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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 15, Issue 02, June 2022, 290-299
DOI: 10.1285/i20705948v15n2p290

Double acceptance sampling plans under
truncated life tests for two-parameter

Xgamma distribution

Amer Ibrahim Al-Omari*a and Ghadah A. Alomanib

aDepartment of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan
bDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman

University, P.O. Box 84428, Riyadh 11671, Saudia Arabia

Published: 20 June 2022

This article considered the problem of developing double acceptance sam-
pling plans (DASP) in terms of truncated life tests considering that the
lifetime of the lot follows the two-parameter Xgamma (TPXG) distribution.
The mean of the TPXG distribution is utilized as the quality parameter. The
smallest sample sizes of the first and second samples desired to emphasize the
identified mean life are obtained at a given consumer’s confidence (CC) level.
The corresponding operating characteristic (OC) values for several quality
levels are found as well as the smallest ratios of the mean life to the indi-
cated life are presented. Also, the producers risk (PR) is studied. Numerical
results and examples are analyzed for illustration.

keywords: Truncated life tests; Double acceptance sampling plan; Acceptance sam-
pling plans; Two-parameter Xgamma distribution; Consumer’s risk; Operating charac-
teristic value.

1 Introduction

The TPXG distribution is developed by Sen et al. (2018). The TPXG distribution has
several survival properties and motivating structural which made it a useful distribution
in modeling data sets of time-to-event. The TPXG distribution has the distribution
function given by
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The TPXG distribution has survival function (SF) and hazard rate function (HR),
respectively are defined by
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The mode and the jth moment of the TPXG distribution are
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Hence, the mean and Shannon entropy of the TPXG distribution are
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The single acceptance sampling plan (SASP) technique is one of the main statistical
tools in engineering, particularly in production field. The producers are motivating in
the quality of the product with less effort as well as cost in time and money, while the
consumers expected to find a good product with high characteristics and less prices.
Therefore, to save the cost a decision regarding the product can be considered based on
randomly drawn sample form the lot. The SASP are studied by many researchers, see
for illustration Rao et al. (2011) for the inverse Rayleigh distribution, Al-Nasser and
Al-Omari (2013) for exponentiated Frechet model, Al-Omari (2014, 2015, 2018) studied
the generalized inverted exponential, the three parameter Kappa and transmuted gener-
alized inverse Weibull distributions, Al-Nasser et al. (2018a) for the Ishita distribution,
Gillariose and Tomy (2021) for the extended Birnbaum-Saunders model. Tripathi et al.
(2020) for generalized half-normal distribution. Tripathi et al. (2020) for chain sampling
plan for Darna distribution.
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The DASP in terms of truncated life tests is considered in the literature, for exam-
ple, Aslam and Jun (2009) suggested DASP for the generalized log-logistic model, Rao
(2011) studied the DASP for the Marshall–Olkin extended exponential distribution, Ra-
maswamy and Anburajan (2012) investigated the DASP for the generalized exponential
distribution, Gui (2014) offered DASP for the Maxwell distribution, Al-Omari and Za-
manzade (2017) introduced DASP under transmuted generalized inverse Weibull model,
Al-Omari et al. (2016) introduced DASP for the half normal distribution, Al-Omari
et al. (2017) investigated the exponentiated generalized inverse Rayleigh distribution,
Al-Nasser et al. (2018b) for the Quasi Lindley distribution, Sridhar Babu et al. (2021)
for the exponentiated Fréchet distribution, Hamurkaroğlu et al. (2020) for the com-
pound Weibull-exponential distribution. Also, see Tripathi et al. (2021) and Shrahili
et al. (2021).

In the production field, the DASP can be employed to minimize the PR or the selected
sample size if there is no a decision under the first sample. Therefore, a second random
sample must be considered to have a serious decision.

In this paper, the DASP is studied in Section 2. Section 3 involves the OC function
and PR. Some numerical calculations and universal examples are discussed in Section 4.
Finally, the main results are given in Section 5.

2 DASP Design

The DASP under truncated life tests can be described as:

1. Chose a first sample of size n1 randomly and test it. If c1 or smaller failures
appeared before a predefined process time t0 the lot is accepted. If c2 + 1 failures
are detected before t0, the lot is ignored, i.e., (c1 < c2).

2. If the failures number by t0 lie between the acceptance numbers c1+1 and c2, then
select the second sample of size n2 randomly and examine them within the time
t0.

3. If the whole number of failures in both samples is at most c2, subsequently the lot
is accepted. Elsewhere, the lot should be rejected and hence terminate the test.

Consequently, the DASPmethod can be characterized by the plan parameters
(
n1, n2, c1, c2,

t0
µ0

)
,

provided that c1 < c2. Supposing that the lot size is large to use the binomial probability.
The probability of acceptance L(p) the lot based on DASP is defined as
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are the probabilities of acceptance the lot beyond the first and second samples, re-

spectively, and p = H (t;µ) = H
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Let L (p1) and L (p2) be the probabilities of accepting the lot, respectively of the

sampling plans
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For c1 = 0 and c2 = 1 in the DASP we get the so called zero and one failure technique,
while if c1 = 0 and c2 = 2, we get the zero and two failure scheme. Hence, the probability
of acceptance is

P (A) =P(no failure arises in the 1st sample) + P(1 failure arises in the 1st sample
and 0 or 1 failure arises in 2nd sample) + P(2 failures arises in the 1st sample and 0 or
1 failure arises in the 2nd sample).

3 The OC function and PR

The OC function is an essential in the ASP field in determining the probability of
accepting a product or reject it upon the probability value. A good DASP that has OC
function values approaching 1.

The PR is the probability of rejection of a worthy lot, i.e., (µ ≥ µ0). For the TPXG
distribution DASP with a assumed producer’s risk value α, it is desired to determine the
lowest quality level of µ/µ0 to emphasize that the PR is at most α. Consequently, µ/µ0

is the lowest positive number with p = H (t;µ) = H
(

t
µ0
.µ0

µ

)
that satisfies the inequality



294 Al-Omari, Alomani

c1∑
y1=0

(
n1

y1

)
py1(1− p)n1−y1

+

c2∑
y1=c1+1

(
n1

y1

)
py1(1− p)n1−y1


c2−y1∑
y2=0

(
n2

y2

)
py2(1− p)n2−y2

 ≥ 1− α,

(12)

4 Results and examples

Here, we explain the new DASP for the TPXG distribution with parameters δ = 2 and
η = 3. The optimum DASP parameters are found for p∗ = 0.75, 0.90, 0.95, 0.99 when
the ratio t/µo =0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 for various numbers
of acceptance. These selections are consent with the values offered in Gupta and Gupta
(1961), ?, Kantam et al. (2001), and Balakrishnan et al. (2007).
Assuming that the life time test follows the TPXG distribution for a certain p∗, the OC

function values and the minimum sample sizes of the sampling plans (n1, c1 = 0, t/µo)
and (n1, n2, c1, c2, t/µo) are presented in Tables (1) and (2). Table 3 consists of the
minimum ratios of µ/µo, while Table 4 contains the minimum values of n1 and n2 based
on the new DASP.
The results obtained in the first two tables show that the OC values are closed to 1

for most cases as the values of µ/µ0 get large. Further, the OC values related to the
proposed DASP are larger than their competitors in Table 1 for all cases except when
µ/µ0 = 2 and p∗ = 0.75.
To illustrate the experiment, suppose that the investigator needs to affirm that mean

life µ of the product is more than µ0 = 1000 hours under the confidence level of p∗ = 0.90.
The test is terminated at t0 = 628 hours under (c1, c2) = (0, 2) failure techniques of

DASP. Therefore, the experiment termination ratio is 0.628. Hence, from Table 2, the
corresponding sample sizes are n1 = 3 and n2 = 5. These results can be explained as
follows. First of all, randomly chose 3 products from the lot and examine them within
628 hours. The lot is accepted if no failure is detected within 628 hours. Ignore the
product if more than 2 failures occur within the test. If only two failures are noticed,
select a second sample of size 5 and test it for 628 hours. Now, accept the lot if there
no failures are detected in the second sample, and don’t accept the lot elsewhere.
Now, suppose that the researcher likes to identify what quality level will introduce the

PR less than 0.05. Table 4 shows that the smallest ratio for p∗ = 0.90 and t0/µ0 = 0.628
is 6.76. Hence, the true mean necessary of the product must be at least 6760 hours.

5 Concluding remarks

In this article, a DASP is introduced for the TPXG distribution utilizing the mean as
a quality parameter. The required design parameters are determined for several values
of the model parameters under given producer’s risk and consumer’s risk. It is found
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that the minimum samples sizes are decreasing as the confidence level are decreasing for
fixed t0/µ0. Hence, the proposed DASP for the TPXG distribution are recommended to
the researchers in the production sector.
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Table 1: OC values of the SASP (n1, c1 = 0, t/µo) for a certain p∗ under TPXG distri-
bution with δ = 2 and η = 3

p∗ t/µo n1 µ/µo = 2 4 6 8 10 12

0.75 0.628 3 0.3939 0.6165 0.7207 0.7806 0.8194 0.8466

0.75 0.942 2 0.4035 0.6225 0.7243 0.7830 0.8211 0.8478

0.75 1.257 2 0.3038 0.5371 0.6542 0.7241 0.7706 0.8037

0.75 1.571 1 0.4780 0.6819 0.7696 0.8191 0.8510 0.8733

0.75 2.356 1 0.3296 0.5712 0.6819 0.7464 0.7889 0.8191

0.75 3.141 1 0.2207 0.4781 0.6058 0.6820 0.7330 0.7697

0.75 3.927 1 0.1433 0.3983 0.5384 0.6239 0.6819 0.7241

0.75 4.712 1 0.0906 0.3296 0.4780 0.5712 0.6351 0.6819

0.90 0.628 3 0.2316 0.4762 0.6083 0.6882 0.7412 0.7790

0.90 0.942 2 0.2362 0.4788 0.6098 0.6891 0.7419 0.7795

0.90 1.257 2 0.1492 0.3769 0.5185 0.6096 0.6722 0.7177

0.90 1.571 2 0.0952 0.2978 0.4418 0.5399 0.6096 0.6614

0.90 2.356 1 0.1784 0.4090 0.5458 0.6325 0.6919 0.7348

0.90 3.141 1 0.1042 0.3087 0.4499 0.5458 0.6141 0.6648

0.90 3.927 1 0.0610 0.2342 0.3721 0.4720 0.5458 0.6020

0.90 4.712 1 0.0356 0.1784 0.3087 0.4090 0.4858 0.5458

0.95 0.628 4 0.1423 0.3719 0.5154 0.6075 0.6708 0.7167

0.95 0.942 3 0.1148 0.3313 0.4762 0.5721 0.6390 0.6882

0.95 1.257 2 0.1492 0.3769 0.5185 0.6096 0.6722 0.7177

0.95 1.571 2 0.0952 0.2978 0.4418 0.5399 0.6096 0.6614

0.95 2.356 1 0.1784 0.4090 0.5458 0.6325 0.6919 0.7348

0.95 3.141 1 0.1042 0.3087 0.4499 0.5458 0.6141 0.6648

0.95 3.927 1 0.0610 0.2342 0.3721 0.4720 0.5458 0.6020

0.95 4.712 1 0.0356 0.1784 0.3087 0.4090 0.4858 0.5458

0.99 0.628 5 0.0874 0.2904 0.4367 0.5364 0.6071 0.6595

0.99 0.942 4 0.0558 0.2293 0.3719 0.4749 0.5504 0.6075

0.99 1.257 3 0.0576 0.2314 0.3734 0.4759 0.5512 0.6081

0.99 1.571 3 0.0294 0.1625 0.2937 0.3967 0.4760 0.5379

0.99 2.356 2 0.0318 0.1673 0.2979 0.4001 0.4787 0.5400

0.99 3.141 2 0.0109 0.0953 0.2024 0.2979 0.3771 0.4419

0.99 3.927 1 0.0610 0.2342 0.3721 0.4720 0.5458 0.6020

0.99 4.712 1 0.0356 0.1784 0.3087 0.4090 0.4858 0.5458
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Table 2: OC values of the DASP (n1, n2, c1 = 0, c2 = 2, t/µo) for a certain p∗ under
TPXG distribution with δ = 2 and η = 3.

P ∗ t/µo n1 n2 µ/µo = 2 4 6 8 10 12

0.75 0.628 3 6 0.2811 0.6885 0.8520 0.9201 0.9524 0.9695

0.75 0.942 2 4 0.3091 0.7156 0.8681 0.9297 0.9585 0.9735

0.75 1.257 2 3 0.2370 0.6605 0.8371 0.9116 0.9472 0.9661

0.75 1.571 1 3 0.3677 0.7486 0.8844 0.9386 0.9638 0.9769

0.75 2.356 1 2 0.3331 0.7294 0.8742 0.9327 0.9602 0.9745

0.75 3.141 1 2 0.1802 0.5788 0.7799 0.8742 0.9222 0.9488

0.75 3.927 1 2 0.0947 0.4440 0.6784 0.8046 0.8742 0.9148

0.75 4.712 1 2 0.0493 0.3331 0.5787 0.7294 0.8191 0.8742

0.90 0.628 3 5 0.3307 0.7371 0.8808 0.9373 0.9633 0.9767

0.90 0.942 2 4 0.3091 0.7156 0.8681 0.9297 0.9585 0.9735

0.90 1.257 2 3 0.2370 0.6605 0.8371 0.9116 0.9472 0.9661

0.90 1.571 2 3 0.1302 0.5292 0.7509 0.8572 0.9116 0.9418

0.90 2.356 1 2 0.3331 0.7294 0.8742 0.9327 0.9602 0.9745

0.90 3.141 1 2 0.1802 0.5788 0.7799 0.8742 0.9222 0.9488

0.90 3.927 1 2 0.0947 0.4440 0.6784 0.8046 0.8742 0.9148

0.90 4.712 1 2 0.0493 0.3331 0.5787 0.7294 0.8191 0.8742

0.95 0.628 4 6 0.1831 0.5981 0.7979 0.8874 0.9316 0.9556

0.95 0.942 3 4 0.1679 0.5858 0.7907 0.8832 0.9289 0.9538

0.95 1.257 2 4 0.1615 0.5579 0.7684 0.8679 0.9185 0.9465

0.95 1.571 2 3 0.1302 0.5292 0.7509 0.8572 0.9116 0.9418

0.95 2.356 1 3 0.1646 0.5382 0.7487 0.8529 0.9077 0.9386

0.95 3.141 1 2 0.1802 0.5788 0.7799 0.8742 0.9222 0.9488

0.95 3.927 1 2 0.0947 0.4440 0.6784 0.8046 0.8742 0.9148

0.95 4.712 1 2 0.0493 0.3331 0.5787 0.7294 0.8191 0.8742

0.99 0.628 5 8 0.0846 0.4290 0.6721 0.8027 0.8741 0.9153

0.99 0.942 4 6 0.0491 0.3437 0.5981 0.7487 0.8355 0.8874

0.99 1.257 3 5 0.0470 0.3302 0.5834 0.7368 0.8265 0.8806

0.99 1.571 3 4 0.0245 0.2637 0.5202 0.6881 0.7905 0.8540

0.99 2.356 2 3 0.0272 0.2739 0.5293 0.6946 0.7951 0.8572

0.99 3.141 2 3 0.0058 0.1304 0.3456 0.5294 0.6607 0.7511

0.99 3.927 1 2 0.0947 0.4440 0.6784 0.8046 0.8742 0.9148

0.99 4.712 1 2 0.0493 0.3331 0.5787 0.7294 0.8191 0.8742
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Table 3: Minimum ratio of µ/µo for the acceptance of the lot with PR of 0.05 under
TPXG distribution with δ = 2 and η = 3

p∗ t/µo

0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 7.78 7.15 8.10 6.46 6.66 9.76 12.86 15.95

0.90 6.76 7.15 8.10 10.71 6.66 9.76 12.86 15.95

0.95 9.45 9.59 10.30 10.71 10.92 9.76 12.86 15.95

0.99 13.17 15.24 15.71 17.46 17.20 23.69 12.86 15.95

Table 4: Minimum sample size values of n1 and n2 when c1 = 0 and c2 = 2 under TPXG
distribution with δ = 2 and η = 3

p∗ n t/µo

0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 n1 3 2 2 1 1 1 1 1

0.75 n2 6 4 3 3 2 2 2 2

0.90 n1 3 2 2 2 1 1 1 1

0.90 n2 5 4 3 3 2 2 2 2

0.95 n1 4 3 2 2 1 1 1 1

0.95 n2 6 4 4 3 3 2 2 2

0.99 n1 5 4 3 3 2 2 1 1

0.99 n2 8 6 5 4 3 3 2 2


