simulations, thanks to recent advances
in computer simulations and their accuracy in computer analysis. For applications that
demand computationally complex computations and analysis, these simulations are crit-
ical. A single run of these models might be excessively time-consuming, taking days
to produce a solution. On many levels, executing computer simulations with fewer re-
sources and less calculation time helps to improve designs. Surrogate modeling is a
popular technique for solving computationally complex engineering design optimization
problems. It’s tough to decide which surrogate is better for approximation due to a lack
of prior knowledge. Ensembles of surrogate models have been gaining traction to fully
use many surrogates.

Optimization algorithms that are powerful, robust, and efficient have been introduced
in recent years. Surrogate models based on optimization algorithms have been widely
used to solve complex, time-consuming, and computationally expensive optimization
problems. Identifying good surrogate models and their appropriate locations, on the
other hand, is still a task that requires a lot of human effort. Surrogates like these are
helpful in acquiring a good understanding of the system’s overall behavior. Surrogates,
on the other hand, have varying modeling capabilities for systems with varying prop-
erties, and many surrogates only work well within a narrow design space of unimodal
shape. Response surface function (RSM) Myers et al. (2016) , Kriging methods (Math-
eron, 1963), artificial neural network (ANN) (Kerh et al., 2008), radial basis function
(RBF) (Gutmann, 2001), support vector regression (SVR) (Smola and Schölkopf, 2004),
and multivariate adaptive regression splines (MARS) (Friedman, 1991) are examples of
surrogates. Each surrogate has its own characteristics that allow it to handle different
types of optimization problems.

For an optimization task, a strategy for selecting and adapting the most suited sur-
rogate model from numerous models becomes crucial. Many solutions for dealing with
optimization problems involving many surrogates (ensemble of surrogates), in which
more than one surrogate is employed to forecast and mimic the genuine or expensive
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function, have been developed. The weight coefficient of an ensemble of surrogates is
often defined by an error index such as root mean square (RMSE) error or R square,
which superimposes numerous surrogates together in the form of weights.
The idea of combining different surrogates into a single model can be traced back to

Perrone and Cooper’s invention of neural networks (Perrone and Cooper, 1992). This
approach has been expanded for building ensembles of surrogates by (Zerpa et al., 2005)
and (Goel et al., 2007). A noteworthy example is the recent construction of an ensemble
of Kalman filters (Evensen, 2003). In statistics, an ensemble technique might be seen
as an alternative to model selection (Madigan and Raftery, 1994) and (Buckland et al.,
1997). Kaymaz and McMahon (2005) proposed ADAPRES, which replaces normal re-
gression with a weighted regression technique. Regis and Shoemaker (2013) proposed the
dynamic coordinate search utilizing Response Surface (DYCORS) models framework for
surrogate-based optimization of high-dimensional, expensive, and black-box functions,
which integrates a concept from the dynamically Dimensioned Search (DDS) algorithm.
It has been demonstrated that an ensemble of individual surrogates can considerably

improve the robustness and accuracy of surrogate model predictions. Using global error
measurements, several attempts were made to determine the contribution of a surrogate
in the ensemble. In addition, prediction variance is employed to establish the weight
components as a local error measure. Friese et al. (2016) evaluated a combination of
two surrogates and concluded that combining more than two surrogates could produce
superior outcomes. Acar and Rais-Rohani (2009) looked into the effectiveness of em-
ploying local error measures and proposed using pointwise cross validation error as a
local error measure instead of prediction variance. Zhang et al. (2016) introduced a
new point-wise weighted ensemble approach to surrogate models that incorporates error
classification and nearest neighbor selection into point-wise weights computation. The
prediction variance was proposed by Sanchez et al. (2008) as a local error metric for
determining the weight factors of the surrogate models in the ensemble of surrogates.
Sanchez et al. (2008) used a local error metric with weight factors that were adaptable
across the design space, resulting in more accurate predictions. According to (Viana
et al., 2009), cross-validation errors are a stronger predictor of a surrogate model’s over-
all accuracy than prediction variance. The network might have multiple initialization or
random weights in neural network ensembles. The accuracy of an aggregate output ob-
tained by combining the outputs of numerous neural networks is often superior to that of
any single output. The ensemble network that results often outperforms the individual
networks (Perrone and Cooper, 1992). Younis and Dong (2012) devised a mixed meta-
modeling method in which the algorithm divides the design specification into sub-regions
and searches for and fits an ensemble of surrogates with predetermined weights. Acar
and Rais-Rohani (2009) proposed an alternative method for constructing a metamodel
ensemble by determining the optimal weight factor values that would minimize a certain
error measure (e.g., root mean square error). They regarded the ensemble to be made
up of five independent stand-alone metamodels to demonstrate the capability of their
technique (i.e., PRS, RBF, KR, GP, and SVR). Modeling efficiency and accuracy are
intimately related to the size of the design space in surrogate-based global optimization
using computationally demanding simulations.
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The use of an ensemble of surrogates to solve various optimization problems may be
seen in practically every application. Lau et al. (2013) devised a mathematical method
known as the minimal description length (MDL) for determining the best artificial neu-
ral network (ANN) for reliable demand forecasting. With the goal of permitting many
function evaluations without raising algorithm run-time complexity, Akhtar and Shoe-
maker (2019) integrate the ideas of employing local surrogates and a restart mechanism
to increase algorithm runtime and efficiency. Alizadeh et al. (2019) proposed a method
for constructing a surrogate ensemble that is both accurate and computationally effi-
cient. The ensemble of surrogates is a weighted average surrogate of response surface
models, kriging, and radial basis functions based on overall cross-validation error, ac-
cording to their proposed method. Ye and Pan (2020) attempted to solve the problem of
determining the optimal number and diversity of surrogates for an ensemble. For wind
turbine design, Dhamotharan et al. (2018) suggested an ensemble of surrogates-based
optimization methodology. To cope with reliability-based design optimization for a ve-
hicle protection system, Gu et al. (2015) used an ensemble of surrogates. Chen and Lu
(2020) established a new adaptive reliability analysis method based on ensemble learning
of numerous competitive surrogate models.

An ensemble of surrogates-based design optimization approach is presented in this re-
search to address the need for optimization design issues with unknown characteristics,
which are computationally costly, time-consuming, and rely on computer simulation.
The proposed algorithm’s purpose is to strategically arrange weights in the ensemble
surrogate to obtain accurate solutions with a small number of function evaluations. The
method uses additional design experiment data points from Latin Hypercube Designs to
exploit and explore the design region to get prior knowledge of the high-fidelity function,
and then fits the surrogate models over the discovered region. The weights are then ad-
justed based on the performance of each model, and an ensemble surrogate model is built
using selected candidate points. Once the termination requirement is met, optimization
on the combined surrogate is performed by sampling and assessing the decision variable
points using the combined surrogate. Eventually, the algorithm converges on the global
solution. Benchmark functions and real-life design applications are used to evaluate the
suggested approach’s performance.

The goal of this research is to propose a systematic approach to building/fitting a
range of surrogates for an ensemble. The fundamental surrogate models for building
ensembles are PRS, RBF, and KRG, which are calculated using a weight selection tech-
nique detailed in the next section. Prediction accuracy and robustness are used to assess
these ensembles’ performance on multi-modal benchmark functions and turbomachinery
airfoil shape geometry surrogates. As a result, an efficient method is presented for in-
telligently selecting and constructing appropriate surrogates for expensive computation
issues.
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2 Surrogate models

In this method, a group of surrogates was used in conjunction. To meet the acquired
design points, the proposed solution combines three of the most popular/different sur-
rogates. These are the quadratic response function (QRF) Response Surface Model
(RSM), the linear radial basis function (RBF), and Kriging. The next sections intro-
duce the surrogates that were used.

2.1 Response Surface Method

Response surface methods (RSM) have been successfully employed as metamodels for
over thirty years. It was originally created for the purpose of analysing physical exper-
iments. Polynomial RSM has been successfully employed in a range of applications to
build approximations. The least squares approach is used by RSM to approximate func-
tions on a series of points in the design variable space. Low order polynomials, such as
the first and second order polynomials in Equations (1) and (2), are commonly employed
as approximation functions for the response surface.

ŷ(x) = βo +

k∑
i=1

βixi (1)

ŷ(x) = βo +
k∑

i=1

βixi +
k∑

i=1

k∑
j=1

βijxixj (2)

where, parameters, β, are computed using least squares regression by minimizing the
sum of the squares of the deviations of predicted function values, y(x), from the actual
function values, y(x), using Equation (3).

β̂ = (F TF )−1F T ŷ (3)

where F is the sample data point design matrix and ŷ denotes the response values at
each sample point. Polynomial response surface models are simple to build, and their
smoothing capabilities allows for rapid convergence of noisy functions in optimization.
This oversimplification, however, may be problematic for modelling highly nonlinear or
irregular behaviour. Robust design, transdisciplinary optimization, adaptive techniques
for global optimization, and manufacturing analysis are just a few of the uses for response
surfaces.

2.2 Kriging Metamodels

Kriging (KRG) models are a common global approximation technique today. They’re
particularly appealing for approximating deterministic simulations because of their ca-
pacity to precisely interpolate response values collected at sampling points. The original
relationship is approximated by a Kriging model.
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y = f(x) + z(x) + ϵ (4)

where f(x) is a polynomial with free parameters β for the response surface approach,
Z(x) denotes the realization of a stationary, normally distributed Gaussian random
process with mean zero, variance σ2 and non-zero covariance. Because random errors
are not included in this formulation, the term (only defines the approximation error
(bias).
The unknown parameters β and σ2 can be calculated as follows:

β̂ = (F TR−1F )−1F TR−1ỹ (5)

σ̂2 =
1

n
(ỹ − F β̂)TR−1(ỹ − Fβ̂) (6)

In the typical response surface technique, the term f(x) offers a global trend for
the system behaviour. Because it causes a ”localized deviation” from the polynomial
part of the model, the second half of the formulation Z(x) ensures interpolation of the
observations ŷ the sampling points xi.
The covariance matrix of Z(x) characterizes a Gaussian random process. It is defined

as

Cov(Z(xk), Z(xl)) = σ2R; 1 ≤ (k, l) ≤ 2 (7)

with the correlation matrix

R =


R(x1, x1) · · · R(x1, xn)

...
. . .

...

R(xn, x1) · · · R(xn, xn)

 (8)

Kriging methods can produce accurate forecasts of highly nonlinear or irregular be-
haviour due to the vast range of correlation functions available.

2.3 Radial Basis Function

The radial basis function (RBF) is a useful tool for smoothing and interpolating data
from experiments. The approximate model’s shape is determined by the Euclidean
distance between the sampled data point and the forecasted point. RBF was created as
an analytical method for describing irregular surfaces. It builds approximation models by
combining linear combinations of radial symmetric functions of the Euclidean distance.
The model can be stated mathematically as

ŷ(x) =
N∑
i=1

wiϕ(∥ x− ci ∥) (9)

where the approximated function ŷ(x)) is represented as a sum of N radial basis func-
tions ϕ, each associated with a difference center, ci, and weighted by an appropriate
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coefficient, ωi. The RBF approximation can match arbitrary contours of both determin-
istic and stochastic response functions quite well.

The radial function ϕ(x) used in this work is a Gaussian function as shown in Eq. 10.

ϕ(r) = e−(ar)2 (10)

2.4 Weights Selection Method

One of the goals of this project is to discover the weight parameters for generating
a surrogate ensemble. Acar (2010) and Lee (2014) published several weight selection
strategies. The authors usually choose the fundamental surrogate models based on
experience and personal preference when putting together an ensemble of surrogates.

Building a superior ensemble of surrogates necessitates careful weight selection. The
weights are carefully assigned to increase the ensemble’s overall forecast accuracy. Ac-
cording to Goel et al. (2007), the weights should reflect the surrogates’ confidence and
filter out the negative effects of surrogates that perform badly in sampling sparse re-
gions. A weights selection technique addressing these two issues is proposed in (Goel
et al., 2007) and formulated as:

ωi =
ω∗
i∑m

i=1 ω
∗
i

;ω∗
i = (Ei + αĒ)β; Ē =

1

m

m∑
i=1

Ei, α < 1, β < 0 (11)

Where ωi is the weight associated with the ith basic surrogate, Ei is the given error
measure of the ith basic surrogate, Ē indicates the average value of all surrogates’ error
measure. α and β are taken as 0.05 and -1 respectively as recommend by (Goel et al.,
2007).

2.5 Statistical Validation Methods

Validating the surrogate model is a crucial step. It reflects the surrogate model’s ability
to mimic the high-fidelity model or black-box function. Before being utilized as approxi-
mation models for computation-intensive processes, surrogates need be validated. Many
statistical validation techniques were developed in the previous few decades and are still
in use today. This section contains the statistical models that were utilized to validate
the developed surrogate models in this study.

2.5.1 Root Mean Square Error (RMSE)

The mathematical procedure for computing RMSE is shown in Equation (12)

RMSE =

√∑n
i=1(yi − ŷi)2

n
(12)
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2.5.2 Relative Maximum Absolute Error (RMAE)

The mathematical formula for computing RMAE is represented by Equation (13)

RMAE =
max(| y1 − ŷ1 |, | y2 − ŷ2 |, · · · , | yn − ŷn |)

n
(13)

2.5.3 R-Square

The mathematical formula for calculating R-square is shown in Equation (14).

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(14)

where ŷi is the corresponding predicted value for the observed value yi; ȳ is the mean of
the observed values.

2.6 The proposed approach (Ensemble of surrogates)

The goal of this research is to use an appropriate linear combination of the three surrogate
models, QPF, RBF, and KRG, to generate a better weighted ensemble of surrogates that
can mimic the high-fidelity model in the design space or specifically in promising regions.
The ensemble of surrogate models looks like this:

ŷensebmle(X) = ωqQ(X) + ωrR(X) + ωkK(X) (15)

and

ωq + ωr + ωk = 1 (16)

where hatyensebmle(X) is the metamodel approximate to the analysis/simulation func-
tion, f(X), at sample point x; Q(x),R(x) andK(x) represents theQRF , RBF andKRG
surrogate models respectively; ωq, ωr and ωk are weight coefficients that determine the
contribution of the three models to the mixed metamodel.

The following are the steps that make up the proposed strategy:

1. Randomly generating sample points using LHD in design region

Φ0 = X1, X2, · · · , Xp, Xi ∈ Sn

2. Evaluate the fitness values using the cost functions

y = minf(Xi) : (Xi, f(Xi)) ∈ S

3. Constructing RBF, RSM and KRG surrogate models

4. Identifying and defining a promising region by identifying the upper and lower
boundaries [ub, lb]
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5. Using LHD to generate additional points to refine the search in the potential region

Φj = {X1, . . . Xr, Xr+1, . . . , Xr+p}

6. Selecting candidate points for evaluation utilizing created surrogates and removing
any overlapping spots

7. Choosing new candidate points and calculating weights to be applied to each sur-
rogate

ωi =
ω∗
i∑m

i=1 ω
∗
i

, ω∗
i = (Ei + αĒ)β

8. Using the weights calculated in the previous step, create an ensemble of surrogates.

ŷensemble(X) = ωqQ(X) + ωrR(X) + ωkK(X)

9. Using the ensemble of surrogates, evaluating fresh candidate points and choosing
the best solution

Ωj = {X1, X2, · · · , Xq}, Xi ∈ Sn

ŷmin = min{f̂(X1), · · · , f̂(Xq) : (Xi, f̂(Xi)) ∈ Sn}

10. Determining the ensemble of surrogates’ optimum point (best choice variables) for
all iterations

ŷoptimum(global) = min(ŷmin1, ŷmin2, · · · , ŷminj)j = 1 · · ·N

11. If the termination criterion is met, the process will be terminated.

3 Test problems

3.1 Benchmark test functions

Computation experiments were carried out utilizing a range of benchmark test problems
to demonstrate the robustness and efficiency of the newly presented approach. In terms
of structure and dimensionality, these benchmark problems are deemed representative.
Benchmark difficulties with a lot of dimensions are considered. Figure 1 shows the
mathematical formula for benchmark functions.

3.2 Turbomachinery blades airfoil shape optimization

In this study, the proposed technique is used to optimize the shape of a common GT
compressor blade airfoil (Safari et al., 2015). The goal is to reduce the total pressure
loss coefficient in both design and off-design conditions. The geometry input to the
optimization process was parameterized using NURBS curves. The placements of non-
uniform rational basis spline (NURBS) control points are treated as design variables
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Table 1: Benchmark test functions

Category Function D Search space Analytic global

High dimensional (D > 10) Ackley 10
[
−32 32

]10
0.000

High dimensional (D > 16) Hartmann 16
[
−1 1

]16
-25.875

High dimensional (D > 10) Pavianini 10
[
2.0001 10

]10
-45.7784

in this fashion. This study’s compressor airfoil is made up of four NURBS curves for
four segments, with nine control points identifying each section. There are a total of
72 design variables because each control point has two x and y coordinates. However,
16 parameters are known and fixed, which are the junction positions of the segments.
C2-continuity (requires the second derivative to be zero at the endpoints) is enforced at
the intersections of the segments to identify the remaining 16 parameters. As a result,
the optimization methods will keep 40 variables as design variables. However, to save
CPU time, the geometry of leading edge (LE) and trailing edge (TE) is kept constant
to reduce the number of design parameters while preserving a high level of geometric
flexibility.

The objective function’s formulation has a significant impact on the airfoil optimiza-
tion process’s outcomes. The geometry code generates parameterized profiles, which
are then loaded into COMSOL CFD (computational fluid dynamics software) for a 2-D
fluid flow simulation. Following the convergence check, the acceptable profiles’ post-
processed outputs are entered into the fitness calculation section, where the loss values,
L, of the airfoils should be reduced regarding any geometry. As seen in Figure 2, the
single objective function is as follows:

Min L% = (a1Ls + a2Ld + a3Lc + PF )× 100

Subject to:

(|y3 − y7| and |y3 − y8|) ≤ 15% of the chord

0 ≤ xi
Chord

≤ 100%

40 ≤ yi
Chord

≤ 55%

Where ai are weighting factors, PF is the penalty function of geometry constraint. The
reduction of total pressure loss on the right (Lc) and left (Ls) sides of the design point
significantly expands the operating range. yi and xi are design variables as shown in
Fig. 2.
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The following are the weighting factors for the optimization process: a1 = 0.20, a2 =
0.70, and a3 = 0.10.

Ls =
(Po1−Po2)stall

(0.5ρV 2
1 )

,

Ld = (Po1−Po2)dis
(0.5ρV 2

1 )
,

Lc =
(Po1−Po2)choke

(0.5ρV 2
1 )

Where P01 is intake total pressure, P02 is outlet total pressure, and V1 is inlet velocity.

As shown in Fig. 3, a comparison of the entire airfoil geometry was performed. The
unoptimized or beginning (Datum) airfoil geometry is represented by the dotted line.
The dashed line depicts the RC-GA optimizer-generated airfoil geometry, whereas the
continuous line depicts the APRI-generated optimized airfoil geometry. The most obvi-
ous conclusion from this graph is that the optimization process has considerably altered
the shape of the airfoil in the second half of the chord, from maximum thickness to TE.
When an ensemble of three surrogates is created, improved airfoil geometry is obtained,
which implies better pressure distribution and contributes significantly to raising lifting
force and decreasing drag force of the turbomachinery blades.

4 Test results and discussion

The selected representative test problems were subjected to extensive computational
simulations, and positive results were produced. The recommended strategy (mixed
surrogates) fared comparably well, according to the findings. When compared to other
well-known methodologies, the suggested approach is capable of handling and solving
difficult benchmark problems, discovering the global optimum with equivalent accuracy,
and providing results with lower computation costs.

A summary of the test findings is offered in this section. The Paviani with 10 design
variables, Hartmann with 16 design variables, and Ackley with 10 design variables are
used as benchmark test problems in the literature to evaluate the performance of global
search algorithms. Their dimensions and beginning range of design spece are provided in
Table 1. In Table A1, you’ll find the mathematical forms. In terms of problem dimensions
and objective function shape features, the test problems are representative. Tables 2 to
4 summarize the statistical benchmark test findings. The optimization experiments are
carried out by using an ensemble of surrogates (two to three surrogates were studied and
evaluated). The ensemble of the three surrogates produced good results, with RBF and
PQR being the only combination that can compete with the ensemble of three surrogates.
Three surrogates, on the other hand, are still working on Ackley’s test function and the
turbomachinery airfoil geometry.

Also, to show the advantages of using ensemble of surrogates with three surrogate
models over ensemble of only two surrogates, Tables 5 to 7 show the simulation results
of using ensemble of surrogate for 10 runs. It can be observed that combining three
surrogates gives better results than combining only two surrogates except in few cases.
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In some benchmark problems the two approaches yielded the same result and in other
benchmark problems the second approach (two surrogates) slightly outperformed the
first approach (three surrogates).
The RMSE was calculated to reflect the accuracy and robustness of the prediction.

When three surrogates are combined, improved fitting and regression occurs, showing
that the RBF, PQR, and KRG combination yields better prediction and acceptable
accuracy.
Figure 4 depicts the convergence trend of several surrogate model combinations. When

three surrogates are built, the proposed algorithm begins its search from a point close
to the optimal design variable point, which explains why the ensemble of surrogates
outperforms others due to its speed and robustness of convergence. Figure 4 (a) depicts
the Pavinai convergence trend for all created surrogates, while Figure 4 (b) Simply
depicts the ensemble of three surrogates’ convergence to the global optimum. The same
may be said for Ackley and Hartman, as seen in Figures 4 (d), (e) and (f).

Table 2: Summary of Statistical Test Results of the Proposed Algorithm on Paviani
function

Fitness values

Constructed
Surrogates

Best Mean Median Avg no. of
evaluations

Avg no. of
iterations

RMSE

K+R+P -41.2990 -43.5706 -41.4778 316.6 49.2 0.122

K+P -37.2218 -45.0699 -37.7934 210.5 51 0.417

K+R -38.5587 -39.9133 -39.1370 210.9 46.9 0.526

R+P -44.826 -40.8055 -41.113 155.8 51 0.191

K= Kriging; R= Radial basis Function; and P= Polynomial quadratic response surface
function

5 Conclusion

A new global optimization approach, namely weighted ensemble surrogate (WESO) is
introduced. WESO search mechanism falls in two steps, explore and fit. The “explore”
step is based on exploring the whole design region by generating sample points (agents)
using Latin hypercube sampling (LHS) technique to gain prior knowledge about the
function of interest (learning phase). The “fit” step is to train and fit a weighted en-
semble of surrogate models over the promising region (training phase) to mimic the
computationally intensive true function and replace it with a surrogate model (cheap
function). The surrogates are then utilized to select candidates’ decision variable points
at which the true objective function and constraints’ functions to be evaluated. Weights
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Table 3: Summary of Statistical Test Results of the Proposed Algorithm on Hartman

Fitness values

Constructed
Surrogates

Best Mean Median Avg no. of
evaluations

Avg no. of
iterations

RMSE

K+R+P 27.1408 25.9991 26.1988 280 43.5 0.094

K+P 27.5055 26.4609 27.4181 195.7 48.6 0.128

K+R 26.7742 26.2530 26.6500 220 51 0.149

R+P 26.1536 25.9798 26.1210 166.7 44.1 0.032

Table 4: Summary of Statistical Test Results of the Proposed Algorithm on Ackley

Fitness values

Constructed
Surrogates

Best Mean Median Avg no. of
evaluations

Avg no. of
iterations

RMSE

K+R+P 0.0280 0.0012 0.0225 333.2 49.8 0.069

K+P 0.3036 0.0768 0.1631 199.5 47.4 0.397

K+R 0.4146 0.0114 0.0707 214.7 43.3 0.415

R+P 1.8025 0.5814 1.8058 184.7 48 0.773

are then determined, assigned and an ensemble of surrogate gets constructed using the
candidate sample points where optimization can be carried out. The new algorithm was
tested using a variety of benchmark test problems and found to be performing com-
parably well. The experiment results showed robust performance, comparable search
accuracy and good computation efficiency, making the new approach an excellent tool
for computation intensive, computer analysis/simulation and black-box function based
global optimization problems. The ensemble of three surrogates (PRS-RBF-KRG) is
preferred in view of prediction accuracy and robustness. The objective of this paper is
to guide researchers in selecting the appropriate number of surrogates to be combined
and variety of surrogate modeling techniques for building ensemble models, rather than
concentrating on developing novel ensemble modeling methods.

2009 2010 2019 2019 1997 2020 2018 2003 1991 2016 2007 2001 2015 2005 2008 2013
2014 1994 1963 Myers et al. (2016) 1992 2013 1989 2015 2008 2004 2011 2009 2020 2012
Zhang et al. (2016)
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Figure 1: depicts the flow chart for the suggested technique.



416 Younis, Elbadawy

Figure 2: Schematic diagram of twenty shape design variables (Safari et al., 2015)

Figure 3: Airfoil shape before and after optimization.
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Table 5: Performance comparison of Paviani function with different driven ensemble sur-
rogates

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

K+R+P
Driven

#1 -40.6644 291 45

K+R+P
Driven

#1 -33.4481 205 51

#2 -40.9998 320 51 #2 -32.9570 201 51

#3 -36.9048 331 51 #3 -42.3735 212 51

#4 -41.9558 312 48 #4 -40.0034 210 51

#5 -39.0343 331 51 #5 -41.4583 201 51

#6 -43.1459 330 51 #6 -45.0699 210 51

#7 -40.4866 323 51 #7 -37.5656 222 51

#8 -42.9396 288 45 #8 -33.9391 216 51

#9 -43.5706 338 51 #9 -27.3819 215 51

#10 -43.2882 302 48 #10 -38.0213 213 51

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

K+R+P
Driven

#1 -39.0893 220 51

K+R+P
Driven

#1 -43.1555 153 51

#2 -33.9908 58 13 #2 -40.2848 164 51

#3 -39.2194 212 48 #3 -39.1702 161 51

#4 -39.1846 233 51 #4 -39.05339 154 51

#5 -39.9133 234 51 #5 -41.94126 156 51

#6 -38.3937 217 51 #6 -42.5321 153 51

#7 -39.7890 241 51 #7 -42.60387 151 51

#8 -38.4542 227 51 #8 -44.82604 147 51

#9 -39.5528 233 51 #9 -38.6702 161 51

#10 -38.0004 234 51 #10 -35.8177 158 51
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Table 6: Performance comparison of Hartmann’s function with different driven ensemble
surrogates

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

K+R+P
Driven

#1 26.2855 290 45

K+R+P
Driven

#1 27.7551 206 51

#2 26.1160 275 42 #2 28.9615 201 51

#3 26.1758 306 48 #3 28.5915 201 51

#4 26.1110 289 45 #4 26.4609 173 42

#5 25.9991 325 51 #5 26.6331 209 51

#6 26.2218 194 30 #6 27.2154 204 51

#7 26.6281 309 48 #7 28.0189 212 51

#8 26.0210 275 42 #8 27.5910 196 51

#9 26.3396 283 45 #9 27.2452 203 51

#10 26.0553 254 39 #10 26.5826 151 36

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

K+R+P
Driven

#1 -26.6569 215 51

K+R+P
Driven

#1 26.2188 155 42

#2 26.5398 224 51 #2 26.1111 193 51

#3 26.6431 222 51 #3 26.1146 151 39

#4 26.2530 220 51 #4 25.9897 196 51

#5 26.8666 220 51 #5 26.3954 190 51

#6 28.3216 220 51 #6 25.9864 193 51

#7 26.7158 219 51 #7 25.9798 178 48

#8 26.3660 224 51 #8 26.3389 136 36

#9 27.0946 214 51 #9 26.2744 158 42

#10 26.2843 214 51 #10 26.1273 117 30
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Table 7: Performance comparison of Ackley’s function with different driven ensemble
surrogates

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

K+R+P
Driven

#1 0.0096 339 51

K+R+P
Driven

#1 0.1052 218 51

#2 0.0086 304 45 #2 0.2143 190 45

#3 0.0415 339 51 #3 0.8256 115 27

#4 0.0308 321 48 #4 0.1251 219 51

#5 -39.0343 331 51 #5 -41.4583 201 51

#6 0.0134 342 51 #6 0.1517 216 51

#7 0.0651 349 51 #7 0.9231 211 51

#8 0.0302 335 51 #8 0.0768 191 45

#9 0.0012 351 51 #9 0.1429 217 51

#10 0.0147 333 51 #10 0.1744 207 51

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

Surrogate
assisted
model

Run
No.

f∗ NOE #
Itera-
tions

K+R+P
Driven

#1 0.0203 230 45

K+R+P
Driven

#1 1.2643 199 51

#2 0,0621 249 51 #2 0.5814 195 51

#3 0.0164 256 51 #3 2.6376 196 51

#4 0.1240 258 51 #4 2.6538 136 33

#5 0.0114 247 51 #5 1.3503 149 51

#6 0.7888 71 13 #6 2.6581 150 39

#7 2.1723 90 18 #7 3.0653 189 51

#8 0.0793 249 51 #8 0.7937 192 51

#9 0.0616 259 51 #9 2.2613 200 51

#10 0.8094 245 51 #10 0.7594 196 51
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Figure 4: convergence trends and convergence speed of ensemble of surrogates on Pa-
viani, Hartmann and Ackley (a) (c) and (e) respectively. (b), (d), and (f)
ensemble of best number of surrogates for Paviani, Hartmann and Ackley re-
spectively.


