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Finite mixture models have several applications in many fields such as
statistics, economics, marking, medicine and reliability analysis. In this pa-
per, we obtain the maximum likelihood estimates of the parameters of the
mixture of two one-parameter Lindley distributions by using two types of
data namely; classified and unclassified samples. Next, we estimate the lin-
ear discriminant function of the underlying mixture model and calculate the
total probabilities of misclassification as well as the percentage bias through
a series of simulation experiments and some real data sets. Consequently,
we study the problem of updating the discriminant function on the basis of
data of unknown origin. We consider the updating procedure for the linear
discriminant function on the basis of two one-parameter Lindley distribu-
tions in situations when the additional observations are mixed or classified.
Finally, we study the performance of the updating procedures through some
simulation experiments by means of the relative efficiencies.
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1 Introduction

The use of finite mixture distributions for modeling phenomena goes back to the early
years of statistics. The mixture models have been considered extensively by many au-
thors such as (Everitt and Hand (1981), Titterington et al. (1985), McLachlan and
Basford (1988), Lindsay (1995), McLachlan and Peel (2000) and Al-Moisheer (2021)).
Lindley distributions was proposed by Lindley (1958) in the context of fiducial and
Bayesian statistics to illustrate the difference between fiducial distribution and posterior
distribution. Moreover, the statistical properties of Lindley distributions were discussed
by Ghitany et al. (2008) and they have shown that this distribution is a better model for
some applications than other distributions such as exponential distribution. Therefore,
Al-Moisheer et al. (2021) proposed a finite mixture of two one-parameter Lindley dis-
tributions and proved the identifiability. They also studied the statistical properties of
this mixture model. Further, Daghestani et al. (2021) suggested a new mixture model in
which one of itscomponents is the one parameter Lindley distribution namely the mix-
ture of Lindley and Weibull distributions. On the other point of view, Al-Moisheer et al.
(2021) introduced a new mixture model based on the one parameter Lindley distribu-
tion namely the mixture of Lindley and inverse Weibull distributions. Also, Al-Moisheer
(2021) introduced a new mixture of Lindley and Lognormal Distributions. Here, we
present the mathematical formula of the probability density function (pdf) of the mix-
ture of two one-parameter Lindley distributions (MLLD) as follows

f(x; p, θ1, θ2) = p

(
θ21

θ1 + 1
(1 + x) e−θ1x

)
+ (1− p)

(
θ22

θ2 + 1
(1 + x) e−θ2x

)
,

0 < p < 1;x > 0; θ1, θ2 > 0 (1)

where

(
θ2i

θi+1 (1 + x) e−θix

)
is the pdf of Lindley distribution with one parameter

θi, i = 1, 2 and p is the mixing proportion. On the other hand, the cumulative distribu-
tion function (cdf) of the MLLD is given by

F (x; p, θ1, θ2) = p

(
1− (θ1a+ 1 + θ1x) e−θ1x

θ1 + 1

)
+(1−p)

(
1− (θ2 + 1 + θ2x) e−θ2x

θ2 + 1

)
,

x > 0, θ1, θ2 > 0; 0 < p < 1. (2)

Discriminant analysis is a technique for analyzing data to find a set of prediction equa-
tions based on independent variables that are used to classify individuals into groups
(see McLachlan (2004)). The discriminant analysis of the finite mixture models is an im-
portant procedure for many applications. Okamoto (1963) has illustrated an asymptotic
expansion for the distribution of the linear discriminant function. The probability of
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misclassification for a discriminant rule has estimated by Fukunaga and Kessell (1973).
(McLachlan (1975), McLachlan (1977)) has considered the use of the unclassified ob-
servations for a special case of equal prior probabilities. Besides, (Ganesalingam and
McLachlan (1978), Ganesalingam and McLachlan (1979), Ganesalingam and McLach-
lan (1981)) have evaluated the efficiency of a linear discriminant function estimated from
a mixture of normal populations. However, there are some books which discuss linear
discriminant analysis as Duda et al. (2001). Murray et al. (1978) have suggested the
updating procedures that are appropriate for non-normal situations. Some authors have
considered the discriminant analysis, (see, Amoh and Kocherlakota (1991), Sultan et al.
(2013), Al-Moisheer (2016), Ahmad et al. (2010) and Al-Moisheer et al. (2017)).
In this paper, we estimate the discriminant function and the updating process of the
MLLD and focus on the linear methods for classification. This paper is organized as fol-
lows: In Section 2, we estimate the unknown parameters of the mixture model through
the maximum likelihood estimation. We derive the optimal linear discriminant function
from the MLLD in Section 3. Further, we estimate the discriminant function from the
MLLD in Section 4 according to mixed and classified samples. In order to check the
performance of the classification technique we calculate the total probabilities of misclas-
sification. Next, in Section 5 we investigate the problem of updating the discriminant
function estimated from the MLLD. Moreover, we discuss the error rate of misclassifica-
tion and we evaluate the relative efficiency of the mixture and classified discrimination
procedures in Section 6. Furthermore, we carry out some simulation experiments to
evaluate the efficiency of the linear discriminant function in Section 7. Finally, in Sec-
tion 8, we apply the estimated linear discriminant function of the MLLD on a set of real
data and write our conclusions in Section 9.

2 MLEs

The method of maximum likelihood is used in a wide range of statistical analyses. In
this section, we derive the maximum likelihood estimates of the unknown parameters
of the MLLD. Let X1, X2, ..., Xn be a random sample from MLLD, the log-likelihood
function can be written from (1) as follows

L∗ = logL =
n∑

j=1

log

(
p

θ21
θ1 + 1

(1 + xj)e
−θ1xj + (1 − p)

θ22
θ2 + 1

(1 + xj)e
−θ2xj

)
, (3)

Differentiating with respect to the parameters p, θ1, θ2 and equating these derivatives
to zero, we get

L∗ =
∂L∗

∂p
=

n∑
j=1

f1(xj ; θ1)− f2(xj ; θ2)

pf1(xj ; θ1) + (1− p)f2(xj ; θ2)
= 0, (4)
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∂L∗

∂θ1
=

n∑
j=1

p(1 + xj)e
−θ1xj

(
θ1(2+θ1)
(θ1+1)2

− xjθ
2
1

(θ1+1)

)
pf1(xj ; θ1) + (1− p)f2(xj ; θ2)

= 0, (5)

∂L∗

∂θ2
=

n∑
j=1

(1− p)(1 + xj)e
−θ2xj

(
θ2(2+θ2)
(θ2+1)2

− xjθ
2
2

(θ2+1)

)
pf1(xj ; θ1) + (1− p)f2(xj ; θ2)

= 0, (6)

where

fi(xj) =
θ2i

θi + 1
(1 + xj) e

−θixj , i = 1, 2, ..., n and, j = 1, 2. (7)

The non linear equations (4-6) have to be solved numerically using one of the numer-
ical techniques such as Newton-Raphson method. This has been done by applying the
(rootSolve) package in R (see; Kerns(2010)). Section 8 displays the numerical results of
the ML estimates. The variance-covariance matrix of the estimates has been obtained by
first calculating the second order partial derivatives of the loglikelihood function using
equation (4-6) in order to compute Fisher information matrix and then inverting this
matrix.

3 Linear Discriminant Analysis

The statistical approach of the discrimination problem or classification considered in
this section, deals with a set of observations which come from two populations. Also,
the discriminant functions can be either linear in the components of x or nonlinear. A
linear discriminant function is created as a linear combination of independent variables.
Now if all population parameters are known, we can construct an optimal discriminant
function denoted by LDo(x) based on these parameters. In most cases, the population
parameters are unknown then the MLEs will be used in place of the unknown parameters
to give the estimated discriminant function. The discriminant analysis method is called
linear if the associated Bayes decision rule is linear with respect to the observation
x. To define a linear discriminant function as LD(x) = a + bx, we use the Bayesian
decision theory that is a fundamental statistical approach to the problem of pattern
classification. Consequently, we show the formulation of the linear discriminant function
of MLLD and how we use it to classify a new observation according to this discriminant
function. Let Π1 and Π2 be two populations of the one-parameter Lindley distribution
with densities fi(x), i = 1, 2, as given in (7). Also, we define W1j as the probability
that the observation xj arises from the ith population. Therefore, we can compute
the posterior probabilities that the observation xj has been generated by each of the
two populations. Since the underlying model is mixture then we can calculate the
probabilities W1j and W2j = 1−W1j by using Bayes’ formula expressed as follows [see
Duda et al. (2001)]

W1j =
pf1(xj ; Θ1)

pf1(xi; θ1) + (1− p)f2(xi; θ2)
and W2j = 1−W1j , (8)
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that is

W1j = {1 + exp[a+ bx]}−1, (9)

where

a = ln
(1− p)

p
+ ln

θ22(1 + θ1)

θ21(1 + θ2)
and b = θ1 − θ2, (10)

and p is the prior probability of the observation coming from Π1.
Consequently, the probability that an individual x of unknown origin has come from Π1

is given as

Pr(x ∈ Π1) = {1 + exp[LD(x)]}−1, (11)

where LD(x) = a + bx. Therefore, we may classify x in Π1, according to whether the
value of the linear discriminant function LD(x) is less or greater than zero. So, if x ∈ Π1

then (1− p) = 0 and a = −∞ since ln 0 = −∞. Thus, the classification rule is to assign
a new observation to Π1 or Π2 according to the linear discriminant function based on
the following result {

x ∈ π1, if LD(x) < 0,

x ∈ π2, otherwise.
(12)

4 Estimation of the Discriminant Function

Estimating discriminant functions is important in the field of discriminant analysis. Usu-
ally, the parameters of the populations are unknown. The available data can be used
to estimate the unknown parameters of the density function and then the discriminant
function can be estimated. Therefore, an important factor in the estimation of the dis-
criminant function is the available data. We will consider the following data types in
order to estimate the discriminant function for these data types.
(i) Classified sample: In this data type, we obtain the data by sampling from each
population and the origin of each observation is known while the population parameters
are unknown. Consequently, we can obtain a classified discriminant function based on
the parameter estimates from these classified samples denoted by (c).
(ii) Mixed sample: In this case, we have data obtained by sampling from a mixture
population and the origin of each observation is unknown. Our concern here is to con-
struct a mixture discriminant function based on the mixed samples denoted by (m).
(iii) Classified and mixed sample: This data type is a combined sample from clas-
sified, Type (i), and mixed, Type (ii), samples. This kind of samples is denoted by cm
sample and we use it to update the discriminant function that estimated from MLLD.

4.1 Classified sample (c)

In this type of data, we have initial observations or input vector as (xi1, xi2, ..., xini)
available from Πi with sample size ni, i = 1, 2 and n = n1 + n2. In order to obtain the
classified linear discriminant function LDc(x), we will replace the unknown parameters
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of the following equation by their MLEs calculated from the classified samples as given
below.

LDc(x) = ã− b̃x, (13)

where ã = ln (1−p̃)
p̃ + ln

θ̃22(1+θ̃1)

θ̃21(1+θ̃2)
and b̃ = θ̃1 − θ̃2 and (θ̃1, θ̃2) are the MLEs in the

classified samples case are given by [see Ghitany et al. (2008)]

θ̃i =
−(x̄i − 1) +

√
(x̄i − 1)2 + 8x̄i

2x̄i
, i = 1, 2, (14)

p̃ =
n1

n
. (15)

4.2 Mixed sample (m)

In the case of this type of data, all initial observations come from the mixture of Π1 and
Π2. The linear discriminant function for this mixed sample is given by

LDm(x) = â+ b̂x, (16)

where â = ln (1−p̂)
p̂ + ln

θ̂22(1+θ̂1)

θ̂21(1+θ̂2)
and b̂ = θ̂1 − θ̂2 and (p̂, θ̂1, θ̂2) are MLEs of the

parameters that given in Section 2 equations (4-6) via using a numerical method such
as the Newton-Raphson. We use the R packages software to get the MLEs of the three
unknown parameters, (see; Kerns (2010)).

5 Updating Procedure

In this section, we define the updating procedure for the discriminant function. Up-
dating the linear discriminant function shows how the additional observations affect the
performance of the discriminant function. To update the linear discriminant function
that is estimated from the MLLD we use the third data type. Commonly, we separate
the (cm) sample into the following two models.

5.1 Model (I) (classified)

Suppose that a discriminant function has been estimated based on a limited number
of classified observations from one-parameter Lindley populations. Also, we have a
reasonably large sample of unclassified observations from the MLLD. Therefore, we use
these additional observations to improve the estimates of the unknown parameters for
estimating the discriminant function. Consequently, we will examine the performance
of the updated discriminant function by comparing it with the initial one that was
estimated from the classified data.
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5.2 Model (II) (unclassified)

In this model, we assume that a linear discriminant function has been estimated by using
a sample from MLLD. We then obtain a relatively small sample of classified observations
from the one-parameter Lindley populations. We wish to use these classified observations
to update the estimates of the parameters for estimating the linear discriminant function.
The performance of the updated linear discriminant function will be compared to that
of the linear discriminant function estimated from the mixture sample alone. McLachlan
and Ganesalingam (1982) have studied the problem of updating a discriminant function
on the basis of unclassified data which is a data of unknown origin. Consequently, we can
obtain the estimates of the parameters p, θ1 and θ2 as a by-product. Let the classified
samples be represented by Xi = (xi1, xi2, ..., xini), for i = 1, 2, with n = n1 + n2 and the
mixed sample represented by Y = (y1, y2, , ym).
Let the classified samples be represented by Xi ≡ (xi1, xi2, ..., xini), for i= 1, 2, with
n = n1 + n2 and the mixed sample represented by Y ≡ (y1, y2, ..., ym).
Under both models and using the cm sample, the likelihood function is given by

L2(p1, α1, α2, β|x1, x2, y) =
(
n

n1

)
pn1(1− p)n2{

2∏
i=1

ni∏
j=1

fi(xij)}
m∏
k=1

f(yk), (17)

where fi(.) and f(.) are given, respectively, by (7) and (1) for i = 1, 2. By differentiating
logL2 with respect to the parameters (p, θ1, θ2) and setting the partial derivatives to
zero, we can obtain the required estimates as illustrated below

∂ logL2

∂p
=

n1

p
− n2

(1− p)
+

m∑
k=1

f1(yk; θ1)− f2(yk; θ2)

pf1(yk; θ1) + (1− p)f2(yk; θ2)
= 0, (18)

∂ logL2

∂θ1
=

n1∑
j=1

(1 + x1j)e
−θ1x1j

(
θ1(2+θ1)
(θ1+1)2

− x1jθ
2
1

(θ1+1)

)
f1(x1j ; θ1)

+ p
m∑
k=1

(1 + yk)e
−θ1yk

(
θ1(2+θ1)
(θ1+1)2

− ykθ
2
1

(θ1+1)

)
pf1(yk; θ1) + (1− p)f2(yk; θ2)

= 0, (19)
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∂ logL2

∂θ2
=

n2∑
j=1

(1 + x2j)e
−θ2x2j

(
θ2(2+θ2)
(θ2+1)2

− x2jθ
2
2

(θ2+1)

)
f2(x2j ; θ2)

+ (1− p)

m∑
k=1

(1 + yk)e
−θ2yk

(
θ2(2+θ2)
(θ2+1)2

− ykθ
2
2

(θ2+1)

)
pf1(yk; θ1) + (1− p)f2(yk; θ2)

= 0. (20)

Furthermore, we use R packages software to solve the system of non-linear equations
(18-20) by applying some numerical methods such as Newton Raphson to get the pa-
rameter estimates, (see; Kerns (2010)). All the numerical results are displayed later in
Section 7.

6 Error Rates and Relative Efficiencies

Since there is always a possibility of making the wrong classification, we may need to
define the probability of an observation misclassifying. Therefore, we can compute this
probability as follows:
Suppose eik, i = 1, 2, k = o, c,m denote the conditional probability that an individual
from Π1 is misallocated by the kth discriminant function, where o denotes optimum, c
denotes classified and m denotes mixed. We also have ek that denote the overall error
rates which can be obtained by weighting the conditional error rates (total probabilities
of misclassification) by the true mixing proportions. So, ek is given by

ek = p1e1k + p2e2k. (21)

We classify x ∈ Π1, if LDk(x) < 0, for k = o, c,m, otherwise x ∈ Π2. The probabilities
of misclassifying an observation from Πi, i = 1, 2 by the linear discriminant function
LDk(x) is

e1k = Pr(ak + bk > 0 | Π1), k = o, c,m, . (22)

Putting γk = [−ak/bk], we have

e1k =


1− F1(γk, θ1), θ1 > θ2,

F1(γk, θ1), θ1 < θ2.

(23)

where Fi(., θi), i = 1, 2 is the cdf of the one parameter Lindley distribution. Similarly,
e2k is given by
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e2k =


F2(γk, θ2), θ1 > θ2,

1− F2(γk, θ2), θ1 < θ2.

(24)

We can examine the performance of the updated discriminant functions when the
additional observations are classified (Model I) and unclassified (Model II) according to
the linear discriminant functions estimated from classified and mixed samples by Monte
Carlo simulation experiments. The relative efficiency is a performance measure for the
developed updating procedures that obtained based on the total error rates. The relative
efficiencies of the updated linear discriminant function relative to the initial classified (c)
and mixed (m) linear discriminant functions can be denoted, respectively, by , εc and
εm, where

εc =
ēc − ēMII

ēc − ēMI
, (25)

and

εm =
ēm − ēMII

ēm − ēMI
. (26)

Also, we measure the asymptotic relative efficiencies of the updated linear discriminant
function by

ε∞ =
ēMI − eo
ēMII − eo

. (27)

where MI denotes the updating according to completely classified data (Model I),
MII denotes the updating according to mixture (unclassified) data (Model II) and o
denotes optimum.

7 Simulation Experiments

This section examines the performance of estimating and updating the discriminant
functions of the MLLD through different types of data classified (c), mixed (m), classified
and mixed (cm) which are separated according to Model (I) and Model (II). The main
goal of this section is to show the usefulness of the linear discriminant function and study
the behavior of the MLEs of the mixed and classified samples that used to estimate the
linear discriminant function from MLLD. In addition, we investigate the performance of
LDm(x) compared with LDc(x) and LDo(x), via the error of misclassification criterion.
Besides, we update the discriminant function when the additional observations are mixed
or classified. Thus, the simulation algorithm is described as follows:

Generate random samples of sizes 50 and 100 from MLLD using different combinations
of parameter values such as θ1 = 0.55, 0.70 with θ2 = 0.5, 0.85 and different values of
the mixing proportion p = 0.45, 0.75. Further, we use R package (rlindley) to generate
the required random samples from one parameter Lindley distribution via the uniform
generator (runif).
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Repeat the samples generation according to 1000 replications gives n1 observations iden-
tifiable from the first component, n2 from the second component yielding a mixed sample
of size n = n1 + n2. The numerical results for the simulation process of the MLLD ac-
cording to classified and mixed samples are displayed in Tables 1, 2, 3 and 4. In Table 1,
we calculate the bias and mean squared error (MSE) of the parameter estimates from the
mixed samples and compare them with those from the classified samples based on 1000
repetitions and different choices of MLLD parameters. By using the classified samples
we have n1 is drawn from the first components with parameter θ1 and n2 is drawn from
the second components with parameter θ2.
Also, in Tables 1, we observe that, the estimates are consistent since the MSE of the
MLEs decreases when the sample size increases for both samples classified and mixed.
Moreover, we perform a series of simulation experiments in order to study the perfor-
mance of LDm(x) relative to LDc(x) and LDo(x) as displayed in Table 2 that show the
conditional probabilities of misclassification for the classified and mixed samples with
the optimal probabilities of misclassification when n = 50, 100.
Therefore, we estimate the unknown parameters of MLLD by MLE and evaluate the total
conditional probability of misclassifications, as defined in (22), for the classified, mixture
and updated linear discriminant procedures for each generated sample. There were av-
eraged over 1000 repetitions for each combination of MLLD parameters considered and
listed in Table 2 where the standard deviation of the probabilities of misclassification is
shown in parentheses.
In general, we notice from Table 2 that the standard deviation of eim, i = 1, 2 are smaller
than that of eic, i = 1, 2 since the mixture samples gives less error in estimating the model
unknown parameters. Further, the values of ēm are closer to the corresponding optimal
values than those of ēc. In addition, when p increase, then the optimal probabilities of
misclassification decrease. Also, when θ1 or θ2 increase the optimal values decrease.
Besides, in Table 2, we calculate the relative bias to optimal for both mixed and classi-
fied. The first entry in each cell under |B(ēk)| is the value of the absolute bias from eo,
standardized by the standard deviations of ek, k = m, c denoted by sdkwhich is given
by |ēk − eo|/sdk, k = m, c. The second is the value of the ratio of the absolute bias to
eo which is given by |ēk − eo|/eo, k = m, c. So, we notice that the mixed samples have
better results than classified samples since the values of the relative bias according to eo
are less in the mixed samples and close to zero.
However, there are some cases where the performance of ēc getting better and be more
close to the optimality especially when the value of the mixing proportion p increase from
0.45 to 0.75. Conversely, when we increase the value of θ1 from 0.55 to 0.70 we get bad
performance for ēc. Moreover, the performance of the mixture discrimination procedure
is quite well compared with the classified procedure in terms of total probability.
From Table 3, we can see that the total probabilities of misclassification of the updated
procedure are close to the corresponding optimal case. However, the value of the total
probabilities of misclassification ēm decreases as m increase. On the other hand, ēm and
ēc are not good estimates of eo compared with the total probabilities of misclassification
in the updated procedure.
The relative efficiencies and asymptotic relative efficiencies of the updated discriminant
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functions, as defined, respectively, in (25), (26) and (27) were calculated and presented
in Table 4. In all cases of Table 4 the sample size has a significant effect on the relative
efficiency since they are decrease when m increases from 50 to 100 in Model I (classified)
and Model II (unclassified). Moreover, when we increasing the mixing proportion p, the
asymptotic relative efficiency will decreases at θ1 = 0.55 and increases at θ1 = 0.70. In
most cases, we notice that the asymptotic value of the relative efficiency decreases when
m increases from 50 to 100.

8 Real Data Analysis

In this section, we apply the estimated discriminant function of the MLLD on a real
data set to illustrate the importance of the classification process.

Application 1
The first data considered here represents the ordered lifetimes of 20 electronic compo-
nents and these data are shown as follows
0.03, 012, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 1.79, 1.8, 1.94, 2.38, 2.4, 2.87, 2.99,
3.14, 3.17, 4.72, 5.09; (see; Razali and Salih (2009)).
The unknown parameters of the MLLD are estimated using the maximum likelihood
method. In order to solve the system of non linear likelihood equations, the R package
(nleqslv) is used (see; Kerns (2010)). In addition, we evaluate the Kolmogorov-Smirnove
(ks) test statistic and its corresponding p-value using the function ks.test() in R (see;
Kerns (2010)) to check the goodness of fit of the real data to MLLD. The results of the
MLEs of the MLLD parameters and the ks test statistic are displayed below.

MLEs for parameters ks P-value

p̂ θ̂1 θ̂2

0.1006 0.2555 0.7721 0.1291 0.8511

We note that the maximum distance between the data and the fitted MLLD is 0.1291
and that the p-value is 0.851 which indicate that the MLLD is an appropriate model
for this data set. Moreover, we apply the linear discriminant function LDm(x) by (16)
for the above data set in order to classify the observations in the mixed data set one
by one into either Π1 or Π2. We find that 1 out of 20 from the first population Π1 are
classified into Π1 with probability 0.05 and 19 out of 20 from the second population Π2

are classified into Π2 with probability 0.95.

Application 2
The second application is taken from Torabi et al. (2014). The data set consists of 188
observations that represent the number of successive failures for the air conditioning
system of each member in a fleet of Boeing 720 jet airplanes (1963). Again, we use the
maximum likelihood method to estimate the unknown parameters of the MLLD and we
check the data fitting to the MLLD through the ks test statistic and its p-value. From
the results shown below, we note that the maximum distance between the data and the
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fitted model is 0.0497 and that the p-value is 0.7429 which reveal that the model is a
good fit for the data set.

MLEs for parameters ks P-value

p̂ θ̂1 θ̂2

0.4602 0.0121 0.0626 0.0497 0.7429

Also, applying the linear discriminant function LDm(x) in (16) for this data set, we find
that 76 out of 188 from the first population Π1 are classified into Π1 with probability
0.4043 whereas 112 out of 188 from the second population Π2 are classified into Π2 with
probability 0.5957.

9 Conclusion

In this paper, the discriminant analysis of the mixture of two one-parameter Lindley
distributions is our main goal. So, we have introduced the mathematical formula of the
pdf and cdf of this mixture model. Next, the maximum likelihood method has been
used in order to estimate the unknown parameters of the underlying mixture model.
Furthermore, we discuss the discriminant function of the MLLD and focus on the linear
methods for classification. Generally, the linear discriminant function can be considered
as a prototype classifier since it is commonly used and easy for interpretation in many
situations. Also, we derive the optimal linear discriminant function from the MLLD. We
estimate the discriminant function from the MLLD according to mixed and classified
samples and we calculate the total probabilities of misclassification in order to check the
performance of the classification techniques. moreover, we investigate the problem of
updating procedure for the linear discriminant function on the basis of the MLLD in two
different situations when the additional observations are classified or mixed. Besides,
we evaluate the performance of all the classification procedures via calculating the error
rate of misclassification and the relative efficiency means of the estimated discriminant
function from the MLLD through a series of simulation experiments. Therefore, we con-
clude that the total probabilities of misclassification ēm are closer to the corresponding
optimal values than those of ēc. Further, the mixed samples have better results than
classified samples since the values of the relative bias according to eo are less in the mixed
samples and close to zero. Thus, the performance of the mixed discriminant procedure
is quite well compared with the classified procedure in terms of the total probabilities of
misclassification. In general, the total probabilities of misclassification of the updated
procedure are close to the corresponding optimal case than ēm and ēc.
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