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Selecting an appropriate statistical model to forecast exchange rates is
still today a relevant issue for policymakers and central bankers. The so-
called Meese and Rogoff puzzle assesses that exchange rate fluctuations are
unpredictable. In the literature, a lot of studies tried to solve the puzzle
finding both alternative predictors (e.g., interest rates, price levels) and sta-
tistical models based on temporal aggregation. In this paper, we propose an
approach based on mixed frequency models to overcome the lack of infor-
mation caused by temporal aggregation. We show the effectiveness of our
approach with an application to CAD/USD exchange rate predictions.
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1 Introduction

According to a popular quote attributed to Alan Greenspan, the former U.S. Federal
Reserve Chairman: “implicit in any monetary policy action or inaction is an expectation
of how the future will unfold, that is, a forecast” (Carlstrom and Fuerst, 1999). Exchange
rate forecasting is an essential issue for policymakers and central bankers because these
predictions are used to project in the future the potential consequences of given monetary
policies. Central bank policies are described by interest rate rules, where interest rates
respond to forecasts of future inflation and economic activities rather than their past
values only (Wieland and Wolters, 2013). Equally important, exchange rate predictions
result extremely decisive for heavy importer/exporter countries’ central banks.
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The so-called Meese and Rogoff puzzle (Meese and Rogoff, 1983, 1988) assesses that,
differently from what is claimed by the economic theory, exchange rate fluctuations are
challenging to predict in practice. As a main result, the simple random walk model
provides more accurate forecasts than the most competing models based on classical
predictors. Previous studies (e.g., Mark, 1995; Cheung et al., 2005; Molodtsova and
Papell, 2009; Ferraro et al., 2015; Cheung et al., 2019) tried to solve the puzzle by finding
new competing predictors and statistical models to forecast exchange rates better than
the random walk model.
Several choices have to be made to forecast the exchange rates: the predictors to be

used in forecasting, the sampling frequency of the observation and the statistical model.
First of all, a set of significant predictors has to be defined. Economic theory (e.g., Fisher,
1896; Frenkel, 1976; Choi and Oh, 2003) provides a powerful guide. Among classical
theoretical frameworks, it can be mentioned the interest rate differential (uncovered
interest rate parity theory), the price levels differential (purchaising power parity theory)
and the money supply (monetary theory). Concerning the choice of the variables, Meese
and Rogoff (1988) tested classical predictors’ forecasting accuracy against a random walk
hypothesis. A similar approach was proposed by Mark (1995); Chinn and Meese (1995);
Cheung et al. (2005, 2019). Molodtsova and Papell (2009) showed that Taylor rule-based
variables are, to some extent, able to forecast the exchange rates. Similarly, Ferraro et al.
(2015) showed that oil price fluctuations play an important role at this aim.
A subsequent but equally relevant aspect in forecasting procedures is the time-frequency.

Some studies on exchange rates focused on monthly predictions (e.g., Molodtsova and
Papell, 2009), whereas other studies aimed at forecasting exchange rates with quarterly
predictions (e.g., Cheung et al., 2005, 2019). Time horizon is an important choice since
there is an interest in obtaining either short-run and long-run forecasts. As regards this
aspect, we have to highlight that the majority of exchange rate forecasting studies uses a
data aggregation step, despite the fact that exchange rate data are daily available. This
aggregation step, in which daily data are aggregated to monthly or quarterly data, are
usually done because the latter are the ones of interest for economists. Macroeconomics
literature does not consider high frequency data analysis, since it is mainly of interest
for the risk management.
The Meese and Rogoff puzzle is proved to be more difficult to be solved when exchange

rate data are quarterly aggregated, as well as its predictors (e.g., Cheung et al., 2005;
Rossi, 2013; Cheung et al., 2019). In particular, the temporal aggregation step induces
the so-called temporal aggregation bias (Marcellino, 1999), consisting of a considerable
loss of information once data aggregation is used. Therefore, the puzzle could be poten-
tially explained by temporal aggregation bias that rises in aggregating monthly data in
quarterly data. To avoid the consequences of the bias, a statistical model incorporating
all the monthly information available in the data should be preferred.
The selection of an appropriate statistical model is an important point (see Rossi,

2013). Meese and Rogoff (1988) used the classical linear regression to obtain predic-
tions (as well as Cheung et al., 2005; Molodtsova and Papell, 2009; Ferraro et al., 2015;
Cheung et al., 2019), whereas Mark (1995) proposed long-run relationships among pre-
dictors and exchange rates with error correction models (ECM). Nevertheless, several
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papers (e.g., Kilian, 1999; Groen, 1999, 2002) showed an important drawback: the single-
equation models without a co-integrating relation provide better out-of-sample forecasts
for exchange rates.

Overall, the puzzle is still not properly solved, and some questions remain open.
Among the others, Meese and Rogoff (1988) themselves tried to explain the puzzle
through sampling errors or model misspecification. By the way, it is not clear why some
authors as Molodtsova and Papell (2009) and Ferraro et al. (2015) had evidence in favour
of predictability with monthly data, while other authors as Cheung et al. (2005) and
Cheung et al. (2019) obtained not favourable results with quarterly data.

In this paper, by considering classical predictors suggested by the economic theory and
by avoiding temporal aggregation on them, we provide long-run forecasts on quarterly
exchange rates (e.g., Cheung et al., 2005, 2019). The challenge is how to handle the
mixture of sampling frequencies in exchange rates’ predictions. For this purpose, we
implement a strategy based on the so-called Mixed Data Sampling regression (MIDAS:
Foroni et al., 2015) which allows analysing data with different time frequency. We show
that the absence of temporal aggregation allows to better forecast exchange rates.

The structure of the paper is the following. In Section 2, we briefly review the predic-
tors commonly used to forecast exchange rates by previous studies. Then, in Section 3,
we describe the implemented statistical methodology. In Section 4, we provide empirical
evidence of the forecasting ability of mixed frequency models, showing a case study on
CAD/USD exchange rate prediction. Some remarks are reported in the conclusions.

2 Classical predictors for exchange rates

In exchange rates’ forecasting, the class of theoretical models that have been tested over
time against the random walk hypothesis is vast. The selected benchmark, the random
walk without drift, is written as:

∆st = ∆st−1 + ϵt (1)

where ∆st = st+1 − st is the exchange rate differential and ϵt the error term. In this
section, we briefly examine the most relevant models used into the reference literature.

2.1 Uncovered Interest Rate Parity

According to the uncovered interest rate parity (UIRP) theory (Fisher, 1896), the interest
rate differentials between two countries should explain fluctuations in the exchange rates.
However, many previous studies showed that more accurate forecasts can be obtained
by using the random walk. Several authors found good results using monthly frequency
data (Clark and West, 2006; Molodtsova and Papell, 2009). The UIRP model is specified
by estimating the following equation:

∆st = α+ β(it − i∗t ) + ϵt (2)
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where α is the intercept term of the model, it is the domestic short-term interest rate, i∗t
the foreign short-term interest rate, β is the relation between the interest rate differentials
and the exchange rate fluctuations and ϵt is the error term. A positive value of β produces
a forecast of the interest rate depreciation.

In the model, the intercept could be restricted to be zero or not (Rossi, 2013). The
intercept represents the level of the exchange rates’ fluctuations when the predictors
are zero. Most of previous studies (e.g., Meese and Rogoff, 1983, 1988; Mark, 1995;
Cheung et al., 2005; Ferraro et al., 2015)) leaved it unrestricted while some others (e.g.,
Molodtsova and Papell, 2009)) considered both approaches. In our paper, following
Molodtsova and Papell (2009), we consider both models with and without a restriction
on the α constant term.

2.2 Purchasing Power Parity

Another classical predictor is find in the purchasing power parity theory (PPP) consid-
ering the price level differentials of two countries. In particular, to test the validity of
the PPP theory for exchange rate forecasting, the following equation is estimated:

∆st = α+ β(pt − p∗t ) + ϵt (3)

where pt is the domestic price level, p∗t the foreign price level, α and β the parameters
to be estimated and ϵt the error term. Previous studies showed that the out-of-sample
performances are not good for the PPP model. In particular, Cheung et al. (2005) found
that predictors based on PPP produce more accurate forecasts than random walk within
a long timescale but their performance are never significantly better. Molodtsova and
Papell (2009) showed instead that the PPP model is significantly worse than a random
walk in shorter time horizons. Similar results can be found in Cheung et al. (2019).

2.3 Monetary models

The monetary models (e.g., Frenkel, 1976) assess that the exchange rates are determined
by the movements in countries’ relative money supply, outputs, interest rates and prices.
Assuming that UIRP and PPP hold, the following equation is estimated:

∆st = α+ β1(it − i∗t ) + β2(yt − y∗t ) + β3(mt −m∗
t ) + ϵt (4)

where yt and mt are the output and the money supply, respectively. The β3 coefficient
on money differentials is usually restricted to 1, whereas β2 is assumed to be negative
since (yt − y∗t ) < 0 implies a domestic currency depreciation with an increasing (ceteris
paribus) foreign country output. The specification in Eq. 4 has been defined flexible
price version of the monetary model by Meese and Rogoff (1988).
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Another monetary model is the so called sticky price, where it is supposed that the
PPP holds only in the long run. The main difference with respect to Eq. 4 is that the
functional relation is enriched by the price levels’ differentials:

∆st = α+ β1(it − i∗t ) + β2(yt − y∗t ) + β3(mt −m∗
t ) + β4(pt − p∗t ) + ϵt (5)

Even if Mark (1995) found strong and statistically significant evidence in favour of
these predictors in a very long time horizon (three to four years), these results have
been later questioned by several scholars (e.g., Chinn and Meese, 1995; Cheung et al.,
2005; Molodtsova and Papell, 2009; Cheung et al., 2019). Meese and Rogoff (1983)
demonstrated that the random walk is better than any monetary models in forecasting
exchange rates. These findings have been confirmed by Chinn and Meese (1995) for a
short timescale, by Cheung et al. (2005) for very long horizon time (five years) and by
Molodtsova and Papell (2009), which found good evidence just for few countries.

2.4 Taylor rule fundamentals

Some authors proposed to use predictors based on the Taylor rule of monetary policy
(Taylor, 1993) to forecast the exchange rates. Taylor theorised that monetary authorities
set the real interest rate as a function of how inflation differs from a given target.
According to this claim, the central banks’ response function is expressed as:

ît = πt + ϕ(πt − π̄) + γygapt + r̄ (6)

where ît is the target short-term interest rate, πt is the inflation rate at current time,
(πt − π̄) is the deviation of the current inflation rate from its target level π̄, ygapt is the
output gap and r̄ is the equilibrium level of real interest rate. The parameters ϕ and γ
define how the inflation rate and the output gap affect the target interest rate. Following
Molodtsova and Papell (2009), we can combine πt and r̄ into a constant term such that:

ît = µt + ϕπt + γygapt (7)

where µt = r̄ − ϕπ̄. The same relation hold for a foreign central bank:

î∗t = µ∗
t + ϕπ∗

t + γy∗gapt (8)

Assuming that the interest rate it immediately reaches the target ît, and that both
central banks set the interest rates according to a Taylor rule, if the UIRP holds we get:

∆st = α+ β1(πt − π∗
t ) + β2(y

gap
t − y∗gapt ) + ϵt (9)

The above specification is known as instantaneous Taylor rule. However, we can suppose
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that the interest rate it slowly adjusts to the target. An example of this adjustment
process is found in Molodtsova and Papell (2009), where:

it = (1− ρ)̂it + ρit−1 + ϵt (10)

Supposing that the Eq. 10 is applied to the data of a foreign country, we estimate:

∆st = α+ β1(πt − π∗
t ) + β2(y

gap
t − y∗gapt ) + β3(it−1 − i∗t−1) + ϵt (11)

that is defined as a Taylor rule with smoothing. The presence of smoothing reflects the
assumption made about the adjustment mechanism to the interest rate target. Using
Taylor rule fundamentals as predictors, Molodtsova and Papell (2009) found that the
out-of-sample exchange rates forecasts are significantly better than the random walk
model for several countries. Other studies (e.g., Molodtsova et al., 2011; Giacomini and
Rossi, 2010; Rossi and Inoue, 2012) found evidence in favour of Taylor rule fundamentals.
On the other hand, Rogoff and Stavrakeva (2008) found that the empirical evidence in
favour of this fundamentals is not robust, assessing that the Taylor rule framework is
a good description of monetary policies only for the past three decades. Nowadays,
after the financial crises, monetary policies changed. It is interesting to highlight that
Rogoff and Stavrakeva (2008) analysed quarterly data instead of monthly data, as well
as Molodtsova and Papell (2009), Molodtsova et al. (2011) and Rossi and Inoue (2012).

3 Statistical methodology

Traditional literature of exchange rate forecasting implements standard statistical models
that incorporate economic predictors (Meese and Rogoff, 1983, 1988). These statistical
models are mainly based on single equations within a linear regression framework, where
the estimation of the relationships showed in Section 2 are done by ordinary least squares
(OLS). This approach has been followed, for example, by Cheung et al. (2005), Bacchetta
et al. (2009) and Ferraro et al. (2015). Alternatively, some authors proposed to include
some lags, fitting a distributed lag model (e.g., Wright, 2008; Molodtsova and Papell,
2009; Molodtsova et al., 2011). Moreover, in the class of single-equation models, another
widely used alternative is the error correction model (ECM), which assumes a long-run
relationship between exchange rate levels and predictor levels.

The co-integration vector parameter can be either calibrated (e.g., Mark, 1995; Chinn
and Meese, 1995; Abhyankar et al., 2005; Berkowitz and Giorgianni, 2001; Kilian, 1999)
or estimated (e.g., Alquist and Chinn, 2008; Chinn, 2012; Cheung et al., 2005, 2019).
Positive evidence favouring the ECM model within a long time horizon has been found
by Mark (1995), whereas most of the other authors find no predictive ability. More
interestingly− using exactly the same ECM specification of Mark (1995)−Kilian (1999),
Groen (1999) and Groen (2002) find no predictive ability for monetary models. In other
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words, single-equation models without a co-integrating relation provide better out-of-
sample forecasts for exchange rates. For this reason, in the following, we focud on
single-equation models involving mixed-frequencies (Ghysels et al., 2004, 2007).

In the class of single-equation models, the mixed data sampling (MIDAS: Foroni et al.,
2015) regression is very promising in facing this kind of problems. The MIDAS shares
some features with distributed lag models, and from several point of views they are
very similar. The basic single equation with high-frequency regressor and low frequency
dependent variable is:

yt = β0 + β1B(L1/m; θ)x
(m)
t + ϵ

(m)
t (12)

where (L1/m; θ) =
∑K

k=0B(k; θ)Lk/m and L1/m is a lag operator such that L1/mx
(m)
t =

x
(m)
t−1
m

(for t = 1, ..., T ). We suppose that yt is observed at low frequency (e.g., quarterly)

and x
(m)
t is observedm times in the same period. It is clear that we are projecting yt onto

a history of lagged observation of the high-frequency variable x
(m)
t−k. The parameterisation

of the lagged coefficients of B(k; θ) in a parsimonious way is one of the MIDAS key
features that avoid parameter proliferation. Various are the choices for B(k; θ) with the
exponential Almon lag and Beta function as most common (Ghysels et al., 2007).

Foroni et al. (2015) introduced also the so-called unrestricted MIDAS (U-MIDAS)
which has very appealing features. As the authors showed in their study, when the dif-
ference in sampling frequencies between the dependent variable and the regressors is not
so large (as often happen with macroeconomic applications), it might not be necessary
to employ distributed lag functions B(k; θ). The essential operation made in estimat-
ing equations within the MIDAS framework is the so-called temporal alignment. The
frequency alignment is used to transform an high-frequency vector x with mT elements
into a low-frequency matrix X with T rows and m columns known as stacked vectors:

x =


x1
...

x(mT )

 →


xm xm−1 . . . x1
...

...
...

...

x(mT ) x(mT−1) . . . x(mT−(m−1))

 = X (13)

The MIDAS mapping follows a simple time-ordering aggregation scheme. Suppose
that yt is observed quarterly and the aim is to explain its relationship with the monthly-
observed variable xt. Stated that each quarter has three months, a value of m = 3 has
to be used. Let consider that only the monthly data in the current quarter have ex-
planatory power (i.e., we are estimating a single equation without lags). Assuming that
the exchange rates are quarterly observed, it is possible to transform a high-frequency
predictor x in a low-frequency matrix X with m = 3 stacked vectors:
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x =


x1

x2
...

x(3T )

 →


x3 x2 x1

x6 x5 x4
...

...
...

x(3T ) x(3T−1) x(3T−2)

 = X (14)

The previous formalisation indicates that for the quarter t we want to model yt as a lin-
ear combination of the monthly predictors observed within each quarter t. Alternatively,
we can write:

yt = α+ β1x3t + β2x3t−1 + β3x3t−2 + ϵt (15)

The frequency alignment procedure turns a MIDAS regression into a classical time series
regression where all the variables are observed at the same frequency. Moreover, this
operation makes the single equation model to be estimated by OLS. An important advan-
tage is that with MIDAS techniques we use all the available information for predicting
the subsequent quarter. Moreover, MIDAS regression is very promising in explaining the
role of temporal aggregation bias in exchange rate predictions. Therefore, we propose
the mixed-frequency extensions of the models presented in the Section 2. For example,
we estimate the mixed frequency UIRP model as in the following:

∆st = α+ β1(i3t − i∗3t) + β2(i3t−1 − i∗3t−1) + β3(i3t−2 − i∗3t−2) + ϵt (16)

where (i3t − i∗3t), (i3t−1 − i∗3t−1) and (i3t−2 − i∗3t−2) are the inter-quarterly interest rates
differences. In a similar way, we extend the PPP model using mixed frequencies:

∆st = α+ β1(p3t − p∗3t) + β2(p3t−1 − p∗3t−1) + β3(p3t−2 − p∗3t−2) + ϵt (17)

where (p3t − p∗3t), (p3t−1 − p∗3t−1) and (p3t−2 − p∗3t−2) are the inter-quarterly price levels’
differences. The same specification for the monetary models (4) and (5) produces:

∆st = α+ β1(i3t − i∗3t) + β2(i3t−1 − i∗3t−1) + β3(i3t−2 − i∗3t−2)+

+ β4(y3t − y∗3t) + β5(y3t−1 − y∗3t−1) + β6(y3t−2 − y∗3t−2)+

+ β7(m3t −m∗
3t) + β8(m3t−1 −m∗

3t−1) + β9(m3t−2 −m∗
3t−2) + ϵt (18)

∆st = α+ β1(i3t − i∗3t) + β2(i3t−1 − i∗3t−1) + β3(i3t−2 − i∗3t−2)+

+ β4(y3t − y∗3t) + β5(y3t−1 − y∗3t−1) + β6(y3t−2 − y∗3t−2)+

+ β7(m3t −m∗
3t) + β8(m3t−1 −m∗

3t−1) + β9(m3t−2 −m∗
3t−2)+

+ β10(p3t − p∗3t) + β11(p3t−1 − p∗3t−1) + β12(p3t−2−∗
3t−2) + ϵt (19)
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In the case of instantaneous Taylor rule, it easily follows that:

∆st = α+ β1(π3t − π∗
3t) + β2(π3t−1 − π∗

3t−1) + β3(π3t−2 − π∗
3t−2) + β4(y

gap
t − y∗gapt ) + ϵt

(20)

An inter-quarterly adjustment mechanism for the interest rate is supposed to be:

i3t = (1− ρ1 − ρ2 − ρ3)̂it + ρ1i3t + ρ2i3t−1 + ρ3i3t−2 + ϵt (21)

where ît is the quarterly target level of the interest rate, i3t is the interest rate in the
end of the quarter, i3t−2 the second month of the quarter and i3t−1 the first one. To test
the validity of the Taylor rule with inter-quarterly smoothing mechanism of the interest
rate, we finally estimate the following relation:

∆st = α+ β1(π3t − π∗
3t) + β2(π3t−1 − π∗

3t−1) + β3(π3t−2 − π∗
3t−2)+

+β4(y
gap
3t − y∗gapt ) + β5(i3t − i∗3t) + β6(i3t−1 − i∗3t−1) + β7(i3t−2 − i∗3t−2) + ϵt (22)

4 An application to CAD/USD exchange rate

To show the forecasting ability of the proposed approach, we consider the quarterly data
of the Canadian Dollar (CAD) / U.S. Dollar (USD) exchange rate. We collect the data
from FRED database1 and compute the logarithm of the nominal monthly CAD/USD
exchange rate from 01/01/1985 to 01/01/2019. More recent data about 2020 is not
considered because of the COVID-19 pandemic. We aggregate the monthly data into
quarterly data and calculate the returns of exchange rates (Fig. 1).
To empirically test the performances of the UIRP-based model, we use the data re-

lated to the short-term interest rate collected by the OECD database2 as in Molodtsova
and Papell (2009). The price levels, necessary to make forecasts with PPP-based predic-
tors, is captured by the monthly logarithmic Consumer Price Index (CPI). For monetary
models, we download the data of money supply index from the OECD database accord-
ing to M3 monetary stock definition and compute the logarithm of this variable. As
output variable, we consider the quarterly GDP measured in logarithmic levels. All the
variables (showed in Fig. 2) are expressed as differences between the domestic (Canada)
and foreign (U.S.) countries’ values. Moreover, we need the output gap for the imple-
mentation of Taylor rule-based models. Following the literature, we compute the output
gap as the GDP deviation from its long-run trend, obtained by applying the Hodrick and
Prescott (1997) filter. The country’s inflation rate are compute as the first difference of
the price levels logarithm (the predictors are shown in Fig. 3).

1https://fred.stlouisfed.org/tags/series
2https://data.oecd.org/



Electronic Journal of Applied Statistical Analysis 239

Figure 1: CAD/USD exchange rate fluctuations (top) and logarithmic returns (bottom)

We evaluate the performances of the standard models as well as of the proposed mixed
frequency approach. Following Ramzan et al. (2012) and Chung and Zhang (2017), we
compare the model performances with an out-of-sample analysis. We consider both
a recursive approach, where the sample has an increasing size, and a rolling-window
approach with a fixed sample size. To evaluate the forecasting accuracy, we use the
Mean Square Forecast Error (MSFE) defined as:

MSFE =
∑
n

(∆̂st −∆st)
2/n (23)

where, in general, the quantity ∆̂st −∆st represents the forecast error. The model with
the lowest value of the associated loss function is the best one.
Since assessing the accuracy’s improvement is not enough, it is necessary to test that

the forecasts obtained with alternative models are statistically different. There are sev-
eral possible approaches for this purpose. The primary predictive accuracy test in the
forecasting literature is the Diebold-Mariano test (Diebold and Mariano, 2002). Given
two alternative forecasting models i and j, and considering a generic loss function g(ϵi,t),
the loss difference is computed as in the following:

dij,t = g(ϵi,t)− g(ϵj,t) (24)

The null hypothesis of the test is:
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Figure 2: Classical predictors for exchange rates suggested by the economic theory: dif-
ferentials between domestic and foreign country of short-term interest rates,
price levels, GDP output and monetary supply

H0 : E(dij,t) = 0

where dij,t follows a N(0, 1) distribution. However, the main drawback of this approach
− as pointed out by Diebold (2015) − is that the test compares forecasts but does not
compare models. Therefore, following the exchange rate forecasting literature, we also
implement the Clark and West (2006) test to compare the performances of the proposed
complex models.

5 Empirical results and discussion

According to the unit root tests of Said and Dickey (1984) (ADF) and Kwiatkowski et al.
(1992) (KPSS), we obtain evidence of stationarity for all the considered variables (see
Table 1). For the ADF test, we consider the null hypothesis of not stationarity, while
for KPSS we consider the null hypothesis of stationarity. To get consistent estimates,
stationarity of all the involved variables is required. The integration order represents the
number of differentiations that the time series need in order to be covariance-stationarity
according to both tests.
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Figure 3: Interest rate differentials and output gap (obtained by applying the Hodrick-
Prescott filter) are other suggested variables to predict the exchange rates

Table 1: Unit root test: results

ADF KPSS Integration order

CAD/US exchange rate -4.2404*** 0.1205 I(0)

Interest rate differential -2.4043 0.9066*** I(1)

Price level differential -3.1993* 0.2240 I(0)

Money supply differential -2.8085 2.1546*** I(1)

Output differentials -2.0744 1.1409*** I(1)

Canada output gap -4.7458*** 0.0337 I(0)

U.S. output gap -4.1525*** 0.0362 I(0)

Canada inflation rate -5.5314*** 0.0324 I(0)

U.S. inflation rate -5.2739*** 0.0221 I(0)

*** significance at 1%, ** at 5% and * at 10%

To make the out-of-sample analysis, the first step is to split the sample into a training
set and a testing set. We obtain the forecasts according to both a recursive and a rolling
window schemes. As training set we select the period from 1985 to 1994, while as testing
set we choose the time window between 1995 and 2019. Table 2 contains the list of the
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estimated models in our empirical analysis.

The results of the forecasting accuracy obtained by the recursive scheme and the
associated predictive accuracy are in Table 3. The majority of the forecasting models (the
only exception is the MM2 model) provides more accurate forecasts than the benchmark
in Eq. 1. We consider the random walk model without drift. Forecasts are one step
ahead (h = 1). In the DM column are reported the values associated with the Diebold
and Mariano (2002) test, computed assuming MSFE loss function. In the CW column,
instead, are reported the values associated to the Clark and West (2006) tests.

We observe a better performance of the Taylor rule-based models. In particular, we
achieve the most accurate forecasts with the instantaneous Taylor rule model (TYLR1),
whereas the Taylor rule model with smoothing (TYLR2) performed poorer. The worst
model seems to be the sticky price version of the monetary model (MM2). The Taylor
rule with inter-quarterly adjustment (MF-TYLR2), proposed in this paper, provides the
most accurate forecasts within the class of mixed frequency models.

Table 2: Estimated models: classical models and their mixed frequency exten-
sions

Acronym Model description

UIRP Uncovered Interest Rate Parity estimated by the equation (2)

PPP Purchasing Power Parity estimated by the equation (3)

MM1 Flexible price monetary model estimated by the equation (4)

MM2 Sticky price monetary model estimated by the equation (5)

TYLR1 Instantaneous Taylor rule estimated by the equation (9)

TYLR2 Taylor rule with smoothing estimated by the equation (11)

MF-UIRP Mixed frequency version of (2) estimated by (16)

MF-PPP Mixed frequency version of (3) estimated by (17)

MF-MM1 Mixed frequency version of (4) estimated by (18)

MF-MM2 Mixed frequency version of (5) estimated by (19)

MF-TLYR1 Mixed frequency version of (9) estimated by (20)

MF-TYLR2 Mixed frequency version of (11) estimated by (22)

In conclusion, with a recursive approach, the mixed frequency based extensions im-
prove the forecasting accuracy in comparison with the classical models. In particular,
the MF-UIRP is the 2.3% more accurate than UIRP, the MF-PPP is the 8.2% more
accurate than PPP, and the MF-TYLR2 is the 18% more accurate than TYLR2. The
highest benefit of considering a mixed frequency model is reached, in terms of accuracy,
with the mixed frequency sticky price version of the monetary model (MF-MM2), that
is the 53.6% more accurate than the classical MM2 model.

In a similar way, we evaluate the forecasting accuracy of the proposed models according
to a rolling window scheme (see Table 4).
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Table 3: Out-of-sample analysis: recursive approach
with unconstrained intercept

MSFE DM CW

Random Walk 0.001984 - -

UIRP 0.001649 7.7800*** 1.53e−18***

PPP 0.001776 6.6951*** 5.87e−13***

MM1 0.001500 7.3806*** 8.98e−19***

MM2 0.003241 -7.6012*** 1.01e−16***

TYLR1 0.001155 3.2853*** 9.71e−17***

TYLR2 0.001547 7.3827*** 1.12e−18***

MF-UIRP 0.001612 7.7164*** 8.21e−19***

MF-PPP 0.001630 7.5522*** 3.28e−16***

MF-MM1 0.001439 6.9542*** 3.15e−18***

MF-MM2 0.001504 7.1243*** 5.87e−18***

MF-TYLR1 0.001318 6.0342*** 3.39e−16***

MF-TYLR2 0.001358 5.8580*** 1.40e−18***

*** significance at 1%, ** at 5% and * at 10%

Table 4: Out-of-sample analysis: rolling w. approach
with unconstrained intercept

MSFE DM CW

Random Walk 0.001984 - -

UIRP 0.002137 -1.2658 0.1498

PPP 0.001596 7.1651*** 2.73e−15***

MM1 0.002355 -2.0977*** 0.1238

MM2 0.005823 -7.1600*** 0.9999

TYLR1 0.001189 4.2468*** 1.25e−17***

TYLR2 0.001550 5.2236*** 8.15e−11***

MF-UIRP 0.001923 0.5376 0.0013***

MF-PPP 0.001482 7.1987*** 9.84e−18***

MF-MM1 0.005702 -3.2726*** 0.0810*

MF-MM2 0.007596 -3.5049*** 0.1251

MF-TYLR1 0.001447 6.6033*** 4.21e−18***

MF-TYLR2 0.001854 2.9112*** 1.43e−04***

*** significance at 1%, ** at 5% and * at 10%
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The results are completely different from the ones reported in Table 3. First of all, the
presence of the Meese and Rogoff (1983) puzzle is here more evident. For example, the
classical UIRP model is not able to predict the exchange rate, as well as the monetary
models. This result is confirmed by both the Diebold and Mariano (2002) and the Clark
and West (2006) tests. As in Molodtsova and Papell (2009) and Molodtsova et al. (2011),
the Taylor rule-based forecasts provide good results, because both the instantaneous rule
(TYLR1) and the smoothing rule (TYLR2) provide better forecasts than the benchmark.

As in the recursive approach, with the mixed frequency extensions we obtain better
results than the classical models for the majority of the cases. The MF-UIRP model
provides better results than the benchmark in terms of MSFE (the classical UIRP spec-
ification based on temporal aggregation provided less accurate forecasts). The gain in
accuracy of the MF-UIRP with respect the classical UIRP is exactly equal to 10%. While
the classical UIRP provides the same forecasts of the random walk without drift, with
the MF-UIRP specification we obtain a statistically significant over performance. In
other words, the unpredictability of UIRP model is explained by temporal aggregation.
Similar conclusions can be drawn for the MF-PPP model, since it provides more accurate
forecasts than the classical PPP model with an accuracy gain close to 7.2%.
Another important point is to test if the predictions, obtained with the mixed fre-

quency extensions, statistically differ from the classical models ones. With this respect,
the Table 5 shows the results of the Diebold and Mariano (2002) test applied to classical
and mixed frequency models.

Table 5: Predictive accuracy tests: classical vs mixed fre-
quency models with unconstrained intercept

DM-recursive DM-rolling w.

UIRP vs MF-UIRP 5.9832*** 6.0685***

PPP vs MF-PPP 5.8982*** 4.6052***

MM1 vs MF-MM1 3.6657*** -3.2809***

MM2 vs MF-MM2 7.9290*** 7.0872***

TYLR1 vs MF-TYLR1 -1.2483 -1.8250*

TYLR2 vs MF-TYLR2 2.6353** -4.8321***

*** significance at 1%, ** at 5% and * at 10%.

The first column of the Table 5 shows the results obtained by using a recursive forecast-
ing scheme. The most of the implemented statistical models provides statistically sig-
nificant different forecasts. Therefore we can argue that the over-performances obtained
by the mixed frequency specifications of the UIRP, the PPP and both the monetary
models are statistically significant. On the other side, the mixed frequency extension of
the instantaneous Taylor rule (MF-TYLR1) has the same predictive ability of the one
based on temporal aggregation (TYLR1). Moreover, the mixed frequency extension of
the Taylor-rule with smoothing (MF-TYLR2) provides more accurate forecasts than the
classical specification ones (TYLR2).
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The second column of the Table 5 shows, instead, the results obtained by a rolling-
window approach. According to the predictive accuracy test, the results reported in the
second column are very similar to those in the first one. For example, the UIRP and the
PPP models achieve better forecasts if their mixed frequency extensions are considered.

We also consider models with restrictions on the constant term. We assume α = 0
and test that no other factors can explain the exchange rate fluctuations rather than
those considered in the model (e.g., Molodtsova and Papell, 2009).

The out-of-sample analysis is conducted by a recursive forecasting scheme (see Table
6) and by a rolling-window one (see Table 7).

Table 6: Out-of-sample analysis: recursive approach
with constrained intercept

MSFE DM CW

Random Walk 0.001984 - -

UIRP 0.001288 5.6315*** 2.89e−16***

PPP 0.001375 6.0796*** 3.51e−16***

MM1 0.001233 5.5709*** 2.32e−17***

MM2 0.002106 -2.2300** 0.9365

TYLR1 0.001151 4.2104*** 2.51e−16***

TYLR2 0.001312 5.6915*** 6.51e−16***

MF-UIRP 0.001278 5.5947*** 2.42e−16***

MF-PPP 0.001315 5.6679*** 6.90e−16***

MF-MM1 0.001206 5.8857*** 7.84e−16***

MF-MM2 0.001199 5.3172*** 1.95e−17***

MF-TYLR1 0.001222 4.9146 1.33e−16***

MF-TYLR2 0.001334 5.8594 6.82e−08***

*** significance at 1%, ** at 5% and * at 10%

For the recursive scheme, the results are better than the ones in Table 3. With the
intercept restriction we also obtain an accuracy gain by specifying the mixed frequency
extensions in the case of UIRP and PPP models. However, differently from the previous
ones, the reduction of the loss function is also obtained in the monetary models (MM1

and MM2). For the rolling window scheme, we also highlight similar conclusions to the
ones in Table 4.

In the end, similarly to Table 5, we show the comparisons among the classical models
and the mixed frequency extensions according to the Diebold and Mariano (2002) test
(see Table 8). The conclusions in the case of constrained intercept are the same of the
ones in Table 5.

Therefore, the overall evidence of the presented study suggests different findings with
respect to other recent studies (e.g., Cheung et al., 2019), in which the evidence was
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Table 7: Out-of-sample analysis: rolling w. approach
with constrained intercept

MSFE DM CW

Random Walk 0.001984 - -

UIRP 0.001255 5.7223*** 1.64e−06***

PPP 0.002572 -3.0343 0.9089

MM1 0.001382 5.2489*** 7.84e−16***

MM2 0.005273 -5.0877*** 0.9940

TYLR1 0.001176 4.1394*** 2.45e−17***

TYLR2 0.001237 3.9466*** 9.58e−13***

MF-UIRP 0.001200 5.4211*** 1.62e−17***

MF-PPP 0.002261 -1.8027* 0.6218

MF-MM1 0.001294 6.3602*** 7.80e−23***

MF-MM2 0.001367 5.6075*** 1.95e−17***

MF-TYLR1 0.001236 4.1529*** 4.09e−16***

MF-TYLR2 0.001321 2.8723*** 0.0050***

*** significance at 1%, ** at 5% and * at 10%

Table 8: Predictive accuracy tests: classical vs mixed fre-
quency models with constrained intercept

DM-recursive DM-rolling w.

UIRP vs MF-UIRP 3.5159*** 2.0891**

PPP vs MF-PPP 3.9213*** 6.4927***

MM1 vs MF-MM1 -0.7775 2.1976***

MM2 vs MF-MM2 4.9132*** 5.0948***

TYLR1 vs MF-TYLR1 -1.3561 -1.8715*

TYLR2 vs MF-TYLR2 -2.2004** -1.3400

*** significance at 1%, ** at 5% and * at 10%.
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against predictability for the CAD/USD exchange rate using quarterly data. An impor-
tant result is that by incorporating mixed frequency we were able to improve forecasting
accuracy. Moreover, we can also conclude that our results are not affected by the kind
of restrictions we put on the intercept term in the statistical model.

6 Robustness check: alternative loss functions

In this Section, we provide some robustness checks to evaluate the performance of the
proposed approach. At this aim, we consider different loss functions showing the robust-
ness of the results. Particularly, we use the Mean Absolute Forecast Error (MAFE):

MAFE =

∑
n |∆̂st −∆st)|

n
(25)

and the Root Mean Square Forecast Error (RMSE):

RMSFE =

√∑
n(∆̂st −∆st)2

n
(26)

Table 9 shows the out-of-sample forecasting accuracy by means of a recursive approach.

Table 9: Loss functions: recursive approach with
unconstrained intercept

MSFE MAFE RMSFE

Random Walk 0.001984 0.035015 0.044543

UIRP 0.001649 0.030116 0.040615

PPP 0.001776 0.029600 0.040221

MM1 0.001500 0.028081 0.038733

MM2 0.003241 0.048582 0.056927

TYLR1 0.001155 0.024482 0.033972

TYLR2 0.001547 0.025741 0.036427

MF-UIRP 0.001612 0.029619 0.040159

MF-PPP 0.001630 0.028757 0.039519

MF-MM1 0.001439 0.027108 0.037945

MF-MM2 0.001504 0.027863 0.038561

MF-TYLR1 0.001318 0.024673 0.034890

MF-TYLR2 0.001358 0.026013 0.036861

Models’ ranking is clearly not affected by the selection of the loss function within this
framework (see Table 9). Then, we compute the additional loss functions (25) and (26)
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in the case of a rolling window forecasting scheme. The results are reported in the Table
10. In this case the results are also robust to the loss function specification (see Table 4).
The same analysis is conducted with α = 0. The results are shown, for both recursive
and rolling-window forecasting schemes, in the Tables 11 and 12. Thus, we can conclude
that the mixed frequency extensions improve the predictive ability of classical models
with respect to several loss functions.

Table 10: Loss functions: rolling w. approach with
unconstrained intercept

MSFE MAFE RMSFE

Random Walk 0.001984 0.035015 0.044543

UIRP 0.002137 0.034983 0.046231

PPP 0.001596 0.029459 0.039954

MM1 0.002355 0.037100 0.048538

MM2 0.005823 0.065159 0.076312

TYLR1 0.001189 0.024369 0.034325

TYLR2 0.001550 0.026151 0.035703

MF-UIRP 0.001923 0.032621 0.043861

MF-PPP 0.001482 0.027580 0.038499

MF-MM1 0.005702 0.053630 0.075517

MF-MM2 0.007596 0.028991 0.039591

MF-TYLR1 0.001447 0.024676 0.035103

MF-TYLR2 0.001854 0.032450 0.043050
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Table 11: Alternative losses: recursive approach
with constrained intercept

MSFE MAFE RMSFE

Random Walk 0.001984 0.035015 0.044543

UIRP 0.0012881 0.025275 0.035891

PPP 0.0013752 0.037084 0.026365

MM1 0.0012335 0.035121 0.024510

MM2 0.0021062 0.036188 0.045893

TYLR1 0.0011510 0.024490 0.033927

TYLR2 0.0013127 0.036232 0.025521

MF-UIRP 0.0012787 0.035758 0.025155

MF-PPP 0.0013150 0.025661 0.036260

MF-MM1 0.0012643 0.024713 0.035558

MF-MM2 0.0011993 0.024201 0.034630

MF-TYLR1 0.0012222 0.024681 0.034961

MF-TYLR2 0.0013346 0.025678 0.036533

Table 12: Alternative losses: rolling w. approach
with constrained intercept

MSFE MAFE RMSFE

Random Walk 0.001984 0.035015 0.044543

UIRP 0.0012550 0.025778 0.035430

PPP 0.0025726 0.040111 0.050721

MM1 0.0013823 0.027300 0.037179

MM2 0.5273600 0.459790 0.726200

TYLR1 0.0011764 0.024785 0.034299

TYLR2 0.0013211 0.026099 0.036347

MF-UIRP 0.0012001 0.025049 0.034642

MF-PPP 0.0022610 0.036694 0.047550

MF-MM1 0.0012949 0.026563 0.035985

MF-MM2 0.0013671 0.027098 0.036974

MF-TYLR1 0.0012360 0.025352 0.034961

MF-TYLR2 0.0013346 0.025678 0.036533
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7 Conclusions

According to the economic theory, several variables can be used to explain the exchange
rate fluctuations. From an empirical viewpoint, a lot of papers shows that the variables
used in the most popular frameworks forecast exchange rates worst than a random walk
model. This result is called the Meese and Rogoff puzzle. The most shared explanation of
the puzzle is that, stated the validity of the economic theory, the unpredictability should
derive by the presence of sampling errors or to statistical models’ misspecification.

The most common statistical approach to exchange rate forecasting is based on the
classical linear regression model. Starting from the work of Mark (1995), several authors
try to incorporate the long-run relationships among the predictors as additional variables
but with poorer results than the standard linear regression model ones.

In this paper, we claim that a possible explanation of the Meese and Rogoff (1983)
puzzle can be found in the so called temporal aggregation bias. This bias, caused by the
information lost induced by temporal aggregation, is seen as a source of misspecification
when some important (high-frequency) variables are omitted. This intuition lies on the
fact that the results presented in the literature are clearly affected by the frequency at
which exchange rates are sampled. Even if exchange rate data are daily available, many
studies focus on monthly or quarterly frequencies because these are of interest to the
economists (Rossi, 2013).

The mixed frequency regression model is a well known technique able to overcome this
issue. Here, we propose to use monthly-sampled predictors to forecast the (long-run)
quarterly exchange rates by means of a Mixed Data Sampling (MIDAS) regression.

The main empirical finding of the paper − on the basis of a case study concerning
the CAD/USD exchange rate − is that the mixed frequency regression model improves
the predictive ability in comparison with the classical models, that are instead affected
by the temporal aggregation bias. Therefore, the contribution of this paper is two-fold.
First of all, we show the implementation of the MIDAS regression to predict quarterly
exchange rates with very promising results, offering a new applicative domain for this
approach. Moreover, we provide a possible explanation of the Meese and Rogoff (1983)
puzzle. These findings can be interesting for a varied audience, including both scholars
and practitioners.

A future development consists in the analysis of a greater sample of countries, like
the exchange rates of the domestic currencies of Australia, Switzerland, Japan versus
the US dollar as in Molodtsova and Papell (2009). Another interesting point can be the
inclusion of the lag polinomial function as in the usual MIDAS of Andreou et al. (2010)
instead of the more simple mixed frequency regression that we consider in this paper.
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