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In this paper, we propose a new two parameter continuous distribution.
It is called a Benrabia distribution. Some statistical properties are derived
such as: the moment generating function, the moments and related mea-
sures, the reliability analysis and related functions. Also, the distribution of
order statistics and the quantile function are presented and the Rényi en-
tropy is derived. The method of maximum likelihood estimation is used to
estimate the distribution parameters. A simulation is performed to investi-
gate the performance of MLE, real data applications show that the proposed
distribution can provide a better fit than several well-known distributions.

keywords: Mixing distribution, Benrabia distribution, reliability analysis,
Rényi entropy, maximum likelihood estimation, moment generating function.

1 Introduction

In statistics, modeling lifetime data is an important issue in many fields including
biomedical sciences, economics, finance, engineering. A lot of continuous distributions
have introduced for modeling such data, because they can contribute better fit than the
based distribution. Some studies have shown the inferiority of some of these distribu-
tions in modelling lifetime data sets when compared with some newer models. This is
the motivation that lead to the search for other distributions with better fitting to real
life data and more flexibility.
A random variable X is said to have a mixture of two or more distributions (f1(x),

· · · , fk(x)), if its probability density function (pdf) g(x) =
∑k

i=1 bifi(x) with 0 ≤ bi ≤ 1
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is the mixing weight, such that
∑k

i=1 bi = 1. Recently, several distributions have been
proposed from mixing distributions, for example, Shraa and Al-Omari (2019) suggested

Darna distribution as a mixture of Exp
(

θ
α

)
and Γ

(
3, θ

α

)
with mixing proportion 2α2

2α2+θ2
.

Shanker (2017) suggested Rama distribution as a mixture of two components of Exp(θ)

and Γ(4, θ) using mixing proportion θ3

θ3+6
. Another two components mixture of Exp(θ)

and Γ(3, θ) is proposed using mixing proportion θ3

θ3+2
by Shanker and Shukla (2017)

named Ishita distribution. Shanker (2016) suggested Aradhana distribution by mix-

ing Exp(θ), Γ(2, θ) and Γ(3, θ) with mixing proportions θ2

θ2+2θ+2
, 2θ

θ2+2θ+2
and 2

θ2+2θ+2
.

Shanker (2015) used the mixture weight θ2

θ2+1
with Exp(θ) and Γ(2, θ) to propose Shanker

distribution. Gharaibeh (2021) proposed Gharaibeh distribution as a four components

mixture of exp(β), Γ(2, β), Γ(4, β) and Γ(6, β) with mixing proportions β6

β6+β4+β2+1
,

β4

β6+β4+β2+1
, β2

β6+β4+β2+1
and 1

β6+β4+β2+1
; respectively. Benrabia and Alzoubi (2021)

employed the concept of mixture distributions using the exponential and gamma dis-
tributions, with mixture proportions αβ

αβ+1 and 1
αβ+1 , to suggest a new two parameters

distribution called Alzoubi distribution.

Other ways of proposing new distributions are used, like the transmutation maps. For
example, transmuted Mukherjee-Islam distribution (Al-zou′bi, 2017), transmuted Janar-
dan distribution (Al-Omari et al., 2017b), a generalization of the new Weibull Pareto
distribution (Al-Omari et al., 2017a) and transmuted Shanker distribution (Al-Zoubi
et al., 2021). Some other distributions using this map were generated by AzZwideen and
Al-Zou’bi (2020); Alsikeek (2018); Rabaiah (2018); Saadeh (2019); Almawajdeh (2019);
Almousa (2019).

In this article, we employed the concept of mixture distributions to suggest a new two
parameters distribution called Benrabia distribution. This new distribution is a mixture
of two components of Exp(β) and Γ(α − 1, β) with mixing proportions α

α+β and β
α+β ,

respectively. Also, we want to prove that the suggested distribution is more flexible than
the base distribution based on some real lifetime data.

This paper is organized as follows, in Section 2 we define the probability density and
the cumulative distribution function of Benrabia distribution. In Section 3, we consider
some statistical properties including the moments, the moment generating function,
skewness, kurtosis, and coefficient of variation. In Section 4, we conduct the reliability
analysis including the reliability, hazard rate, cumulative hazard rate, reversed hazard
rate and odds ratio functions of Benrabia distribution. In Section 5, we describe the
density of order statistics and the quantile function. Sections 6 and 7 derive the Bonf-
feroni and Lorenz curves and the Rényi entropy. In Section 8, we determine the mean
deviation about mean and median. In Section 9, we study the estimation of the model
parameters using maximum likelihood method. In Section 10, we provide a simulation
study. Section 11 present some real lifetime data sets. Finally, in Section 12, we end
this research with a conclusion and suggested a future work.
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2 Benrabia Distribution

In this section, we define the probability density function (pdf) and the cumulative
distribution function (cdf) of the proposed distribution with graphic illustration for
both of them.

Definition A random variableX is said to have a Benrabia distribution with parameters
α and β (it is denoted by X ∼ Br(α, β)), if its pdf is defined as:

g(x|α, β) = β

α+ β

(
α+

xα−2βα−1

Γ(α− 1)

)
e−βx x > 0, α > 1, β > 0 (1)
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Figure 1: Plots of Benrabia probability density function with different parameters values
(a), (b), (c) and (d).

The cumulative distribution function of Benrabia distribution is given by

G(x|α, β) = 1

α+ β

[
α(1− e−βx) + β P (α− 1, βx)

]
, (2)
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where P (α, x) = γ(α,x)
Γ(α) is the lower regularized gamma function with γ(α, x) =

∫ x
0 tα−1e−tdt,

is the lower incomplete gamma function.
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Figure 2: Plots of Benrabia distribution function with different parameters values (a)
and (b).

Figure 1 shows the graph of the pdf of Benrabia distribution for different values of α
and β. We show that the distribution is skewed right.

3 Moments and Moment Generating Function

In this section, the moment generating function and the rth moment are presented. Also
the mean, variance, kurtosis, skewness and coefficient of variation are calculated.

Theorem 1 The moment generating function of the proposed distribution is defined by

MX(t) =
β

α+ β

[
α

β − t
+

(
1− t

β

)−(α−1)
]

t < β (3)

Proof:

MX(t) = E
(
etX
)
=

∫ ∞

0

etxg(x)dx

=
αβ

α+ β

∫ ∞

0

e−(β−t)xdx+
β

α+ β

∫ ∞

0

xα−2βα−1e−(β−t)x

Γ(α− 1)
dx

=
αβ

α+ β

(
−1

β − t

)
e−(β−t)x

∣∣∣∣∞
0

+
β

α+ β

(
β

β − t

)(α−1)

=
αβ

(α+ β)(β − t)
+

β

α+ β

(
β

β − t

)(α−1)
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Theorem 2 The rth moment of Benrabia distribution can be expressed as follows

E(Xr) =
1

(α+ β)βr

[
αΓ(r + 1) + β

Γ(α+ r − 1)

Γ(α− 1)

]
(4)

Proof: Let X have a Br(α, β), then the rth moment is

E(Xr) =

∫ ∞

0

xrg(x)dx

=
αβ

α+ β

∫ ∞

0

xre−βxdx+
β

α+ β

∫ ∞

0

xr+α−2βα−1e−βx

Γ(α− 1)
dx

=
αβ

α+ β

Γ(r + 1)

βr+1
+

β

α+ β

Γ(α+ r − 1)

Γ(α− 1)βr

=
1

βr(α+ β)

[
α Γ(r + 1) + β

Γ(α+ r − 1)

Γ(α− 1)

]
□

Using (4), the first four moments of the suggested distribution are

µ =E(X) =
α− β + αβ

β(α+ β)

E(X2) =
α2β − αβ + 2α

β2(α+ β)

E(X3) =
α3β − αβ + 6α

β3(α+ β)

E(X4) =
α4β + 2α3β − α2β − 2αβ + 24α

β4(α+ β)

Based on these moments; the variance, standard deviation, coefficient of variation, and
coefficients of skewness and kurtosis of Benrabia distribution are, respectively, defined
as

σ2 = E(X2)− µ2 =
α2β − αβ + 2α

β2(α+ β)
−
[
α− β + αβ

β(α+ β)

]2
=

α3β + α2(1− 3β) + β2(α− 1) + 4αβ

β2(α+ β)2

σ =

√
α3β + α2(1− 3β) + β2(α− 1) + 4αβ

β2(α+ β)2

C.V =
σ

µ
=

√
α3β + α2(1− 3β) + β2(α− 1) + 4αβ

α− β + αβ
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sk(X) =
E(X3)− 3µE(X2) + 2µ3

σ3

=

[
(α+ β)2(α3β − αβ + 6α) + (α+ αβ − β)3

+ (−3α+ 3β − 3αβ)(α2β − αβ + 2α)(α+ β)

]
(α3β + α2(1− 3β) + β2(α− 1) + 4αβ)

3
2

=

[
α5β − α4β2 − 3α4β − α3β3 + 6α3β2 − α3β + α3

+ 3α2β3 − 14α2β2 + 9α2β − αβ3 + 15αβ2 − β3

]
(α3β + α2(1− 3β) + β2(α− 1) + 4αβ)

3
2

ku(X) =
E(X4)− 4µE(X3) + 6µ2E(X2)− 3µ4

σ4

=

[
(α+ β)3(α4β + 2α3β − α2β − 2αβ + 24α)− 4(α− β + αβ)(α3β − αβ + 6α)(α+ β)2

+ 6(α+ αβ − β)2(α2β − αβ + 2α)(α+ β)− 3(α+ αβ − β)4

]
(α3β + α2(1− 3β) + β2(α− 1) + 4αβ)2

4 Reliability Analysis

If T is a random variable that follows Benrabia distribution, then the survival or relia-
bility function(RF), hazard, cumulative hazard function, the reversed hazard rate and
odd functions corresponding to (1) are respectively, defined by

R(t) = 1−G(t) =
αe−βt + β [1− P (α− 1, βt)]

α+ β

h(t) =
g(t)

1−G(t)
=

βe−βt
(
α+ tα−2βα−1

Γ(α−1)

)
αe−βt + β [1− P (α− 1, βt)]

H(t) = −ln(1−G(t))

= ln(α+ β)− ln(αe−βt + β [1− P (α− 1, βt)]),

rh(t) =
g(t)

G(t)
=

βe−βt
(
α+ tα−2βα−1

Γ(α−1)

)
α(1− e−βt) + β P (α− 1, βt)

O(t) =
G(t)

1−G(t)
=

α(1− e−βt) + β P (α− 1, βt)

αe−βt + β [1− P (α− 1, βt)]

Figure 4 shows that the cumulative hazard rate functions is an increasing function.
While the reversed hazard function is a decreasing function.

Table 5.1 shows the values of the mean, standard deviation, skewness, excess kurtosis
and the coefficient of variation of Benrabia distribution for values of β of 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, and 4.5 and values of α of 1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.2 and
4.5. The table shows that the distribution is skewed right regardless the value of α and
β. The excess kurtosis = kurtosis – 3, (Joanes and Gill, 1998). The values of excess
kurtosis are all positive, which means that the tails of the distribution are heavier than
the normal distribution tails. It, also shows that the values of the mean and standard
deviation decrease as the values of β increases. They increase as the value of α increases.
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Figure 3: The reliability and hazard rate functions of Br distribution when β = 2 and
β = 6
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Figure 4: The reversed and cumulative hazard rate functions of Br distribution when
β = 2 and β = 6

5 Order Statistics and Quantile Function

In this section, we will derive the distribution of order statistics and the quantile function
of Benrabia distribution.

5.1 Order statistics

Let X(1), X(2), ...X(n) be the order statistics of the random sample X1, X2, · · · , Xn se-

lected from Br distribution. The pdf of the jth order statistics X(j) is defined as

g(j)(x) = j

(
n

j

)
[G(x)]j−1[1−G(x)]n−jg(x) (5)

By replacing (1) and (2) in (5) and using binomial theorem, we get
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g(j)(x) = j

(
n

j

)
β

(α+ β)n

j−1∑
k=0

(
j − 1

k

)
[α(1− e−βx)]k[β P (α− 1, βx)]j−k−1

×
n−j∑
l=0

(
n− j

l

)
[αe−βx]l[β(1− P (α− 1, βx))]n−j−l.

(
α+

xα−2βα−1

Γ(α− 1)

)
e−βx

= j

(
n

j

)
β

(α+ β)n

j−1∑
k=0

k∑
t=0

(
j − 1

k

)(
k

t

)
(−1)k−te−β(k−t)xαk[β P (α− 1, βx)]j−k−1

×
n−j∑
l=0

n−j−l∑
s=0

(
n− j

l

)(
n− j − l

s

)
(−1)n−j−s−l[P (α− 1, βx)]n−j−s−l

× βn−j−l[αe−βx]l.

(
α+

xα−2βα−1

Γ(α− 1)

)
e−βx

5.2 Quantile Function

The quantile function of a probability distribution with cdf, G(x), is defined by q =
G−1(xq), where 0 < q < 1. Then, the quantile function of Benrabia distribution is given
by

Qp =
1

β

[
γ−1

(
(α− 1),

Γ(α− 1)

β

[
(α+ β)p+

αβ

log(1− p)

])]
, (6)

where γ−1(., .) is the inverse of the lower incomplete gamma function.

Proof: By using (2), we have

p = G(x) =
1

α+ β

[
α(1− e−βx) + β P (α− 1, βx)

]
p(α+ β) =

[
α(1− e−βx) + β

γ(α− 1, βx)

Γ(α− 1)

]
p(α+ β)− αF (x) = β

γ(α− 1, βx)

Γ(α− 1)
,

where F (x) is the cdf of the exponential distribution. So

γ(α− 1, βx) =
Γ(α− 1)

β

[
p(α+ β)− α

F−1(x)

]
By exerting the idea of Samir et al. (2018) which is also used by Nosakhare et al. (2020),
we obtain

βx = γ−1

(
(α− 1),

Γ(α− 1)

β

[
p(α+ β)− α

F−1(x)

])
,

with F−1(x) = − log(1−p)
β , which is the quantile function of the exponential distribution,

then Equation (6) becomes

Qp =
1

β

[
γ−1

(
(α− 1),

Γ(α− 1)

β

[
(α+ β)p+

αβ

log(1− p)

])]
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6 Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves have importance in many domains such as economics,
demography, (Kakwani and Podder, 1976). The Bonferroni and Lorenz curves for a
random variable X are, respectively, defined as

B(p) =
1

pµ

∫ q

0
xg(x)dx L(p) =

1

µ

∫ q

0
xg(x)dx,

where q = F−1(p); p ∈ [0, 1] and µ = E(X). Hence the Bonferroni and Lorenz curves
of Benrabia distribution are, respectively, given by:

B(p) =
1

p(α− β + αβ)

[
α

β
(1− (1 + βq)e−βq) + (α− 1)P (α, βq)

]
L(p) =

1

(α− β + αβ)

[
α

β
(1− (1 + βq)e−βq) + (α− 1)P (α, βq)

]

7 Rényi Entropy

The entropy was first introduced by Shannon (1948). It describes the amount of informa-
tion in a signal or event in information theory. It is defined as a measure of uncertainty
of the probability distribution of a random variable X in statistics (Wang, 2008). It
is used in many fields such as statistics, engineering. Rényi (1961) defined the Rényi
entropy of a random variable X as:

Rδ =
1

1− δ
log

∫ ∞

0

[g(x)]δdx; δ > 0 δ ̸= 1 (7)

Theorem 3 The Rényi entropy of the random variable X ∼ Br(α, β) is defined by

Rδ =
1

1− δ
log

[(
β

α+ β

)δ δ∑
i=1

(
δ

i

)
αiβδ−i+1[Γ(α− 1)]i−δ Γ(αδ − 2δ − αi+ 2i+ 1)

δαδ−2δ−αi+2i+1

]
(8)

Proof: Using (1) and (7), we have

Rδ =
1

1− δ
log

∫ ∞

0

[
β

α+ β

(
α+

xα−2βα−1

Γ(α− 1)

)
e−βx

]δ
dx

=
1

1− δ
log

∫ ∞

0

[(
β

α+ β

)δ (
α+

xα−2βα−1

Γ(α− 1)

)δ

e−βδx

]
dx

Using binomial theorem, we have(
α+

xα−2βα−1

Γ(α− 1)

)δ

=

δ∑
i=1

(
δ

i

)
αδ−i

[
xα−2βα−1

Γ(α− 1)

]i

=

δ∑
i=1

(
δ

i

)
αδ−i

[
βα−1

Γ(α− 1)

]i
xi(α−2)

Thus, Rδ =
1

1− δ
log

[∫ ∞

0

(
β

α+ β

)δ δ∑
i=1

(
δ

i

)
αδ−i

[
βα−1

Γ(α− 1)

]i
xi(α−2)e−βδx

]
dx



310 Benrabia, AlZoubi

=
1

1− δ
log

[(
β

α+ β

)δ δ∑
i=1

(
δ

i

)
αδ−i

[
βα−1

Γ(α− 1)

]i ∫ ∞

0

xiα−2ie−βδxdx

]

=
1

1− δ
log

[(
β

α+ β

)δ δ∑
i=1

(
δ

i

)
αδ−i

[
βα−1

Γ(α− 1)

]i
Γ(iα− 2i+ 1)

(βδ)iα−2i+1

]

=
1

1− δ
log

[(
β

α+ β

)δ δ∑
i=1

(
δ

i

)
αδ−i βi−1

[Γ(α− 1)]
i

Γ(iα− 2i+ 1)

δiα−2i+1

]
□

8 Mean and Median Absolute Deviations

The advantage of using mean deviation about mean or median is giving a better measure
of dispersion from the average (Pham-Gia and Hung, 2001). Hence the mean deviation
about mean and median for the Br distribution are defined respectively, as

MDmean = E|X − µ| =
∫ ∞

0

|x− µ|g(x)dx

=

∫ µ

0

(µ− x)g(x)dx+

∫ ∞

µ

(x− µ)g(x)dx

= 2

∫ µ

0

(µ− x)g(x)dx

= 2µG(µ)− 2

∫ µ

0

xg(x)dx

=
1

α+ β

[(
2µα− 2α

β

)
(1− eβµ)

+ 2µα e−βµ − 2(α− 1)P (α, βµ) + 2µβP ((α− 1), βµ)

]
.

And

MDmedian = E|X −M | =
∫ ∞

0

|x−M |g(x)dx

=

∫ M

0

(M − x)g(x)dx+

∫ ∞

M

(x−M)g(x)dx

= 2

∫ M

0

(M − x)g(x)dx+

∫ ∞

0

(x−M)g(x)dx

= 2MG(M) + µ−M − 2

∫ M

0

xg(x)dx

= µ− 2

∫ M

0

xg(x)dx

= µ+
1

α+ β

[
2Mα e−βM − 2

β

(
1− e−βM

)
− 2(α− 1)P (α, βM)

]
,

where µ = α+αβ−β
β(α+β) , M is a population median and P (., .) is the regularized incomplete

gamma function.
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9 Maximum Likelihood Estimation

Let X1, X2, ...Xn be a random sample from Benrabia distribution, then the likelihood
function L(x, α, β) is defined by

L(x, α, β) =

n∏
j=1

g(xj , α, β)

=

(
β

α+ β

)n

e−β
∑n

j=1 xj

n∏
j=1

(
α+

xα−2
j βα−1

Γ(α− 1)

)
,

The log-likelihood is defined as

ℓ = ln L = n ln

(
β

α+ β

)
+

n∑
j=1

ln

(
α+

xα−2
j βα−1

Γ(α− 1)

)
− β

n∑
j=1

xj (9)

Now, differentiating (9) partially with respect to α and β we have

∂ℓ

∂α
= −n

(
1

α+ β
+

(n+ 1)Γ′(α− 1)

2 Γ(α− 1)

)
+

n∑
j=1

[
Γ(α− 1) + αΓ′(α− 1) + β ln(xjβ)(xjβ)

α−2

αΓ(α− 1) + β(xjβ)α−2

]
∂ℓ

∂β
=

nα

β(α+ β)
−

n∑
j=1

xj + (α− 1)

n∑
j=1

(xjβ)
α−2

αΓ(α− 1) + β(xjβ)α−2
(10)

The MLE (α̂, β̂) of (α, β) can be obtained by solving the system of equations
{

∂ℓ
∂α = 0, ∂ℓ

∂β = 0
}

The system of equations in (10) has no explicit analytical solution, hence, it can be solved
numerically using Newton-Raphson iterative method or any other numerical method.

10 Simulation study

In this section, we achieve a simulation study to examine the performance and accuracy
of the Maximum Likelihood Estimates (MLEs) of the Br distribution with the help of R
software R Core Team (2020). For this, we will generate N = 1000 samples each of size
50, 100, 300, 500 for different values of α and β using (9). For each sample, the MLE
of the parameter space ϕ = (α, β), mean square error (MSE) and the bias are obtained.
Then, we calculate the average bias (AB) and the average of mean squared error (MSEs)
for the MLE as follows:

AB(ϕ̂) =
1

N

N∑
i=1

(ϕ̂− ϕ)

MSEs =
1

N

N∑
i=1

(ϕ̂− ϕ)2
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The results of this simulation are summarized in table 2. From table 2, it can be seen
that the values of the average bias and the average of mean squared error decrease with
increasing sample sizes and thus the estimates behave in a standard manner for different
values of α and β. Also, it indicates that the MLEs are asymptotically unbiased and
consistent.

n α = 1.5 β = 0.5 α = 2 β = 1 α = 3 β = 2

MLE 1.6311 0.5298 2.2531 1.1126 3.4110 2.3309

50 AB 0.1311 0.0298 0.2530 0.1126 0.4110 0.3309

MSEs 0.1435 0.0098 0.4148 0.1128 1.4376 0.8061

MLE 1.5494 0.5094 2.2139 1.0773 3.2481 2.1777

100 AB 0.0494 0.0094 0.2139 0.0773 0.2481 0.1777

MSEs 0.041 0.0037 0.2975 0.0513 0.7357 0.3307

MLE 1.5173 0.5060 2.1197 1.0440 3.0987 2.0714

300 AB 0.0173 0.0061 0.1197 0.0440 0.0987 0.0714

MSEs 0.0057 0.0011 0.1438 0.0198 0.3560 0.1429

MLE 1.5064 0.5026 2.1110 1.0360 3.0274 2.0250

500 AB 0.0064 0.0026 0.1110 0.0360 0.0274 0.0250

MSEs 0.0030 0.0005 0.1122 0.0130 0.2344 0.0858

Table 2: MLE, average bias and the average of mean squared error for the MLE of the
br distribution with different values of parameters.

11 Real Data Applications

In this section, we show the flexibility of the Benrabia distribution by considering real
life time data set and compare its goodness of fit with some existing distributions. The
data set consists of the repair times (in hours) 46 failures of an airborne communications
receiver (Chhikara and Folks, 1977) and used by Meraj et al. (2019), the data is as follows

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8

0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0

2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7

5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

The goodness of fit of the proposed distribution is compared with the following distri-
butions:
- Lindley distribution (Merovci and Elbatal, 2014)

fL(x) =
α2(1 + x)e−αx

1 + α
x > 0, α > 0
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- Transmuted Shanker distribution (Al-Zoubi et al., 2021)

fTS(x) =
α2

α2 + 1
(α+ x)e−αx

(
1 + β − 2β

(
1−

(
α2 + αx+ 1

α2 + 1

)
e−αx

))
x > 0, α > 0, β > 0

- Exponential distribution (Kingman, 1982)

fE(x) = αe−αx x > 0, α > 0

- Gamma distribution (Johnson et al., 1994)

fG(x) =
βαxα−1e−βx

Γ(α)
x > 0, α > 0, β > 0.

- Weibull distribution (Weibull, 1951)

fW (x) =
α

β

(
x

β

)α−1

e−(x/β)α x > 0, α > 0, β > 0

The criteria of choosing the best model are -2lnL, Akaike Information Criterion (AIC)
(Akaike, 1974), Akaike Information Criterion Corrected (AICC) (Akaike, 1974), Bayesian
Information Criterion (BIC) (Konishi et al., 2004), Haan Quinn Information Criterion
(HQIC) (Hannan and Quinn, 1979), Kolmogorov-Smirnov Statistics (KS Statistics) and
its p-value (Chakravarti et al., 1967), where

AIC = −2lnL+ 2k

AICC = AIC +
2k(k + 1)

n− k − 1
BIC = −2lnL+ kln(n)

HQIC = 2ln[ln(n)(k − 2lnL)]

KS = sup
x

|Fn(x)− F0(x)|,

where L is the likelihood function, k is the number of parameter, n is the sample size and
Fn(x) is the empirical distribution function. For calculation of the analytical measures,
the optimum function optim() R-function with the argument method= “N” (R Core
Team, 2020). The best distribution is the one which has lower values of -2lnL, AIC,
AICC, BIC, HQIC and K-S statistic and higher p-value, the results are given in the
table below From table 3, the values of -2lnL, AIC, AICC, BIC, HQIC and KS statistic
demonstrate that Benrabia distribution is more flexible than the other distributions.
The p-values show that Benrabia distribution is the best fit of the data.
In order to check that the proposed model is appropriate, we provide two graphic illus-
tration which present the histogram of the data set and the fitted distributions and plots
of the empirical and estimated distribution functions of the adapted distributions. Also,
table 5 shows that the new distribution provides the best fit for the current data because
of lower values of Anderson Darling (A*) and Cramer-Von Mises (W*) statistics. This
proves that Benrabia distribution is the best distribution that fits the repair time of an
airborne communications.
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Distributions −2lnL AIC AICC BIC HQIC K − S p− value

Lindley 219.969 221.969 222.060 223.798 222.654 0.234 0.013

Transmuted Shanker 218.472 222.472 222.751 226.129 223.842 0.222 0.022

Exponential 210.012 212.012 212.103 213.841 212.697 0.160 0.191

Gamma 209.862 213.862 214.141 217.519 215.232 0.145 0.285

Weibull 208.939 212.939 213.219 216.597 214.310 0.121 0.517

Benrabia 204.031 208.031 208.310 211.688 209.401 0.120 0.520

Table 3: -2lnL, AIC, AICC, BIC, HQIC and KS statistic and the p-values of the fitted
distributions.

Distributions Parameter Estimates Std Error

Lindley 0.466 0.050

Transmuted Shanker 0.428 0.590 0.054 0.225

Exponential 0.277 0.041

Gamma 0.932 0.259 0.170 0.062

Weibull 0.899 3.391 0.096 0.591

Benrabia 9.617 0.373 2.715 0.059

Table 4: Mle Estimates and Standard Errors of the fitted distributions

Statistic

Model A* W*

Lindley 1.3022 0.1923

Transmuted Shanker 1.0618 0.1573

Exponential 0.9961 0.1436

Gamma 0.9944 0.1433

Weibull 0.9010 0.1298

Br 0.6604 0.1066

Table 5: Goodness of fit using Anderson Darling and Cramer-Von Mises statistics.
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Figure 5: plots of the histogram, pdf of the fitted distributions and the estimated distri-
bution functions of the fitted models.
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12 Conclusion

This article proposes a new continuous two parameter distribution called Benrabia dis-
tribution. Several statistical properties of this distribution are studied. The moments,
moment generating function, reliability analysis. The estimation of model parameters
are derived as well as the Rényi entropy and the deviations about the absolute mean
and median deviations are presented. An application shows that the suggested distri-
bution is more flexible than some other distributions and provides a better fit for real
lifetime data. Corresponding future research related to this work, we may generate new
distributions using transmutation map or weighted method. Also, we can calculate the
stress-strength reliability for Benrabia distribution
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