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In this paper, truncated lifetime testing is considered, and new single ac-
ceptance sampling plans (SASP) are proposed assuming that the lifetime
distribution is the q-Weibull distribution of a product. Assuming a finite
population size (limited population size, N); the inspection process for a sin-
gle sampling plan is ASP(n,p) begins by choosing a simple random sample
from a given lot, then based on pre-assigned quality standards, the manager
will decide to reject the lot if some items fail to meet the pre-assigned qual-
ity standards. Since the population is limited; then this experiment meets
the hypergeometric distribution assumptions. The hypergeometric theory
is applied to compute the probability of acceptance, and the procedure is
used to compute the minimum sample size and the operating characteristics
of the sampling plans. Also, a real data analysis is given to illustrate the
applicability of the proposed plan in the industry.

keywords: Q-Weibull Distribution, Single Acceptance Sampling Plan, Re-
liability Testing, Operating Characteristic Function. (three to six keywords
separated by comma).

1 Introduction

Acceptance sampling (AS) is one of the main fields in planning for quality assurance,
which uses statistical methods in quality control. It is inspection and decision-making
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concerning products based on a randomly selected sample. Acceptance sampling plans
(ASP) are sequential sampling procedures that are typically used as a tool for product
inspection to test if the product is within the specification limits or not before consumer’s
use (Al-Nasser and Obeidat (2020); Al-Nasser and Haq (2021); Tripathi, Dey, and Saha
(2021)). The US Military for testing shipment bullets was the first that used ASP during
World War II. Nowadays, ASP is considered as significant statistical procedures that are
used to assist companies, manufacturing, and educational institutions to minimize the
product variability and to improve the outgoing product quality (Montgomery (2009);
Aslam and Ali (2019); Gogah, and Al-Nasser (2018); Saha, Tripathi, and Dey (2021);
Tripathi, Saha, and Alha (2020)). ASP help us to examine whether the manufactured
products meet the pre-specified quality levels, and to assess the quality level of the
product based on sampled items. Since the sample is randomly selected from a lot that
includes good and bad items, there is always a causal of making a wrong decision. And
there are two types of risks (Aydemir and Olgun , 2010): producer’s risk (α∗) which is
probability of rejecting a good lot and consumer’s risk (β∗) which is the probability of
accepting a bad lot. Henceforth, the operation of the single ASP has parameters:

� The sample size or the number of units on the test (n),

� Let µ and µ0 be the true and the specified average product life, respectively

� An acceptance number c, number of acceptable failures or defective items (d).

� The maximum test duration time, t0.

� Decide on the following hypothesis and declare a lot of product is good or bad:

H0 : µ ≥ µ0 (The product is good)

H1 : µ < µ0 (The product is bad)

Then the decision on the hypothesis can be taken in one of two ways: reject the null
hypothesis if D is more than c, or truncate the experiment as soon as the time of the
experiment exceed to, whichever occurs first (Aslam and Ali (2019); ?); Al-Omari, Al-
Nasser (2019)). Usually, the researchers develop ASP if the product’s lifetime follows a
specific lifetime distribution such as, exponential, Gamma, Weibull, etc. (Balakrishnan,
Leiva, and Lopez (2007); Rao, Kantam, Rosaiah and Reddy (2012); Al-Omari, Al-
Nasser (2019); Al-Omari (2015); Al-Nasser, Al-Omari, Bani-Mustafa, and Jaber (2018);
Schilling, and Neubauer (2009)). Assuming the population size is large, and then by
considering the binomial theory in developing the ASP, (Kantam and Rosaiah (2005);
Baklizi, El Masri, and Al-Nasser (005)), developed the truncated life test when the life
distribution of the test items follows an inverse Rayleigh distribution. Al-Omari, Al-
Nasser and Ciavolino (2019) showed a new acceptance sampling plans based on Rama
distribution in the particular case when the mean lifetime test is truncated. Gogah, and
Al-Nasser (2018) used the median ranked acceptance sampling plans for the exponential
distribution. In addition, Baklizi (2003) proposed a single ASP for Pareto model,
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whose he found the minimum sample size and the characteristics function for the model.
Moreover, ASP is suggested based on the truncated life test when the life distribution
of the test items follows an exponentiated Fréchet distribution (Al-Nasser, Al-Omari
(2013)). . Also, Al-Omari, Aslam , Al-Nasser (2018) developed a single-acceptance
sampling plan for a new lifetime distribution called an Ishita distribution, under the
assumption that the mean lifetime is a pre-assigned quality parameter. In this article,
we consider of using q-Weibull distribution. Accordingly, we organized the article in
several sections, the next section will introduce the q-Weibull distribution and discuss
some of its properties. Section 3, illustrate the idea of single acceptance sampling for
finite populations, section 4 hypergeometric theory under the ASP context. In section 5
a real data analysis is given and the article is end up with some remarks given in section
6.

2 q-Weibull distribution

The q-Weibull distribution (QWD) can describe as complex systems with long-range
interactions and long-term memory (Xu, Droguett, Lins, and Moura (2017); Picoli,
Mendes, and Malacarne (2003)). The main idea of QWD obtained by the connec-
tion between Tsallis statistics and pathway idea of Mathai (2005). QWD is derived by
maximizing the Tsallis entropy (Mathai, Saxena, and Haubold (2010)):

TsallisEntropy =

∫ ∞

−∞

f(x)qdx− 1

1− q
; q ̸= 1 (1)

where q is a real parameter.

Subject to the probability density function constraint i.e.,
∫∞
−∞ f(x)dx = 1; and a

fixed mean constraint
∫∞
−∞ xf(x)dx = given; assuming non-negative domain. Then the

corresponding QWD is obtained by parametrizing the generalized pathway model, where
the parameter q is restricted to q < 1; or 1 < q < 2. Accordingly, the QWD’s probability
density function (pdf) is:

fq(x) = αλα(2− q)xα−1expq(−(λx)−α);x ≥ 0 (2)

such that x ∈

{
[0,∞) , for 1 < q < 2,

[0, xmax] , for q < 1,
with xmax = α

(1−q)
1
β

where α > 0 and q < 2 ; both are shape parameters, and λ > 0 is a scale parameter.
Moreover, the q-type functions introduced in non-extensive statistical mechanics for
non-extensive formalism. One of the functions is the q-exponential function (deformed
exponential) defined as (Xu, Droguett, Lins, and Moura (2017))

expq (x) =

{
(1 + (1− q)x)

1
1−q , if 1 + (1− q)x > 0,

0 , otherwise

Henceforth final formula of the QWD will be:
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fq(x) = αλα(2− q)(x)α−1
[
1 + (q − 1)(λxλxλxλx)α

− 1
q−1 , x > 0, α, λ > 0 , 1 < q < 2

The corresponding q-Weibull cumulative distribution function (CDF ) as follows:

F (x) =
∫ x
0 f (t)dt = 1− [1 + (q − 1)(λx)α]

q−2
q−1 ; x ≥ 0

As q → 1 tended to be Weibull density with two parameters α and λ and the p.d.f.
is

f (t) = αλα (t)α−1 e(λx)
α

, x ≥ 0, α, λ > 0

when α = 1, becomes q-exponential distribution

f (x) = λ (2− q) [1 + (q − 1) x]
1

1−q , x ≥ 0, λ > 0

and when q → 1 with α = 1 became the standard exponential density. Moreover,
the survival function

F (x) = 1− F (x) =1-
[
1− [1 + (q − 1)(λx)α]

q−2
q−1

]
=[1 + (q − 1)(λx)α]

q−2
q−1 ; x ≥ 0

However, the Hazard rate function is :

h (x) =
f (x)

F (x)
=

αλα (2− q) (x)α−1 [1− (1− q) (x)α]
1

1−q

[1− (1− q) (x)α]
2−q
1−q

=
αλα (2− q) (x)α−1

1− (1− q) (x)α
; |x| < 1

λ(1− q)
1
α

The hazard rate function is decreasing for both q < 1and 1 < q < 2 and for q = 1, it
is decreasing, increasing, and constant based on the value of α < 1 , α > 1, or α = 1;
respectively.

Moreover, the moment generating function of QWD is

MX (t) = E
(
etX
)
=

∫ ∞

0
etxαλα (2− q) (x)α−1 [1− (1− q) (x)α]

1
1−q dx

Then kth moment about of QWD is:

E
(
xk
)
=

2− q

λk (q − 1)
k
α
+1

Γ
(
k
α + 1

)
Γ
(

1
q−1 − k

α − 1
)

Γ
(

1
q−1

) ;
1

q − 1
− k

α
− 1 > 0

Therefore, the mean and variance of the QWD are:
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Figure 1: The hazard rate function.

µ = E (x) =
2− q

λ (q − 1)
1
α
+1

Γ
(
1
α + 1

)
Γ
(

1
q−1 − 1

α − 1
)

Γ
(

1
q−1

) ;
1

q − 1
− 1

α
− 1 > 0, (2.2)

σ2 = E
(
x2
)
− [E (x)]2

= 1
2(q−1)

2
α Γ

(
2−q
q−1

)
{
2Γ
(
2
α

)
Γ
(
2−q
q−1 − 2

α

)
− 1

α

Γ2( 1
α)Γ

2
(

2−q
q−1

− 1
α

)
Γ
(

2−q
q−1

)
}
; 2−q
q−1 − 1

α > 0 ,

(2.3)

3 Acceptance Sampling Plans for Finite Populations

The acceptance sampling experiment from finite population is performed by selecting a
random sample of n items without replacement from a lot ofN items in which the lot
contains D nonconforming or defective items. Now, if N is finite then D is assumed to
be a random variable following the hypergeometric distribution with probability mass
function:

P (D = x) =

M
x


N −M

n− x


N
n


;x = 0, 1, . . . , n , where M = [N ∗ p] , 0 < p < 1 (3.1)

where the lot quality p = M/N and the sample size is n. Note that the number of
good parts in the lot is(N −M), and the number of good parts in the sample is (n − x).
Then the probability of acceptance is simply the probability that Dis less than or equal
(acceptable number) is known by the operating characteristics (OC(p)) of the plan:

L(p) = P (D ≤ c)
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Therefore, for a given values of c and β∗ (Type II error), the objective is to determine
the smallest sample size n such that:

L(AQL) ≤ β∗. (3.2)
where AQL is the acceptable quality level that equivalent to the cumulative distribu-

tion for product characteristic under inspections (Baklizi (2003); Baklizi and El Masri
(2004)). Moreover, based on the minimum sample size obtained by solving (3.1), re-
searchers also will use the lot tolerance percent defective (LTPD) for finding the termi-
nation time by solving (3.2) for some given values of α∗ (Type I error):

LTPD ≥ 1− α∗ . (3.3)

4 ASP using QWD with finite population size

Single acceptance sampling plan ASP (n, p) will be designed assuming that the QWD
is the lifetime distribution of a product; from finite population (limited population size,
N). The inspection process for a single ASP (n, p) begins by choosing a simple random
sample from a given lot, based on pre-assigned quality standards, the manager will decide
to reject the lot if some items fail to meet the quality standards pre-assigned. Since
the population is limited; then this experiment meets the hypergeometric distribution
assumptions. The acceptance sampling producer specifies the values of c and n which
reduces level the probability of error to an acceptable level. In other words, the intention
of acceptance sampling aims to minimize the probability of classifying the lot wrongly.
When the sample contains a small number of defective products (d ≤ c), this shows
the high-quality lot to the consumer. Then the decision about the sampling plan will be
If d ≤ c then accept the lot as likely high quality. However, if d > c then reject the lot
as likely low unacceptable quality. Moreover, the life test ends at a pre-assigned time t
and the numbers of failures through this time interval [0, t] are observed. For simplicity,
we set the determined time t as

t = dµ0

where µ0 is the specified mean lifetime and d is a positive constant (Baklizi (2003);
Gui, and Aslam (2015); Al-Omari (2015)).
The acceptance sampling plan (n, c, d) consists of:

� The number of unit’s n on test.

� The acceptance number c, where the lot is accepted if at most c failures
out of n are observed at the end of the predetermined time t.

� A ratio = t
µ0

.

The acceptance or rejection of the lot is equivalent to the acceptance or rejection of
the hypothesis H0:µ = µ0.
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Accordingly, the consumer’s risk is fixed not to exceed 1− p∗, (0 < p∗ < 1). That is
the true mean lifetime µ is less than the specified mean lifetime µ0 (µ < µ0). Therefore,
the customer identifies the LTPD as the maximum acceptable rate of bad quality. If
well thought out, the sampling plan has values for n and c which show little chance of
acceptance if p is more than the LTPD the consumer tolerated. This means that the
probability of error P (x ≤ c|p ≥ LTPD) = β is very small. In other words, the customer
protects himself from against poor quality by selecting a suitable sampling plan that
holds the risk for undesirable levels of p at a low and tolerable level. Therefore, the
hypergeometric distribution could be applied and for given value c and p∗, the objective
is to determine the smallest sample size n such that:

c∑
d=0

(
M

d

)(
N −M

n− d

)
(
N

n

) ≤ 1− p∗,

where p = F (t;λ0) is the given cumulative distribution for product characteristic
under inspections which depends only on the ratio d = t

µ0
, and λ0 is a value of λ when

µ = µ0.

4.1 Optimal sample size of the ASP (n, c, t
µ0
)

The optimal sample size for the ASP can be obtained under the following assumptions:

� The confidence level of rejecting a lot if µ0 < µ with probability p∗ is, 1− p∗ where
p∗ ∈ (0, 1).

� The lot size N is small and satisfies the hypergeometric distribution assumptions.

Then, the problem will be in finding the optimal sampling plan ASP(N,n,c, t
µ0

is to
find the minimum sample size n such that the number of failures d does not exceed c,
to ensure that µ0 < µ satisfies the following inequality:

∑c
d=0


M
d


N −M

n− d


N
n



 ≤ 1− p∗ ,

∑c
d=0

N ∗ F
(

t
µ0

∗ µ0

µ

)
d


N −N ∗ F

(
t
µ0

∗ µ0

µ

)
n− d


N
n


≤ 1− p∗,

where p = F (t, µ0) = 1−

[
1 +

(
t
µ0

2−q

(q−1)
1
α

Γ( 1
α
+1)Γ

(
1

q−1
− 1

α
−1

)
Γ
(

1
q−1

)
)α] q−2

q−1

.
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= 1−

1 +
 t

µ0

2− q0

(q0 − 1)
1
α0

Γ
(

1
α0

+ 1
)
Γ
(

1
q0−1 − 1

α0
− 1
)

Γ
(

1
q0−1

)
α0

q0−2
q0−1

, t ≥ 0,
1

q − 1
− 1

α
−1 > 0

The inequality becomes:

∑c
d=0




N ∗

1−

[
1 +

(
t
µ0

2−q0

(q0−1)
1
α0

Γ
(

1
α0

+1
)
Γ
(

1
q0−1

− 1
α0

−1
)

Γ
(

1
q0−1

)
)α0

] q0−2
q0−1


d




N −N ∗

1−

[
1 +

(
t
µ0

2−q0

(q0−1)
1
α0

Γ
(

1
α0

+1
)
Γ
(

1
q0−1

− 1
α0

−1
)

Γ
(

1
q0−1

)
)α0

] q0−2
q0−1


n− d


N
n




≤

1− P ∗

It could be noted that the given cumulative distribution of the product under inspec-
tion depend only on the ratio d = t

µ0
, also the unknown parameters of the distribu-

tion which assuming to have the following initial values N=30, α0 = 1, λ0 = 2, q0 =
1.2 respectively when µ = µ0 the experiment needs only to specify this ratio.

The minimum values of n satisfying inequality 3.3 were obtained for P ∗ = 0.75, 0.9, 0.95, 0.99,
and t

µ0
= 0.628, 0.942, 1.25, 1.571, 2.356, 3.141, 3.927, 4.712. This choice is consistent

with that of (Gupta, and Groll (1961); Kantam and Rosaiah (2005); Baklizi (2003);
Tsai, and Wu (2006); Al-Nasser, Al-Omari (2013)). The results of the minimum sam-
ple size under q-Weibull distribution are given in Table.1. For example, assume that
the researcher aims to ensure that the product’s mean lifetime is at least 1000 h, with
probability p∗ = 0.95 when c = 3, such that the lifetime distribution test is at least t
= 3141h; that is, t/µ0 =3.141.Then from Table 1, the optimal sample size for this plan
is 5. Accordingly, we can use the appropriated ASP (n, c, t/µ0) = ASP (5, 3, 3.141),
which means that a simple random sample of size 5 items should be selected from a lot of
products, and if at most 3 items fail in meeting the quality standards before the specified
time, t, with in the test period (1000 h), then the lot is accepted with probability 0.95.

4.2 Operating characteristic function of the ASP (n, c, t
µ0
)

Values of the OC(p) as a function of µ
µ0

for some selected sampling plans are given in
Table 2 from the equation (3.2). The results summarize the values of the OC(p) for
the ASP (30, n, c = 2, t/µ0). As an example, when p∗ = 0.99, the OC(p) values for
the ASP (30, 9, 2, 0.942) are re-calculated as follows:

µ
µ0

2 4 6 8 10 12

OC(p) 0.1298 0.6569 0.8568 0.9310 0.9793 1.0000
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This means that if the true mean life is twice the specified mean life ( µ
µ0

= 2) the
producer’s risk is about(1-0.1298 = 0.8702). Which means, using the QWD minimize
the producer’s risk, this is considering an advantage of QWD in acceptance sampling
plan applications.

4.3 Producers risk of the ASP (n, c, t
µ0
)

The producer risk is the probability of rejecting the lot when µ ≥ µ0. Using the
sampling plan under consideration, and given a value for the producer’s risk, say 0.05,
one may be interested in knowing what the value is of µ

µ0
that will ensure the producer’s

risk less than or equal to 0.05. This value of µ
µ0

is the smallest number µ
µ0

for which

F
(

t
µ0

∗ µ0

µ

)
satisfying the inequality L (LTPD) ≥ 1− α∗

∑c
i=0

M
d


N −M

n− d


N
n


≥ 0.95.

Are computed and presented in Table 3 with α0 = 1, λ0 = 2 , q0 = 1.2. As an
example, suppose we are using the ASP(30, 9, 2, 1.571) with the consumer’s risk equals
to 10% (p∗ = 0.90), then from Table 3, the minimum value of µ

µ0
is 11.23. It implies

that, when c = 2, the lot with 9 items will be rejected with probability less than or equal
to 0.05.

5 Real data application

The data considered in this illustration is lifetime data measured in months of 20 small
electric carts that used by manufacturing company for internal transportation and de-
livery services in a large manufacturing facility (Zimmer, Keats and Wang (1998); Lio,
Tsai, and Wu (2010)): (0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0,
16.3, 19.3, 22.6, 24.8, 31.5, 38.1, 53.0)

Now, suppose that the manufacturing company assured that the mean life of the
electric carts is 18 months, then what is the acceptable sampling plan with ∗ = 0.90, for
this manufacturing company?. The goodness of fit results was acceptable (−2MLL =
73.6867, AIC = 151.3772, BIC = 153.3687, CAIC = 152.0831, HQIC = 151.766,
A–D = 0.0746 , K–S = 0.0584, P − value = 0.9999). The results indicate that an
excellent fit with K–S distance value between the empirical and the theoretical QWD
equal to 0.1887329 with p−value = 0.2075 . Moreover, the MLE is used to estimate the
QWD parameters assuming that α = 1. The results showed that q̂ = 0.9789( 0.2794 )
and λ̂ = 0.0655(0.0359 ), where the values between brackets are the standard deviation
of the estimator.

Therefore,
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µ̂ =
2− q̂

λ̂ (q̂ − 1)
1
α̂
+1

Γ
(
1
α̂ + 1

)
Γ
(

1
q̂−1 − 1

α̂ − 1
)

Γ
(

1
q̂−1

)
= 2−0.9789

0.0655(0.9789−1)
1
1+1

Γ( 1
1
+1)Γ( 1

0.9789−1
− 1

1
−1)

Γ( 1
0.9789−1)

= 14.649 .

Also, it is assumed that t = 18 months. Therefore, t
µ0

= 18
14.649 = 1.257 based

on the estimated values and the given minimum sample size values in Table 1 with
p∗ = 0.95 and t

µ0
= 1.257, is n = 15 when c = 8, therefore the optimal ASP will be

ASP(20,15,8,1.257).

6 Conclusions

This study presents a new plan based on q-Weibull distribution. Assuming the products
population is finite, the classical plan parameters are derived, including the minimum
sample size, operating characteristic function producer risk and the minimum value of
the true mean life. An illustration of the proposed plan is discussed using real data
from the industry. Future work could be done by introducing sampling plans when the
products population is infinite.
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Table 1: Minimum sample sizes necessary to ensure the mean life
exceeds a given value µ0 with probability P ∗ and the cor-
responding acceptance number c based on Hypergeomet-
ric probabilities when N =30 and q=1.2.

t/(µ0)

P ∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 2 2 2 1 1 1 1 1

1 5 4 3 3 2 2 2 2

2 7 5 5 4 4 3 3 3

3 9 7 6 6 5 5 5 4

4 11 9 8 7 6 6 6 5

5 13 11 9 8 7 7 7 6

6 15 12 10 9 8 8 8 7

7 17 14 12 11 9 9 9 9

8 19 15 13 12 11 10 10 10

9 21 17 15 13 12 11 11 11

10 23 18 16 15 13 12 12 12

0.9 0 4 3 2 2 2 1 1 1

1 6 5 4 3 3 3 3 2

2 9 7 6 5 4 4 4 4

3 11 8 7 6 5 5 5 5

4 13 10 9 8 6 6 6 6

5 15 12 10 9 8 7 7 7

6 17 13 11 10 9 8 8 8

7 19 15 13 12 10 9 9 9

8 21 17 14 13 11 11 11 10

9 23 18 16 14 12 12 12 11

10 24 20 17 15 13 13 13 12

0.95 0 4 3 3 2 2 2 2 1

1 7 5 4 4 3 3 3 3

2 10 7 6 5 4 4 4 4

3 12 9 8 7 6 5 5 5

4 14 11 9 8 7 6 6 6

5 16 13 11 9 8 7 7 7

6 18 14 12 11 9 9 9 8

7 20 16 13 12 10 10 10 9

8 22 17 15 13 11 11 11 10

9 23 19 16 15 13 12 12 11

10 25 20 17 16 14 13 13 12

0.99 0 6 5 4 3 2 2 2 2

1 9 7 6 5 4 3 3 3

2 12 9 7 6 5 5 5 4

3 14 11 9 8 6 6 6 5

4 16 12 10 9 7 7 7 6

5 18 14 12 10 9 8 8 7

6 20 16 13 12 10 9 9 8

7 21 17 14 13 11 10 10 9

8 23 19 16 14 12 11 11 10

9 24 20 17 15 13 12 12 11

10 26 21 18 17 14 13 13 12
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Table 2: OC function values for the Hypergeometric sampling plan
(N=30,n,c,d) with given probability P ∗ for corresponding
acceptance number c=2 based on QWD.

µ
µ0

P ∗ n d 2 4 6 8 10 12

0.75 7 0.628 0.6569 0.9321 0.9914 1 1 1

5 0.942 0.6327 0.9321 0.9781 0.9907 0.9975 1

5 1.257 0.5 0.8568 0.9321 0.9781 0.9907 0.9975

4 1.571 0.531 0.8736 0.9525 0.9819 0.9907 0.9962

4 2.356 0.2835 0.7011 0.8736 0.931 0.9693 0.9819

3 3.141 0.5015 0.799 0.9103 0.9594 0.9793 0.9862

3 3.927 0.4335 0.7192 0.8621 0.9296 0.9594 0.9704

3 4.712 0.2796 0.6207 0.799 0.8879 0.9296 0.9594

0.9 9 0.628 0.4411 0.8568 0.9793 1 1 1

7 0.942 0.3257 0.8146 0.9321 0.9693 0.9914 1

6 1.257 0.3257 0.7627 0.8799 0.9587 0.9819 0.9951

5 1.571 0.3043 0.7548 0.898 0.9587 0.9781 0.9907

4 2.356 0.2835 0.7011 0.8736 0.931 0.9693 0.9819

4 3.141 0.1691 0.531 0.751 0.8736 0.931 0.9525

4 3.927 0.1188 0.4072 0.6475 0.7965 0.8736 0.9048

4 4.712 0.0394 0.2835 0.531 0.7011 0.7965 0.8736

0.95 10 0.628 0.3436 0.8088 0.9704 1 1 1

7 0.942 0.3257 0.8146 0.9321 0.9693 0.9914 1

6 1.257 0.3257 0.7627 0.8799 0.9587 0.9819 0.9951

5 1.571 0.3043 0.7548 0.898 0.9587 0.9781 0.9907

4 2.356 0.2835 0.7011 0.8736 0.931 0.9693 0.9819

4 3.141 0.1691 0.531 0.751 0.8736 0.931 0.9525

4 3.927 0.1188 0.4072 0.6475 0.7965 0.8736 0.9048

4 4.712 0.0394 0.2835 0.531 0.7011 0.7965 0.8736

0.99 12 0.628 0.1869 0.6957 0.9458 1 1 1

9 0.942 0.1298 0.6569 0.8568 0.931 0.9793 1

7 1.257 0.1949 0.6569 0.8146 0.9321 0.9693 0.9914

6 1.571 0.1531 0.6201 0.8254 0.9246 0.9587 0.9819

5 2.356 0.102 0.5 0.7548 0.8568 0.9321 0.9587

5 3.141 0.0413 0.3043 0.567 0.7548 0.8568 0.898

5 3.927 0.0219 0.1912 0.433 0.6327 0.7548 0.8088

4 4.712 0.0394 0.2835 0.531 0.7011 0.7965 0.8736
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Table 3: Minimum value of the true mean life to specified mean
life for the acceptance of a lot with producer’s risk of
0.05 with q=1.2 using Hypergeometric Probabilities.

P ∗ c t
µ0

0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 24.595 36.892 49.229 61.526 92.269 123.012 153.794 184.537

1 7.844 11.765 15.699 19.621 29.425 39.229 49.045 58.849

2 3.649 5.474 7.304 9.128 13.689 18.25 22.817 27.378

3 2.245 3.367 4.493 5.615 8.421 11.227 14.036 16.841

4 1.731 2.596 3.464 4.33 6.493 8.656 10.822 12.985

5 1.231 1.846 2.463 3.078 4.615 6.153 7.693 9.23

6 1 1.351 1.802 2.253 3.378 4.503 5.63 6.755

7 1 1 1.326 1.657 2.485 3.313 4.142 4.97

8 1 1 1 1.058 1.586 2.114 2.643 3.171

9 1 1 1 1 1.01 1.346 1.682 2.019

10 1 1 1 1 1 1 1 1

0.9 0 24.595 36.892 49.229 61.526 92.269 123.012 153.794 184.537

1 12.033 18.049 24.084 30.1 45.14 60.18 75.24 90.28

2 4.489 6.734 8.985 11.23 16.84 22.451 28.069 33.68

3 3.048 4.572 6.101 7.625 11.435 15.245 19.059 22.869

4 2.245 3.367 4.493 5.615 8.421 11.227 14.036 16.841

5 1.537 2.306 3.076 3.845 5.766 7.687 9.61 11.531

6 1.107 1.66 2.215 2.768 4.151 5.534 6.919 8.302

7 1 1.22 1.628 2.035 3.051 4.068 5.085 6.102

8 1 1 1.071 1.338 2.006 2.674 3.343 4.012

9 1 1 1 1 1.39 1.853 2.317 2.78

10 1 1 1 1 1 1 1 1

0.95 0 24.595 36.892 49.229 61.526 92.269 123.012 153.794 184.537

1 12.033 18.049 24.084 30.1 45.14 60.18 75.24 90.28

2 5.748 8.621 11.504 14.378 21.562 28.746 35.939 43.124

3 3.649 5.474 7.304 9.128 13.689 18.25 22.817 27.378

4 2.597 3.895 5.197 6.496 9.741 12.987 16.236 19.482

5 1.731 2.596 3.464 4.33 6.493 8.656 10.822 12.985

6 1.231 1.846 2.463 3.078 4.615 6.153 7.693 9.23

7 1 1.351 1.802 2.253 3.378 4.503 5.63 6.755

8 1 1 1.326 1.657 2.485 3.313 4.142 4.97

9 1 1 1 1.058 1.586 2.114 2.643 3.171

10 1 1 1 1 1 1 1 1

0.99 0 24.595 36.892 49.229 61.526 92.269 123.012 153.794 184.537

1 12.033 18.049 24.084 30.1 45.14 60.18 75.24 90.28

2 7.844 11.765 15.699 19.621 29.425 39.229 49.045 58.849

3 4.489 6.734 8.985 11.23 16.84 22.451 28.069 33.68

4 3.048 4.572 6.101 7.625 11.435 15.245 19.059 22.869

5 2.245 3.367 4.493 5.615 8.421 11.227 14.036 16.841

6 1.731 2.596 3.464 4.33 6.493 8.656 10.822 12.985

7 1.231 1.846 2.463 3.078 4.615 6.153 7.693 9.23

8 1 1.351 1.802 2.253 3.378 4.503 5.63 6.755

9 1 1 1.194 1.492 2.237 2.982 3.728 4.473

10 1 1 1 1 1 1 1 1


