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In this study, Kumaraswamy seasonal autoregressive moving average
(KSARMA) model was developed to predict double-bounded relative hu-
midity time-series data. In the proposed model, we used the conditional
maximum-likelihood method to estimate parameters of the model. For the
conditional score vector and conditional Fisher information matrix, the closed
type expression were derived. This paper conjointly discusses interval esti-
mation, hypothesis testing, model selection and forecasting. We also used a
Monte Carlo simulation to evaluate the finite sample performance of condi-
tional likelihood estimators (CMLEs) and white noise test.

keywords: ARMA, Kumaraswamy distribution, conditional likelihood, dou-
ble bounded data, seasonal time series, forecast.

1 Introduction

The Kumaraswamy distribution is one of the distributions that is especially useful in
biomedical and epidemiological research (Nadarajah, 2008) for several natural phenom-
ena and their outcomes have lower and upper limits or bounded outcomes. Let a random
variable X̃ ˜follows a continuous distribution, i.e., Kumaraswamy distribution with sup-
ports in the interval (a, b), if its probability density function is expressed by (Mitnik,
2013).
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f(x̃, ϕ, γ) =
ϕγ

b− a

( x̃− a

b− a

)ϕ−1[
1− (

x̃− a

b− a
)ϕ
]γ−1

(1)

for a < x̃ < b. Where ϕ > 0 and γ > 0 is the shape parameters. CDF (the cumulative
distribution function) and quantile functions are, represented as

F (x̃) = 1−
[
1−

( x̃− a

b− a

)ϕ]γ
and F−1(k) = a+(b− a)

[
1− (1−υ)

1
γ

] 1
ϕ
, 0 < k < 1. (2)

The mean and variance of X̃ are expressed by

E(X̃) = a+(b−a)γB
(
1+

1

ϕ
, γ
)
and V ar(X̃) = (b−a)2

{
γB
(
1+

2

ϕ
, γ
)
−
[
γB(1+

1

ϕ
, γ
)]2}
(3)

here B(., .) denotes the beta function (Gupta and Nadarajah, 2004). The Kumaraswamy
distribution is the most commonly used distribution and it is a more compatible substi-
tute in place of the beta distribution (Gupta and Nadarajah, 2004; Jones, 2009; Mitnik,
2013).
Beta regression based model (Ferrari and Cribari-Neto, 2004) which shows similarity
with the generalized linear model (GLM) (McCullagh and Nelder, 1989), has also been
generalized, improved, and implemented in many works (Cribari-Neto and Zeileis, 2010).
Even in the literature, time series models based on beta distribution have gotten a lot
of attention. For example, it can be seen in (Palm and Bayer, 2018; Guolo and Varin,
2014; Rocha and Cribari-Neto, 2009; da Silva et al., 2011).
The beta distribution is very flexible and it has a broader range of applications to im-
proves its analytical utility (Nadarajah, 2008; Jones, 2009; Lemonte et al., 2013). For
the hydrological process, for example daily rainfall, daily stream-flow, beta distribu-
tion does not fit satisfactorily (Kumaraswamy, 1976, 1980; Lemonte et al., 2013) but
Kumaraswamy distribution is considered as a good substitute for beta distribution in
hydrology and related fields (Nadarajah, 2008; Lemonte et al., 2013).
Kumaraswamy distribution is also widely used to investigate the temporal and spatial
pattern in demographic data observed over time which shows values laying in the double
bounded interval (a, b) such as rates and proportions. Despite its wide variety of uses,
the Kumaraswamy distribution is still unknown to statisticians. For the mean and vari-
ance, the absence of closed form expression, has obstructed its utilization in the modeling
purposes. Mitnik and Baek (2013), resolve this problem by proposing a median-based
re-parameterization to promote its use in regression-based models. An expression of the
median for the Kumaraswamy distribution is expressed by:

md(X̃) = υ̃ = a+ (b− a)
(
1− 0.5

1
γ

) 1
ϕ

(4)

where, the median of the rescaled variable X = X̃−a
b−a ∈ (0, 1) is (1− 0.5

1
γ )

1
ϕ = υ.

We adopted the same structure as the generalized autoregressive moving average model
(GARMA) (Benjamin et al., 2003) to construct the proposed model. Still, in terms of
its median, we can also allocate a parametrization of the Kumaraswamy distribution.
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The objective of this paper is to introduce a class of KSARMA models to predict double-
bounded relative humidity time-series data. Besides, obtain the estimates of its param-
eters, confidence intervals and hypothesis testing (including seasonality test). For the
model selection, we proposed various residuals that are used for defining goodness-of-fit
and apply white noise test, which is established on these residuals and demonstrate how
we can generate out-of-sample forecasts. In addition, we presented results with the help
of Monte Carlo simulation, which is used for estimation of the finite sample performance
of conditional maximum likelihood. Eventually, an empirical application is introduced
and discussed.

2 The Proposed model

My objective is to establish the proposed model for the random variables which is ob-
served over time distributed by Kumaraswamy. To alleviate the existence of the vari-
able’s serial correlation in the Kumaraswamy distribution’s conditional median, we shall
present a seasonal autoregreesive moving average (SARMA) time series structure.
Let {X̃t}t ∈ Z, be a stochastic process, where X̃t ∈ (a, b) and a, b ∈ R with a < b..
Assume that for a given previous information set Gt−1, the conditional distribution of
each X̃t, follows the Kumaraswamy distribution i.e. K(υ̃t, ϕ, a, b). For given Gt−1, the
conditional density of X̃t is

fυt(x̃t | Gt−1) = (
1

b− a
)
ϕlog(0.5)

log(1− υtϕ)
xϕ−1
t (1− xϕt )

log(0.5)

log(1−υt
ϕ)

−1
, 0 < υt < 1, ϕ > 0 (5)

for 0 < xt < 1, where υt (mean) and ϕ (precision) are distribution parameters and xt
= x̃t−a

b−a , υt =
υ̃t−a
b−a . This specific type of density is desirable because it permits modeling

with no transformation, this is usually done in literature (Rocha and Cribari-Neto, 2009),
however managing the easier distribution of Xt . CDF and quantile functions, are given
by

Fυt(x̃t | Gt−1) = 1− (1− xϕt )

log(0.5)

log(1−υ
ϕ
t ) (6)

Fυt
−1(x̃t | Gt−1) = a+ (b− a)

[
1− (1− u)

log(1−υ
ϕ)
t

log(0.5)

] 1
ϕ

(7)

Conditional mean and conditional variance of X̃t are expressed as below

E(X̃t | Gt−1) = a+ (b− a)
log(0.5)

log(1− υtϕ)
B
(
1 +

1

ϕ
,

log(0.5)

log(1− υtϕ)

)
(8)

V ar(X̃t | Gt−1) =
1

b− a

{ log(0.5)

log(1− υtϕ)
B
(
1 +

2

ϕ
,

log(0.5)

log(1− υtϕ)

)
− (9)

[ log(0.5)

log(1− υtϕ)
B
(
1 +

1

ϕ
,

log(0.5)

log(1− υtϕ)

)]2}
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Now we define the seasonal autoregressive moving average model i.e SARMA(p, q) ×
(P,Q)S .

Φ(BS)φ(B)g(xt) = α+Θ(BS)θ(B)ϵt

g(xt) = α+

p∑
i=1

φig(xt−i) +

q∑
j=1

θjϵt−j +
P∑
I=1

ΦIg(xt−IS) +

Q∑
J=1

ΘJϵt−JS

−
p∑
i=1

P∑
I=1

φiΦIg
(
xt−(i+IS)

)
+ ϵt+

q∑
j=1

Q∑
J=1

θjΘJϵt−(j+JS)

ηt = g(υt) = α+

p∑
i=1

φig(xt−i) +

q∑
j=1

θjϵt−j +
P∑
I=1

ΦIg(xt−IS) +

Q∑
J=1

ΘJϵt−JS

−
p∑
i=1

P∑
I=1

φiΦIg
(
xt−(i+IS)

)
+

q∑
j=1

Q∑
J=1

θjΘJϵt−(j+JS) (10)

where, g : R → (0, 1) be link function which is twice differentiable and strictly monotonic
then g−1 : R → (0, 1) exists and is also twice differentiable, α ∈ R, ϵt = g(xt) − g(υt),
φ(B), θ(B) is the autoregressive and moving average polynomial given by φ(B) = (1−
φ1B − φ2B

2 − ... − φpB
p) , θ(B) = (1 + θ1B + θ2B

2 + ... + θqB
q) and Φ(B), Θ(B) is

the seasonal autoregressive and seasonal moving average polynomial is given by Φ(B) =
(1 − Φ1B

S − Φ2B
2S − ... − ΦPB

PS), Θ(B) = (1 + Θ1B
S + Θ2B

2S + ... + ΘQB
QS), S

is representing the seasonality frequency (For monthly data, we will take S=12 and for
quarterly data S=4).
We noticed that all the functions could be added to the model, such as logit, probit,
loglog, since υt ∈ (0, 1).
The proposed Kumaraswamy seasonal autoregressive moving average (KSARMA) model
is given by equations (5) and (10).

2.1 Some particular cases

KSARMA (p, q) × (P,Q)S includes a number of important models. The following is a
list of some of them.

2.1.1 KSARMA (1, 1)× (1, 1)12

The KSARMA (1, 1)× (1, 1)12 model can be expressed as

Φ(B12)φ(B)g(xt) = α+Θ(B12)θ(B)ϵt

(1− Φ1B
12)(1− φ1B)g(xt) = α+ (1 + Θ1B

12)(1 + θ1B)ϵt

g(xt)−φ1g(xt−1)−Φ1g(xt−12)+φ1Φ1g(xt−13) = α+ ϵt+θ1ϵt−1+Θ1ϵt−12+θ1Θ1ϵt−13

g(υt) = α+ φ1g(xt−1) + Φ1g(xt−12)− φ1Φ1g(xt−13) + θ1ϵt−1 +Θ1ϵt−12 + θ1Θ1ϵt−13.
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2.1.2 KSARMA (2, 1)× (2, 2)12

The KSARMA (2, 1)× (2, 2)12 model can be expressed as

Φ(B12)φ(B)g(xt) = α+Θ(B12)θ(B)ϵt

(1− Φ1B
12 − Φ2B

24)(1− φ1B − φ2B
2)g(xt) = α+ (1 + Θ1B

12 +Θ2B
24)(1 + θ1B)ϵt

g(xt)−φ1g(xt−1)−φ2g(xt−2)−Φ1g(xt−12)−Φ2g(xt−24)+φ1Φ1g(xt−13)+φ2Φ1g(xt−14)

+φ1Φ2g(xt−25) + φ2Φ2g(xt−26) = α + ϵt + θ1ϵt−1 +Θ1ϵt−12 +Θ2ϵt−24 + θ1Θ1ϵt−13 +
θ1Θ2ϵt−25

g(υt) = α+φ1g(xt−1)+φ2g(xt−2)+Φ1g(xt−12)+Φ2g(xt−24)−φ1Φ1g(xt−13)−φ2Φ1g(xt−14)

−φ1Φ2g(xt−25)−φ2Φ2g(xt−26) + θ1ϵt−1 +Θ1ϵt−12 +Θ2ϵt−24 + θ1Θ1ϵt−13 + θ1Θ2ϵt−25.

3 Parameter Estimation

In the proposed KSARMA model, we can derive the conditional maximum likelihood
estimator for the parameters. Let Ω = (α,φT , θT ,ΦT ,ΘT , ϕ)T be the (p+ q + P +Q+
2) dimensional vector. By maximizing of the logarithm of the conditional likelihood
function, we can acquire the conditional maximum likelihood estimators (CMLE) of Ω.
The m initial observations for the log-likelihood function is conditional for Ω which can
be expressed as

l = l(Ω; x̃t) =
n∑

t=m+1

log(f(x̃t | Gt−1)) =
n∑

t=m+1

lt(υt, ϕ) (11)

where,

lt(υt, ϕ) = log(ϕ)− log(b− a) + log
(
log(0.5

)
− log

(
log(1− υϕt )

)
+ (ϕ− 1)log(xt).

+ log(0.5)

log(1−υϕt )
log(1− xϕt )− log(1− xt

ϕ)

and m = max (PS + p, QS + q)

3.1 Conditional score vector

For the first derivative of log-likelihood l(Ω), we can calculate the Conditional score
vector. Let Ω = (α,φT ,ΦT , θT ,ΘT ). Differentiating equation (11), with regard to the
ith element of the vector Ω, Ωi ̸= ϕ,with i = 1, ..., (p+ q + P +Q+ 1), we get

∂l

∂Ωi
=

n∑
t=m+1

∂lt(υt, ϕ)

∂υt

dυt
dηt

∂ηt
∂Ωi

(12)

observe that,

∂lt(υt, ϕ)

∂υt
=

ϕυt
ϕ−1

(1− υtϕ)log(1− υt)
ϕ

(
γtlog(1− xt

ϕ) + 1
)
= ϕct (13)
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where,

ct =
υt
ϕ−1

(1− υtϕ)log(1− υt)
ϕ

(
γtlog(1− xt

ϕ) + 1
)
, γt =

log(0.5)

log(1− υtϕ)
(14)

since, ηt = g(υt), it follows that
dυt
dηt

= 1
g′(υt)

Using equation (13) and (14) in (12), we get

∂l
∂Ωi

=
n∑

t=m+1

ϕυt
ϕ−1

(1− υtϕ)log(1− υt)
ϕ

(
γtlog(1− xt

ϕ) + 1
) ∂ηt
∂Ωi

=
n∑

t=m+1

ϕ
ct

g′(υt)

∂ηt
∂Ωi

For the computation of the score vector, we obtain the ∂ηt
∂Ωi

for every coordinate Ωi ̸= ϕ

of Ω.

To obtain the derivative of the linear predictor ηt with regard to α, let the error term
ϵt = g(xt)− g(υt), so that

∂ηt
∂α = 1 +

q∑
j=1

θj
∂ϵt−j
∂α

+

Q∑
J=1

ΘJ
∂ϵt−JS
∂α

+

q∑
j=1

Q∑
J=1

θjΘJ

∂ϵt−(j+JS)

∂α

∂ηt
∂α = 1 −

q∑
j=1

θj
∂ηt−j
∂α

−
Q∑
J=1

ΘJ
∂ηt−JS
∂α

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂α
(since, ϵt =

g(xt)− ηt)

Regarding the remaining parameters, the derivatives of linear predictor are given by

∂ηt
∂φi

= g(xt−i)Φ(B
S) −

q∑
j=1

θj
∂ηt−j
∂φi

−
Q∑
J=1

ΘJ
∂ηt−JS
∂φi

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂φi
, i ∈

{1, ..., p},

∂ηt
∂ΦI

= g(xt−IS)φ(B) −
q∑
j=1

θj
∂ηt−j
∂ΦI

−
Q∑
J=1

ΘJ
∂ηt−JS
∂ΦI

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂ΦI
, I ∈

{1, ..., P},

∂ηt
∂θj

= ϵt−jΘ(BS) −
q∑
i=1

θi
∂ηt−i
∂θj

−
Q∑
J=1

ΘJ
∂ηt−JS
∂θj

−
q∑
i=1

Q∑
J=1

θiΘJ

∂ηt−(i+JS)

∂θj
, j ∈

{1, ..., q},

∂ηt
∂ΘJ

= ϵt−JSθ(B)−
q∑
j=1

θj
∂ηt−j
∂ΘJ

−
Q∑
i=1

Θi
∂ηt−iS
∂ΘJ

−
q∑
j=1

Q∑
i=1

θjΘi

∂ηt−(j+iS)

∂ΘJ
, J ∈ {1, ..., Q}

Differentiating (11) with respect to precision parameter ϕ, we get

∂lt
∂ϕ = 1

ϕ + log(yt) + ctυtlog(υt)− (γt − 1)xt
ϕlog(xt)
(1−xtϕ)
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Now, differentiating (11) with respect to parameter α, we get

∂l
∂α =

n∑
t=m+1

∂lt(υt, ϕ)

∂υt

dυt
dηt

∂ηt
∂α

∂l

∂α
=

n∑
t=m+1

[
ϕct

1

g′(υt)

{
1−

q∑
j=1

θj
∂ηt−j
∂α

−
Q∑
J=1

ΘJ
∂ηt−JS
∂α

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂α

}]
(15)

∂l
∂φi

=
n∑

t=m+1

∂lt(υt, ϕ)

∂υt

dυt
dηt

∂ηt
∂φi

∂l

∂φi
=

n∑
t=m+1

[
ϕct

1

g′(υt)

{
g(xt−i)Φ(B

S)−
q∑
j=1

θj
∂ηt−j
∂φi

−
Q∑
J=1

ΘJ
∂ηt−JS
∂φi

− (16)

q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂φi

}]
∂l
∂ΦI

=

n∑
t=m+1

∂lt(υt, ϕ)

∂υt

dυt
dηt

∂ηt
∂ΦI

∂l

∂ΦI
=

n∑
t=m+1

[
ϕct

1

g′(υt)

{
g(xt−IS)φ(B)−

q∑
j=1

θj
∂ηt−j
∂ΦI

−
Q∑
J=1

ΘJ
∂ηt−JS
∂ΦI

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂ΦI

}] ∂l
∂θj

=

n∑
t=m+1

∂lt(υt, ϕ)

∂υt

dυt
dηt

∂ηt
∂θj

(17)

∂l

∂θj
=

n∑
t=m+1

[
ϕct

1

g′(υt)

{
ϵt−jΘ(BS)−

q∑
i=1

θi
∂ηt−i
∂θj

−
Q∑
J=1

ΘJ
∂ηt−JS
∂θj

−
q∑
i=1

Q∑
J=1

θiΘJ

∂ηt−(i+JS)

∂θj

}]
(18)

∂l
∂ΘJ

=

n∑
t=m+1

∂lt(υt, ϕ)

∂υt

dυt
dηt

∂ηt
∂ΘJ

∂l

∂ΘJ
=

n∑
t=m+1

[
ϕct

1

g′(υt)

{
ϵt−JSθ(B)−

q∑
j=1

θj
∂ηt−j
∂ΘJ

−
Q∑
i=1

Θi
∂ηt−iS
∂ΘJ

−
q∑
j=1

Q∑
i=1

θjΘi

∂ηt−(j+iS)

∂ΘJ

}]
(19)

Therefore the element of score vector in matrix form can be written as

U(Ω) =
(
Uα(Ω), Uφ(Ω)

T , Uθ(Ω)
T , UΦ(Ω)

T , UΘ(Ω)
T , Uϕ(Ω)

)T
,

where, Uα(Ω) = vTTC, Uφ(Ω) = ATTC, UΦ(Ω) = BTTC, Uθ(Ω) = P TTC, UΘ(Ω) =
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RTTC,

Uϕ(γ) =
n−m
ϕ +

n∑
t=m+1

{
log(xt) + ctυtlog(υt)−

(γt − 1)xt
ϕlog(xt)

(1− xtϕ)

}
where, T = diag{ 1

g′(υm+1)
, ..., 1

g′(υn)
}, v = (∂ηm+1

∂α , ..., ∂ηn∂α ), and A is an matrix of order

(n−m)× p where (i, j) component is provided by Ai,j =
∂ηi+m

∂φj
, B is an matrix of order

(n−m)×P where (i, j) component is provided by Bi,j =
∂ηi+m

∂Φj
, P is an (n−m)×q order

matrix where (i, j) component is provided by Pi,j =
∂ηi+m

∂θj
, and R is an matrix of order

(n−m)×Q where (i, j) component is provided by Ri,j =
∂ηi+m

∂Θj
, C = (ϕcm+1, ..., ϕcn)

T

CMLE of Ω is found by solving the given system of equations U(Ω) = 0, wherever
0 in Rp+q+P+Q+2 is the null vector.

3.2 Conditional Fisher’s information matrix

By evaluating the expected value for all the second-order derivative, we obtained condi-
tional Fisher information matrix. Let Ω = (α,φT , θT ,ΦT ,ΘT )T . It can be shown that,
for i, j ∈ {1, ..., p+ q + P +Q+ 1}

∂2l(Ω)
∂Ωi∂Ωj

=
n∑

t=m+1

∂

∂υt

(∂lt(υt, ϕ)
∂υt

dυt
dηt

∂ηt
∂Ωj

)dυt
dηt

∂ηt
∂Ωi

=
n∑

t=m+1

[∂2lt(υt, ϕ)
∂υ2t

dυt
dηt

∂ηt
∂Ωj

+
∂lt(υt, ϕ)

∂υt

∂

∂υt

(dυt
dηt

∂ηt
∂Ωj

)]dυt
dηt

∂ηt
∂Ωi

Under the standard regularity condition E
(
∂lt(υt,ϕ)
∂υt

|Gt−1

)
= 0 and thus,

E
( ∂2l(Ω)
∂Ωi∂Ωj

|Gt−1

)
=

n∑
t=m+1

E
(∂2lt(υt, ϕ)

∂υ2t
|Gt−1

)(dυt
dηt

)2 ∂ηt
∂Ωi

∂ηt
∂Ωj

(20)

Differentiating (13) with respect to υt, we get

∂2lt(υt,ϕ)
∂υ2t

= ϕAt +
(

log(0.5)
log(1−υtϕ) log(1− xϕt ) + 1

)
+ ϕ2log(0.5)λ2

log(1−υtϕ) log(1− xϕt )

= ϕAt + ϕγt

[
At + ϕλ2

]
log(1− xϕt )

where, At =
∂
∂υt

(
υϕ−1
t

(1−υϕt )log(1−υ
ϕ
t )

)
= ϕλ2

[
1 + log(1 − υϕt )

]
+ (ϕ − 1)λ1 and λk =

υkϕ−2
t

(1−υϕt )klog(1−υ
ϕ
t )

k
, we have E

[
log(1− xϕt | Gt−1)

]
= −1

γt
(Bayer et al., 2017), so that

E
(
∂2lt(υt,ϕ)

∂υ2t
| Gt−1

)
= −ϕ2λ2 = wt.

From equation (20), we have

E
( ∂2l(Ω)
∂Ωi∂Ωj

|Gt−1

)
=

n∑
t=m+1

wt
g′(υt)2

∂ηt
∂Ωi

∂ηt
∂Ωj

(21)
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Now, differentiating lt two times with respect to ϕ, we get

∂2lt(υt, ϕ)

∂ϕ2
=

−1

ϕ2
+
∂ct
∂ϕ

υtlog(υt)−
∂

∂ϕ

(
(γt − 1)

xϕt log(xt)

1− xϕt

)
(22)

Differentiating (14) with respect to ϕ, we get

∂ct
∂ϕ

= γtυtλ2log(υt)log(1−xϕt )−γtυtλ1
[xϕt log(xt)

1− xϕt

]
+ctlog(υt)

( υt

(1− υϕt )log(1− υϕt )
+

1

1− υϕt

)
(23)

and

∂

∂ϕ

[xtϕlog(xt)
(1− xtϕ)

(γt − 1)
]
= (γt − 1)

xϕt log(xt)
2

(1− xϕt )
2

+
γtυ

ϕ
t log(υt)

(1− υϕt )log(1− υϕt )

[xϕt log(xt)
1− xϕt

]
(24)

Using (23) and (24) in (22), we obtain
∂2lt(υt,ϕ)

∂ϕ2
= −1

ϕ2
+ γtυ

2
t λ2log(υt)

2log(1− xϕt )− 2γtυ
2
t log(υt)λ1

[
xϕt log(xt)

1−xϕt

]
−(γt − 1)

xϕt log(xt)
2

(1− xϕt )
2

+ ctυtlog(υt)
2
(
λ1υ

2
t +

1

1− υϕt

)
(25)

On taking the conditional expectation of (25) and substituting the result from lemma
2 (Bayer et al., 2017), we have

E
(
∂2lt(υt,ϕ)

∂ϕ2
| Gt−1

)
= m−n

ϕ2
−

n∑
t=m+1

{
υ2t λ2log(υt)

2 + 2δtυ
2
t log(υt)λ1

(1− ψ(γt + 1)− κ

(γt − 1)ϕ

)

+
ψ(γt)

[
ψ(γt)+2(κ−1)

]
−ψ′(γt)+κ0

(γt−2)ϕ3

}
where ψ denotes the digamma function ψ′ is represented as the trigamma function, κ =
0.5772156649... is the Euler-Mascheroni constant (Gradshteyn and Ryzhik, 2007) and

κ0 = π2

6 + κ2 − 2κ.

Since, ∂lt∂ϕ = 1
ϕ + log(xt) + ctυtlog(υt)− (Ωt − 1)xt

ϕlog(xt)
(1−xtϕ)

therefore, differentiating above equation with respect to Ωj ̸= φ, we have
∂2lt(υt,ϕ)
∂ϕ∂Ωj

= ct
∂υtlog(υt)

∂Ωj
+ υtlog(υt)

∂ct
∂Ωj

− xϕt log(xt)

1−xϕt
∂γt
∂Ωj

From equation (13), we have ct =
1
ϕ
∂lt(υt,ϕ)
∂υt

so that

∂ct
∂Ωj

= ∂ct
∂υt

dυt
dηt

∂ηt
∂Ωj

= 1
ϕg′(υt)

∂2lt(υt,ϕ)
∂υ2t

∂ηt
∂Ωj

,

∂υtlog(υt)
∂Ωj

= ∂υtlog(υt)
∂υt

dυt
dηt

∂ηt
∂Ωj

=
(
log(υt)+1
g′(υt)

)
∂ηt
∂Ωj

From equation (13), we have ct =
1
ϕ
∂lt(υt,ϕ)
∂υt

so that

∂ct
∂Ωj

= ∂ct
∂υt

dυt
dηt

∂ηt
∂Ωj

= 1
ϕg′(υt)

∂2lt(υt,ϕ)
∂υ2t

∂ηt
∂Ωj

,
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∂υtlog(υt)
∂Ωj

= ∂υtlog(υt)
∂υt

dυt
dηt

∂ηt
∂Ωj

=
(
log(υt)+1
g′(υt)

)
∂ηt
∂Ωj

and ∂γt
∂Ωj

= ∂γt
∂υt

dυt
dηt

∂ηt
∂Ωj

= 1
g′(υt)

∂ηt
∂Ωj

[
log(0.5)ϕυϕ−1

t

log(1−υϕt )2(1−υ
ϕ
t )

]
=
(
ϕυtΩtλ1
g′(υt)

)
∂ηt
∂Ωj

Hence,

∂2lt(υt,ϕ)
∂ϕ∂Ωj

=

{
1

g′(υt)

[
ct

(
log(υt) + 1

)
+ υtlog(υt)

ϕ
∂2lt(υt,ϕ)

∂υ2t
− ϕυtγtλ1

xtϕlog(xt)
(1−xtϕ)

]}
∂ηt
∂Ωj

On taking conditional expectation of above equation,we get

E
(
∂2lt(υt,ϕ)
∂ϕ∂Ωj

| Gt−1

)
=

n∑
t=m+1

dt
g′(υt)

∂ηt
∂Ωj

where, dt = −ϕυtlog(υt)λ2 − ϕυtγtλ1

(
1−Ψ(γt+1)−κ

(γt−1)ϕ

)
LetD = diag{dm+1, ..., dn}, W = diag{wm+1, ..., wn}, N = diag

{
∂2lt(υm+1,ϕ)

∂ϕ2
, ..., ∂

2ln(υn,ϕ)
∂ϕ2

}
.

The conditional Fisher information matrix for Ω is

H = H(Ω) =



H(α,α) H(α,φ) H(α,Φ) H(α,θ) H(α,Θ) H(α,ϕ)

H(φ,α) H(φ,φ) H(φ,Φ) H(φ,θ) H(φ,Θ) H(φ,ϕ)

H(Φ,α) H(Φ,φ) H(Φ,Φ) H(Φ,θ) H(Φ,Θ) H(Φ,ϕ)

H(θ,α) H(θ,φ) H(θ,Φ) H(θ,θ) H(θ,Θ) H(θ,ϕ)

H(Θ,α) H(Θ,φ) H(Θ,Φ) H(Θ,θ) H(Θ,Θ) H(Θ,ϕ)

H(ϕ,α) H(ϕ,φ) H(ϕ,Φ) H(ϕ,θ) H(ϕ,Θ) H(ϕ,ϕ)


where K(α,α) = E

(
∂2l(Ω)
∂α2 | Gt−1

)
= −vTWT 2v, H(α,φ) = HT

(φ,α) = E
(
∂2lt
∂α∂φ | Gt−1

)
=

−vTWT 2A, H(α,Φ) = HT
(Φ,α) = E

(
∂2lt
∂α∂Φ | Gt−1

)
= −vTWT 2B, H(α,θ) = HT

(θ,α) =

E
(
∂2lt
∂α∂θ | Gt−1

)
= −vTWT 2P , H(α,Θ) =HT

(Θ,α) = E
(

∂2lt
∂α∂Θ | Gt−1

)
= −vTWT 2R, H(α,ϕ)

=HT
(ϕ,α) = E

(
∂2lt
∂α∂φ | Gt−1

)
= −vTDT1, H(φ,φ) = E

(
∂2lt
∂ϕ2

| Gt−1

)
= −ATWT 2A, H(φ,Φ)

= HT
(Φ,φ) = E

(
∂2lt
∂ϕ∂Φ | Gt−1

)
= −ATWT 2B, H(φ,θ) = HT

(θ,φ) = E
(
∂2lt
∂ϕ∂θ | Gt−1

)
=

−ATWT 2P , H(φ,Θ) = HT
(Θ,φ) = E

(
∂2lt
∂ϕ∂Θ | Gt−1

)
= −ATWT 2R, H(φ,ϕ) =HT

(ϕ,φ)

= E
(
∂2lt
∂φ∂ϕ | Gt−1

)
= −ATDT1, H(Φ,Φ) = E

(
∂2lt
∂Φ2 | Gt−1

)
= −BTWT 2B, H(Φ,θ)

= HT
(θ,Φ) = E

(
∂2lt
∂Φ∂θ | Gt−1

)
= −BTWT 2P , H(Φ,Θ) = HT

(Θ,Φ) = E
(

∂2lt
∂Φ∂Θ | Gt−1

)
=

−BTWT 2R, H(Φ,ϕ) = HT
(ϕ,Φ) = E

(
∂2lt
∂Φ∂φ | Gt−1

)
= −BTDT1, H(θ,θ) = E

(
∂2lt
∂θ2

| Gt−1

)
= −P TWT 2P , H(θ,Θ) = HT

(Θ,θ) = E
(
∂2lt
∂θ∂Θ | Gt−1

)
= −P TWT 2R, H(θ,ϕ) = HT

(ϕ,θ)

= E
(
∂2lt
∂θ∂ϕ | Gt−1

)
= −P TDT1, H(Θ,Θ) = E

(
∂2lt
∂Θ2 | Gt−1

)
= −RTWT 2R, H(Θ,ϕ) =

HT
(ϕ,Θ) = E

(
∂2lt
∂Θ∂ϕ | Gt−1

)
= −RTDT1, H(ϕ,ϕ) = E

(
∂2lt
∂ϕ2

| Gt−1

)
= −tr(N), tr(.) is the
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trace function and 1 represents a vector of ones of order (n−m)× 1.
The conditional maximum likelihood estimates are consistent under some mild regularity
conditions and are asymptotically normally distributed (Andersen, 1970). Thus, in large
sample sizes,



α̂

φ̂

Φ̂

θ̂

Θ̂

ϕ̂


∼ Nk





α̂

φ̂

Φ̂

θ̂

Θ̂

ϕ̂


, H−1


(26)

approximately, where CMLE of α, φ, Φ, θ, Θ and ϕ are α̂, φ̂, Φ̂, θ̂, Θ̂, ϕ̂. The
asymptotic covariance matrix of Ω is H−1.

3.3 Confidence intervals and hypothesis testing inference

Suppose the rth component of Ω is denoted by Ωr. We have, From (26)

Ω̂−Ωr√
H(Ω̂)rr

∼ Nk(0, 1)

where the rth diagonal part of the conditional information matrix inverse is H(Ω̂)rr.
Suppose zδ represents the standard normal quantile of δ. A 100(1− α)%, 0 < α < 1/2,
confidence interval for Ω, r = 1,...,(p+q+P+Q+2), is[

Ω̂r − z1−α/2

√
H(Ω̂)rr; Ω̂r + z1−α/2

√
H(Ω̂)rr

]
.

For detailed information about asymptotic confidence intervals, see in (Pawitan, 2001;
Davison and Hinkley, 1997). Going to test for null hypothesis F0 : Ωr = Ωr

0 Vs alterna-
tive hypothesis F1 : Ωr ̸= Ωr

0 are being established on signed square root test of Wald’s
statistic, provided by (Pawitan, 2001).

z = Ω̂r−Ωr
0

ŝe(Ω̂r)
,

where, ŝe(Ω̂r) =

√
H(Ω̂)rr. The limiting distribution of Z is standard normal under F0.

Hypothesis testing inference can be performed using the likelihood ratio (Neyman and
Pearson, 1928), Rao’s score (Rao, 1948), Wald (Wald, 1943) and gradient (Terrell, 2002)
tests. These test statistics are well distributed as chi-square (χ2) under the condition of
F0 and in large samples.
The test for seasonal movement i.e. the Wald test can be displayed as following.

F0 : (Φ1, ...,ΦP ,Θ1, ...,ΘQ)
T = 0P+Q (non-seasonal),
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F1 : (Φ1, ...,ΦP ,Θ1, ...,ΘQ)
T ̸= 0P+Q (seasonal),

here 0P+Q is the (p+Q)-vector of zeros. There is no seasonal variance below F0. Reject-
ing F0 (null hypothesis) means that seasonality must be taken into account. The Wald
test statistic is

X = (Φ̂1, ..., Φ̂P , Θ̂1, ..., Θ̂Q)
(
H(Ω̂)ΦΘ

)−1
(Φ̂1, ..., Φ̂P , Θ̂1, ..., Θ̂Q)

T ,

where, H(Ω̂)ΦΘ is the block of inverse Fisher information matrix (P + Q) × (P + Q)
in respect to the seasonal parameters calculated at Ω̂. X is Chi-squared asymptotically
distributed with P+Q no. of degrees of freedom (df) under the condition of standard
regularity and the condition of null hypothesis. If we are going to calculate X, then the
seasonal model just needs to be calculated.

4 Model selection, diagnostic analysis and forecasting

Some model selection criteria for identification of model and some diagnostic tools for
adapted KSARMA models are discussed in this section. A fitted model can be used
for diagnostic checks to assess if the data dynamics are completely captured. For out-
of-sample prediction that passes all diagnostic tests, an appropriate model may also be
used.

4.1 Model selection criteria

Criteria for the selection of the models are rules used for choosing a statistical model.
Among the several competing models, the selection of the best-fitted model can be
decided on the basis of Akaike’s information criteria (AIC) (Akaike, 1974).
AIC is defined as

AIC = −2l̂∗ + 2(p+ q + P +Q+ 2) (27)

where, l̂∗ = l̂×n
(n−m) and the number of model parameters is (p+ q + P +Q+ 2).

Information criteria such as Akaike’s (AIC), Schwartz’s (SIC) (Schwarz, 1978), and Han-
nan and Quinn’s (HQ) (Hannan and Quinn, 1979) are also obtained from the maximized
conditional log-likelihood function in a regular manner.

4.2 Deviance

Deviance E is specified two times the difference between saturated model l̃ (for which
υ̂t = xt) and fitted model l̂ in the conditional log-likelihood which is expressed as

E = 2(l̃ − l̂), where l̃ =

n∑
t=1

lt(xt, ϕ) and l̂ =

n∑
t=1

lt(υ̂t, ϕ)

E is approximately distributed as chi-square
(
χ2
n−m−(p+q+P+Q+2)

)
, if the fitted model

is defined correctly.
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4.3 Residuals

Analysis of the residual is an essential tool for ensuring that for the data the predicted
model is adequate (Kedem and Fokianos, 2005). Different kinds of residuals are available
for various class of models (Mauricio, 2008). Here, we can consider quantile residual
(Dunn and Smyth, 1996) for proposed KSARMA(p, q)×(P,Q)12 model which is delivered
by

w
(q)
t = Θ−1(Fυt(x̃t | Gt−1))

where Θ represents the normal quantile function. Under the adequate model specifica-
tion, these kinds of residuals is distributed around standard normal.
The residuals should act as white noise whenever the model is defined correctly, that is,
they are predicted to be non-stationary in series and implement a protocol of mean zero
and its variance is constant (Kedem and Fokianos, 2005). A Ljung-Box test (Ljung and
Box, 1978) which is based on the residuals is a suitable alternative for testing the suffi-
ciency of the fitted model which can be seen in (Greene, 2003) for detailed information.

4.4 Forecasting

For conditional median υt, we can obtain estimator of υt, υ̂t for t ∈ {m, ..., n} (in sam-
ple) by applying conditional maximum likelihood estimator in equation (4) and ϵ̂t =
g(xt)− g(υ̂t). we can obtained forecast h-step ahead as

υ̂n+h = g−1

(
α̂+

p∑
i=1

φ̂i

[
g(xn+h−i)

]
+

q∑
j=1

θ̂j

[
ϵn+h−j

]
+

P∑
I=1

Φ̂I

[
g(xn+h−IS)

]
+

Q∑
J=1

Θ̂J

[
ϵn+h−JS

]

−
p∑
i=1

P∑
I=1

φ̂iΦ̂I

[
g(xn+h−(i+IS))

]
+

q∑
j=1

Q∑
J=1

θ̂jΘ̂J

[
ϵn+h−(j+JS)

])
where

[g(xt)] =

{
g(υ̂t) if t > n

g(xt) if t ≤ n.

and

[ϵt] =

{
0 if t > n

g(xt)− g(υ̂t) if t ≤ n.

5 Numerical evaluation

We present a Monte Carlo simulation analysis in this section to evaluate the CMLE’s
finite sample efficiency for KSARMA models. We simulate 5000, Monte Carlo replica-
tions of KSARMA (1, 1)× (1, 1)12 model with parameters α = 0.7000, φ1 = 0.5000, Φ1

= -0.7800, θ1 = 0.6000, Θ1 = 0.8000 and sample sizes n = 60, 120, 240, 480. From
the KSARMA model, produce a vector representation of n iterations of the variable
xt with the link function logit. A numerical optimization method, i.e., BFGS with
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the first derivative was used for all conditional log-likelihood maximization. We ob-
tained the initial value of the coefficients of the autoregressive by regressing g(xt) on
g(xt−1), ..., g(xt−p), g(xt−(p+1)), ..., g(xt−(p+P )) and at the beginning of the conditional
log-likelihood maximizations, we equate zero of all the parameters of moving average.
The simulation has been done by R- software (Team, 2017). The results of the simula-
tion are represented in the form of Table 1.
In Table 1, statistical performance is represented as mean, bias, relative bias (RB), stan-
dard deviation (SD) and root mean square error (RMSE). Overall performance of CMLE
was observed to satisfactory except as our expectation for every smaller size that is n
= 60. For the sample size n = 60, the estimation was improved significantly with the
increase in sample size. The smallest relative bias, i.e., φ is the overall estimator of the
parameters. The estimation of the performance was found to be superior in the part of
autoregressive estimator than the moving average estimator. Simulation results analysis
represents that inferences about moving average parameters with respect to the other
parameters are found to be poorer. Table 1 mention, Parametric estimation of RMSE
is found to be smaller in all the situations.

6 Empirical application

For the proposed KSARMA model, we shall use the monthly average relative humidity
data of Delhi, India, which is taken from January, 2000 to December, 2016. This data
were acquired from India Meteorological Department (IMD), Pune. We have reserved
last 12 observation from the data for the performance of forecasting. Relative humidity
(RH) is an important factor for the human health, hydrological studies, pharmaceuticals
industry, agriculture and irrigation scheduling. Humidity levels that are too high or too
low may have severe health consequences. Low RH has been linked to lots of health
issues, including cold flu, nasal bleeding, vomiting, asthma attacks, allergies etc. In
low RH conditions, the human body is more susceptible to covid-19 infection (Mangla
et al., 2021). In addition to causing respiratory problems, high RH causes an increase
in precipitation, which can be dangerous if it occurs in excess. The time series plot of
RH (Figure 1(a)) shows in Figure 1, seasonal plot of RH (Figure 1(b)), autocorrelation
function (ACF) (Figure 1(c)) and partial autocorrelation function (PACF) plot (Figure
1(d)).
We have selected the KSARMA (2, 1) × (2, 2)12 model for relative humidity data. The
fitted KSARMA (2, 1) × (2, 2)12 models as well as some diagnostic are shown in Table
2. Figure 2 represents some diagnostic plots which contains five plots, that is, (a) Ob-
served data versus fitted values, (b) index plot of Quantile residual, (c) residual ACF,
(d) residual PACF and (e) residual QQ (quantile-quantile) plot. From figure 2(b), we
can see that there is no distinct pattern over time and residual behaves like white noise.
Figure 2(c) and figure 2(d) display a plot of ACF and PACF that can help to visual
verification of the residual white noise hypothesis, the Ljung-Box test was also used for
its verification given in Table 2 . From Figure 2(e), we can see that, the presence of a
nearly straight line in the plot indicates that the residuals are approximately normally
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distributed. Hence, we can confidently use the fitted model for forecasting according to
all plots and tests.. Figure 3(a) shows fitted KSARMA (2, 1)× (2, 2)12 model.
Using the KSARMA (2, 1)× (2, 2)12 and SARIMA (2, 0, 1)× (2, 0, 2)12 models, we pre-
dicted the monthly relative humidity data for next 12 observations, which are shown in
Figure 3(b). The forecasting performance comparison from different models are shown
in Table 3. Thus, we observed that the proposed model perform better than SARIMA
in both measure.

Figure 1: Time series plot of monthly relative humidity data of Delhi, India. (a) RH
series, (b) Seasonal plot of RH, (c) plot of ACF and (d) plot of PACF
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Table 2: Fitted KSARMA (2, 1)× (2, 2)12 model

Parameters Estimate Standard error z stat. p-value

α 0.0440 0.0073 6.0387 <0.0001

φ1 0.2636 0.0553 4.7669 <0.0001

φ2 -0.0675 0.0339 1.9919 0.0464

Φ1 0.3217 0.0774 4.1582 <0.0001

Φ2 0.6145 0.0383 16.0259 <0.0001

θ1 -0.0268 0.0594 0.4519 0.6513

Θ1 -0.2986 0.0857 3.4835 0.0005

Θ2 -0.3227 0.0885 3.6478 0.0003

ϕ 9.9881 0.6107 16.3542 < 0.0001

Log-likelihood = 244.2485

Deviance = 155.5892

AIC = -470.4971

BIC = -441.1796

Seasonality test: W = 296.349 (p-value < .0001)

Ljung-Box test: Q = 19.283 (p-value = 0.5035)
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Table 1: Results of simulation on point estimation based on KSARMA(1, 1)×
(1, 1)12

α φ Φ θ Θ ϕ

Parameters 0.7000 0.5000 -0.7800 0.6000 0.8000 12.0000

n = 60

Mean 0.3543 0.4991 0.0061 0.4312 -0.0267 10.2730

Bias -0.3457 -0.009 0.7861 -0.1688 -0.8267 -1.7270

RB(%) -49.3798 -0.1745 -100.7857 -28.1339 -103.3435 -14.3916

SD 0.1512 0.1817 0.1961 0.2260 0.2180 1.0062

RMSE 0.3773 0.1816 0.8102 0.2821 0.8550 1.9987

n=120

Mean 0.3783 0.4732 0.0164 0.4027 -0.0474 10.0988

Bias -0.3217 -0.0267 0.7964 -0.1973 -0.8474 -1.9012

RB(%) -45.9594 -5.5081 -102.1023 -32.8851 -105.9306 -15.8434

SD 0.1329 0.1573 0.1671 0.2001 0.1622 0.7683

RMSE 0.3481 0.1597 0.8137 0.2810 0.8628 2.0506

n=240

Mean 0.4104 0.4368 0.0104 0.3734 -0.0448 10.0130

Bias -0.2896 -0.0632 0.7904 -0.2266 -0.8448 -1.9870

RB(%) -41.3695 -12.6483 -101.3384 -37.7595 -105.6052 -16.5584

SD 0.1199 0.1347 0.1454 0.1783 0.1457 0.7218

RMSE 0.3134 0.1488 0.8037 0.2883 0.8573 2.1140

n= 480

Mean 0.4264 0.4177 0.0200 0.3422 -0.0576 9.9256

Bias -0.2736 -0.0823 0.8000 -0.2578 -0.8576 -2.0744

RB(%) -39.0888 -16.4622 -102.5624 -42.9714 -107.1980 -17.2868

SD 0.1142 0.1157 0.1471 0.1598 0.1434 0.6677

RMSE 0.2956 0.1420 0.8134 0.3033 0.8695 2.1792
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Figure 2: Plots of diagnostic based on the quantile residuals. (a) Observed versus fitted,
(b) Quantile residual, (c) Residual ACF, (d) Residual PACF and (e) QQ-plot
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Figure 3: Observed and forecast values of relative humidity in Delhi, India. (a) fitted
KSARMA (2, 1)×(2, 2)12 and (b) Observed and forecasted values from January
to December 2016

Table 3: Forecasting performance comparison from different Models

Models RMSE MAPE

KSARMA 0.05854 0.07390

SARIMA 0.05921 0.07967

7 Conclusions

This study introduced a new class of dynamic seasonal time series KSARMA model to
predict double-bounded relative humidity time-series data. This model is a generalized
version of KARMA model for seasonal data and it can be used to model and forecasting
seasonal time series data with value laying in the double bounded interval. In the pro-
posed model, we used the conditional maximum likelihood approach for the parameters
estimation of the model. Besides, closed type expression were obtained for the condi-
tional score vector and fisher information matrix. We have also discussed the confidence
interval, hypothesis testing and selection of model. A quantile residual approach to eval-
uating goodness-of-fit was discussed in this paper, as well as a white noise test which
can be implemented to the residual obtained from its fitted model. For the evaluation
of the finite sample results of the CMLE and test of white noise, we have used a Monte
Carlo simulation.
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