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This paper presents inferences under classical (maximum likelihood, ML)
and Bayesian approaches for the parameters of the generalized Sibuya (GS)
probability distribution considering complete and right censored lifetime data.
Under a Bayesian approach, the joint posterior probability distributions of
interest are estimated using Markov Chain Monte Carlo (MCMC) simula-
tion methods. A comprehensive simulation study is carried out to assess the
performance of the estimation procedure. The usefulness of the GS model is
also assessed with applications to two real data sets. Despite its merits, one
limitation of the generalized Sibuya distribution is that it does not present
great flexibility of fit of the hazard function as compared to other existing
lifetime models.

keywords: Survival analysis, censored data, Sibuya distribution, maxi-
mum likelihood estimation, Bayesian inference.

1 Introduction

The introduction of different parametric models for discrete time-to-event data has in-
creased significantly in recent years, as observed in the literature, such as in educational
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research (Singer and Willett, 1993), sociology (Allison, 1982), clinical psychology (Her-
zog et al., 1997), medical studies (Scheike and Jensen, 1997), human fertility research
(Maity et al., 2014; Vanegas et al., 2017), and addictive behavior research (Northrup
et al., 2015), among many others. Under this formulation, a random variable denoted
by T representing the time until the occurrence of an event of interest is considered as a
discrete variable. In this way, the probability function and the cumulative distribution
function (CDF ) of T are respectively defined as f(t) = P (T = t) and

F (t) = P (T ≤ t) =

t∑
i=1

f(i), ∀t ∈ N∗.

The survival function defined as the probability that an individual will survive at least
until time t, is given by

S(t) = 1− F (t) = P (T > t) = 1−
t∑

i=1

f(i), ∀t ∈ N∗,

(Tutz and Schmid, 2016) and the corresponding hazard function is given by

h(t) = P (T = t |T ≥ t) =
P (T = t)

P (T ≥ t)
=

f(t)

S(t− 1)
. (1)

Among many discrete probability distributions introduced in the literature to analyze
lifetime data, we can mention the Yule-Simon distribution (Yule, 1924; Simon, 1955;
Gallardo et al., 2017), the discrete Weibull distribution (Nakagawa and Osaki, 1975),
the exponentiated discrete Weibull distribution (Nekoukhou and Bidram, 2015; Car-
dial et al., 2020; Freitas et al., 2021), the Weibull-Conway-Maxwell-Poisson distribution
(Gupta and Huang, 2017), the discrete Ramos-Louzada distribution (Eldeeb et al., 2022),
and the discrete Weibull geometric distribution (Jayakumar and Babu, 2018).

The standard Sibuya probability distribution, denoted by Sibuya(α), has probability
function given by

f(t) = P (T = t) =

(
α

t

)
(−1)t+1, t ∈ N, (2)

where α ∈ (0, 1) (Sibuya, 1979; Devroye, 1993; Letac, 2019). Kozubowski and Podgórski
(2018) defined the standard Sibuya distribution as “the distribution of the waiting time
for the first success in Bernoulli trials, where the probabilities of success are inversely
proportional to the number of trials”. Many generalizations and extensions of the Sibuya
distribution have been proposed in literature (see for example, Christoph and Schreiber
(2000), Bouzar (2008) and Kozubowski and Podgórski (2018)).

In the present article, we consider the use of the generalized Sibuya distribution in-
troduced by Kozubowski and Podgórski (2018) in the analysis of time-to-event data,
including the presence of right-censored data. The rest of the paper is organized as
follows. The generalized Sibuya distribution along with the shapes of its survival and
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hazard functions are given in Section 2. The maximum likelihood and Bayesian ap-
proaches are considered to obtain the estimators. In Section 3, we conduct a simulation
study to compare between the presented estimation technique and to assess the perfor-
mance of the maximum likelihood estimators. Also in section 3, the potentiality of the
model is studied by means of two real datasets. Concluding remarks are given in Section
4. Computational details are given in the appendices at the end of the article.

2 Methods

The generalized Sibuya (GS) distribution for a discrete random variable T , introduced
by Kozubowski and Podgórski (2018) has probability function given by

f(t) = P (T = t) =
α

β + t

t−1∏
j=1

(
1− α

β + j

)
=

α

β + t

(β + 1− α)t−1

(β + 1)t−1
, (3)

where β ≥ 0 and 0 < α < β + 1. In this expression, (x)t is the Pochhammer’s symbol
given by

(x)t =
Γ(x+ t)

Γ(x)
= x(x+ 1)(x+ 2)...(x+ t− 1),

where t is a non-negative integer and Γ(x) denotes the gamma function (Abramowitz
and Stegun, 1965). If t = 0, we have (x)0 = 1. A random variable that follows a
generalized Sibuya distribution will be denoted by GS(α, β). The mean of a generalized
Sibuya probability distribution is given by

E(T ) =
β

α− 1
, β > 0, 1 < α < β + 1, (4)

and the variance is

V ar(T ) =
αβ (β + 1− α)

(α− 1)2 (α− 2)
, β > 1, 2 < α < β + 1.

The survival function for this model is given by

S(t) = P (T > t) =

t∏
j=1

(
1− α

β + j

)
=

(β + 1− α)t
(β + 1)t

and, from (1), the corresponding hazard function is

h(t) =
α

β + t
.

If β = 0 and α ∈ (0, 1), we have the standard Sibuya distribution denoted as Sibuya(α)
with probability function given by

f(t) =
α

t!
(1− α)t−1. (5)
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Note that the expressions (2) and (5) are similar to each other.

Kozubowski and Podgórski (2018) noted that if α = 1, we have a probability function
given by

f(t) =
1

β + t

(β)t−1

(β + 1)t−1
.

In this case, and considering that (w)t = w(w + 1)t−1 and (w)t/(w)t−1 = w + t − 1,
we obtain

f(t) =
1

β + t

(
β

β + t− 1

)
=

β

β + t− 1
− β

β + t
=

1

1 + t−1
β

− 1

1 + t
β

,

which corresponds to a discrete Pareto distribution with a tail parameter equal to 1 and
scale parameter β ≥ 0 (Buddana and Kozubowski, 1965). This defines a heavy-tailed
distribution with non-finite mean.

Figure 1 contains plots of the survival and hazard functions of the generalized Sibuya
distribution for some arbitrary values of α and β. We can note that the hazard function
h(t) is always a decreasing function in t.

2.1 Maximum-likelihood estimation

Let T1, T2, ..., Tn be a random sample of size n of some distribution f(t) depending on
a unknown vector of parameters θ. The likelihood function for the parameter vector θ
is given by

L (θ|t1, t2, ..., tn) =
n∏

i=1

f(ti).

Assuming the generalized Sibuya (GS) distribution defined by (3) for a discrete random
variable T , we have θ = (α, β) and

L(α, β|t) =

n∏
i=1

α

β + ti

(
β + 1− α

β + 1
× β + 2− α

β + 2
× ...× β + ti − α

β + ti
× β + ti − 1− α

β + ti − 1

)

=

n∏
i=1

α

β + ti

ti−1∏
j=1

β + j − α

β + j

 ,

where t = (t1, t2, ..., tn). In this case, the log-likelihood function is given by

ℓ(α, β|t) = n ln(α)−
n∑

i=1

ln (β + ti) +

n∑
i=1

ti−1∑
j=1

ln (β + j − α)−
n∑

i=1

ti−1∑
j=1

ln (β + j)

= n ln(α)−
n∑

i=1

ti∑
k=1

ln(β + k) +

n∑
i=1

ti−1∑
j=1

ln(β + j − α). (6)
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(a) Survival function, α = 1, β = 2
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(b) Hazard function, α = 1, β = 2
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(c) Survival function, α = 3, β = 4
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(d) Hazard function, α = 3, β = 4
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(e) Survival function, α = 2, β = 2
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(f) Hazard function, α = 2, β = 2
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Figure 1: Plots of the survival and hazard functions of the generalized Sibuya distribution
for some arbitrary values of α and β.

Therefore, the maximum likelihood estimators (MLE) for α and β which maximize
(6) must satisfy the following equations:

∂ℓ

∂α
=

n

α
−

n∑
i=1

ti−1∑
j=1

1

β + j − α
= 0

and

∂ℓ

∂β
=

n∑
i=1

ti−1∑
j=1

1

β + j − α
−

n∑
i=1

ti∑
k=1

1

β + k
= 0.

The maximum likelihood estimator θ̂ML = (α̂ML, β̂ML) is thus obtained by solving the
above system of nonlinear equations. Although we cannot obtain explicit expressions
for the MLEs for the parameters α and β, they can be estimated numerically using
existing iterative algorithms such as the Newton-Raphson method and its variants. In
this article, we use the maxLik package in the statistical software R, which numerically
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maximizes the likelihood function (Henningsen and Toomet, 2011). The R code used in
the present article is provided in an Appendix at the end of the paper.

Considering large sample sizes we can get inferences of interest for the parameters of
the model, as hypothesis tests and confidence intervals, using the asymptotic bivariate
normal distribution of the MLE (α̂ML, β̂ML) given by[

α̂ML

β̂ML

]
∼ N

([
α

β

]
,

[
V̂11 V̂12

V̂21 V̂22

])
,

where V̂11 and V̂22 are the estimated variances of α̂ML and β̂ML, respectively, and V̂12 =
V̂21 is the covariance between α̂ML and β̂ML. In this way, approximate 100(1 − γ)%
Wald-type confidence intervals for α and β are, respectively, given by

α̂ML ∓ zγ/2

√
V̂11 and β̂ML ∓ zγ/2

√
V̂22, (7)

where zγ/2 denotes the upper γ-th percentile of the standard normal distribution.

The asymptotic variances of the MLEs are given by the elements of the inverse of the
Fisher’s information matrix. The expected Fisher’s information matrix is given by

I(α, β) =

 −E
(

∂2ℓ
∂α2

)
−E

(
∂2ℓ
∂αβ

)
−E

(
∂2ℓ
∂αβ

)
−E

(
∂2ℓ
∂β2

)  ,

where the second partial derivatives of the log-likelihood function are given as follows:

∂2ℓ

∂α2
= − n

α2
−

n∑
i=1

ti−1∑
j=1

1

(β + j − α)2
,

∂2ℓ

∂β2
=

n∑
i=1

ti∑
k=1

1

(k + β)2
−

n∑
i=1

ti−1∑
j=1

1

(β + j − α)2

and

∂2ℓ

∂α∂β
=

n∑
i=1

ti−1∑
j=1

1

(β + j − α)2
.

The asymptotic confidence intervals defined by the expression (7) may lead to nega-
tive lower bounds. To overcome this problem, we can use the first-order delta method
(Oehlert, 1992) and the logarithmic transformation to get the asymptotic normal distri-
butions for ln(α̂ML) and ln(β̂ML) given by

√
n (ln(α̂ML)− ln(α))

D−→ N

(
0,

σ2
α

α2

)
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and
√
n
(
ln(β̂ML)− ln(β)

)
D−→ N

(
0,

σ2
β

β2

)
,

respectively (
D−→ denotes convergence in distribution), where σ2

α = nV ar(α̂ML) and
σ2
β = nV ar(β̂ML). Thus, asymptotic 100(1 − γ)% confidence intervals for ln(α) and

ln(β) are given respectively by

ln(α̂ML)∓ zγ/2

√
V ar(α̂ML)

α̂ML
≡ (Lα, Uα)

and

ln(β̂ML)∓ zγ/2

√
V ar(β̂ML)

β̂ML

≡ (Lβ, Uβ).

Using the inverse logarithmic transformation, the approximate confidence intervals for
α and β are respectively obtained as (eLα , eUα) and (eLβ , eUβ ).

A Wald-type confidence interval for the mean of a random variable that follows a
generalized Sibuya distribution can be obtained by applying the delta method and using
the observed information matrix for θ = (α, β) (Oehlert, 1992). Let us define the mean
(4) as a function of the parameters (α, β), or say,

w(α, β) =
β

α− 1
, (8)

where β > 0 and 1 < α < β + 1. Using a first-order Taylor series, an approximation for
the variance of w(α, β) is given by

V ar [w(α, β)] ≈
[

∂w(α,β)
∂α

∂w(α,β)
∂β

]
Σ(α, β)

[
∂w(α,β)

∂α
∂w(α,β)

∂β

]
,

where
∂w(α, β)

∂α
= − β

(α− 1)2
,

∂w(α, β)

∂β
=

1

α− 1
,

and Σ(α, β) is the maximum-likelihood estimated variance-covariance matrix. Thus, an
approximate 100(1− γ)% Wald-type confidence interval for the mean is given by

w(α̂ML, β̂ML)∓ zγ/2

√
V ar

[
w(α̂ML, β̂ML)

]
,

where zγ/2 denotes the upper γ-th percentile of the standard normal distribution.

In this article, the Akaike (AIC) and Bayesian (BIC) information criteria were used
to compare the proposed models based on standard Sibuya, generalized Sibuya and
discrete Pareto distributions (Anderson and Burnham, 2002). The AIC value is given
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by AIC = −2 ln(L) + 2k, where L is the maximum value of the likelihood function
for each candidate model, and k is the number of estimated parameters of a candidate
distribution function. The BIC is defined as BIC = −2 ln(L) + k ln(n), where n is the
the sample size. AIC and BIC allow for a direct comparison between models, with lower
values indicating a better model fit (Akaike, 1974).

2.2 Maximum-likelihood estimation including censored data

Censored data are common in many areas of application when the primary endpoint of
interest is time to a certain event, such as time to death. Right-censored data refers to
individuals who have not yet experienced the event of interest at the end of the follow-up
period. In this case, the contribution of the ith subject for the likelihood function under
a right-censoring mechanism is given by

Li = [f(ti)]
di [S(ti)]

1−di ,

where di = 1 denotes a complete observation and di = 0 denotes a censored observation
(Klein and Moeschberger, 2003). Considering the generalized Sibuya distribution (3),
the likelihood function is given by

L(α, β|t,d) =
n∏

i=1

(
α

β + ti

)di [(β + 1− α)ti−1

(β + 1)ti−1

]di [(β + 1− α)ti
(β + 1)ti

]1−di

=
n∏

i=1

(
α

β + ti

)di [β + ti − 1− α

β + ti − 1

]di ti−1∏
j=1

β + j − α

β + j

 ,

where d = (d1, d2, ..., dn). The log-likelihood function becomes

ℓ(α, β|t,d) = lnα

n∑
i=1

di −
n∑

i=1

di ln (β + ti) +

n∑
i=1

di ln (β + ti − 1− α)

−
n∑

i=1

di ln (β + ti − 1) +
n∑

i=1

ti−1∑
j=1

[ln (β + j − α)− ln (β + j)] .

Deriving the log-likelihood function ℓ(α, β|t,d) with respect to α and β, we have the
following expressions:

∂ℓ

∂α
=

1

α

n∑
i=1

di −
n∑

i=1

di
β + ti − 1− α

−
n∑

i=1

ti−1∑
j=1

1

β + j − α

and

∂ℓ

∂β
= −

n∑
i=1

di
β + ti

+

n∑
i=1

di
β + ti − 1− α

−
n∑

i=1

di
β + ti − 1

+

n∑
i=1

ti−1∑
j=1

[
1

β + j − α
− 1

β + j

]
.
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Setting these expressions equal to zero, we get the corresponding score equations whose
numerical solution leads to the maximum likelihood estimators (MLE). The approximate
standard errors for the maximum likelihood estimates can be obtained by computing the
inverse of the observed Fisher information matrix at the estimated parameters, where the
second partial derivatives of the log-likelihood function with respect to the parameters
are given by

∂2ℓ

∂α2
= − 1

α2

n∑
i=1

di −
n∑

i=1

di

(β + ti − 1− α)2
−

n∑
i=1

ti−1∑
j=1

1

(β + j − α)2
,

∂2ℓ

∂β2
=

n∑
i=1

di

(β + ti)
2 −

n∑
i=1

di

(β + ti − 1− α)2

+

n∑
i=1

di

(β + ti − 1)2
+

n∑
i=1

ti−1∑
j=1

[
1

(β + j)2
− 1

(β + j − α)2

]

and

∂2ℓ

∂α∂β
=

n∑
i=1

di

(α− β − ti + 1)2
+

n∑
i=1

ti−1∑
j=1

1

(β + j − α)2
.

Wald-type 95% confidence intervals for the parameters can be obtained from the
respective estimators of the standard errors.

2.3 Bayesian analysis

Since the Bayesian framework considers the parameters of a model as random variables,
to estimate the unknown parameters α and β of the GS distribution it is necessary to
specify their prior distributions (Gelman et al., 2013). According to the Bayes theorem,
we can write the joint posterior density by combining the joint prior distribution with
the likelihood function for these parameters of interest. Considering that α and β are
positive parameters, we can assume a gamma prior distributions for these parameters.
We then set α ∼ Uniform(0, β + 1) and β ∼ Gamma(a, b), where a and b are known
hyperparameters. From the Bayes theorem the posterior distribution function is propor-
tional to the product of the likelihood function given in the previous sections and the
joint prior distribution for these parameters.

Given that the joint posterior distribution is analytically intractable, it is not easy
to generate samples from it. Therefore, in order to get information about the posterior
distributions of the parameters of interest, we used MCMC methods, especially the
Gibbs sampling and Metropolis-Hastings algorithms (Gelfand and Smith, 1990; Chib
and Greenberg, 2000) available in the MCMCpack, an R package that contains functions
to perform Bayesian analysis (Martin and Quinn, 2006; Martin et al., 2011). The model
was ran for 1,000,000 iterations with a burn-in phase of 10,000 simulated samples and
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a thinning interval of size 200. The R code used to specify the model is given in an
Appendix at the end of this paper.

Highest (posterior) density intervals (usually abbreviated as HPD intervals or HDI)
with 95% coverage were obtained for all parameters of interest. A HPD interval (or
HDI) is the shortest interval among all of the Bayesian credible intervals (Kruschke,
2014). Convergence was assessed visually from traceplots of each MCMC chain and
quantitatively via Geweke criterion, which is based on a test for equality of the means
of the first and last part of a Markov chain (Geweke, 1992). The MCMCpack package
considers by default the first 10% and the last 50%. Assuming asymptotic independence
between these two parts, the Geweke’s Z-score is given by the difference between the two
sample means divided by its estimated standard error. If the MCMC samples are drawn
from a stationary distribution, this statistics has an asymptotically standard normal
distribution.

To compare Bayesian models based on different distributions, the logarithm of the
pseudo marginal likelihood (LPML) was used as a measure of goodness-of-fit statistic.
This Bayesian model comparison criterion is based on the conditional predictive ordinate
(CPO) statistics (Geisser and Eddy, 1979; Maity et al., 2021). Let y = {y1, · · · , yn} be
an observed sample from f(·|θ). A Monte Carlo approximation of the CPOi by using a
MCMC sample {θ1, · · · , θM} from the posterior distribution π(θ|y) is given by

ĈPOi =

{
1

M

M∑
i=1

1

f(yi|θm)

}−1

(Dey et al., 1997). Since the CPOi is defined for each observation, the LPML value is
given by

LPML =
n∑

i=1

log ĈPOi.

Models with larger LPML values are preferred over models with lower LPML values.

3 Results

3.1 Applications to simulated data

In order to exemplify the application of the proposed model and to compare the results
from the frequentist and Bayesian approaches, samples from the GS distribution were
simulated for different sizes and values for the parameters. We simulated samples of
size n = 30, 60, 100, 250, 500, and 100 from the GS distribution for (a) (α, β) = (1, 2),
(b) (α, β) = (3, 4) and (c) (α, β) = (2, 2). All the samples were simulated using the R
code provided in the Appendix, including the presence of censored data. The seed of
the random number generator of the R program was arbitrarily set to a value of 8, to
allow the creation of simulations that can be reproduced.
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Table 1 shows the ML and Bayesian estimates of α and β based on the simulated
samples. Confidence intervals based on the ML approach were obtained using the delta
method and the logarithmic transformation, as described in the previous section. Under
the Bayesian estimation framework, prior distributions of α and β were given by α ∼
Uniform(0, β + 1) and β ∼ Gamma(0.1, 0.1), respectively, that is, approximately non-
informative priors. The Bayesian estimates are approximately equal to the ML estimates,
except when the sample size is relatively small (n less than 100). Both Bayesian and
ML parameter estimates of α and β tend to approach the nominal level as n becomes
larger, as it is expected. Also it is observed that the 95% confidence intervals for the
parameters of the model are very large when compared to the 95% HPD’s assuming a
Bayesian approach for small sample sizes. It is important to point out that the classical
confidence intervals are obtained using asymptotical distributions that depend on large
sample sizes. This is a important point in favor of the Bayesian approach, since in many
applications, especially in medical studies, we have small sample sizes.

3.2 Simulation study

In this subsection, we present a simulation study to illustrate the performance of the
ML approach presented in the previous sections. In this way, the following criteria are
adopted: the average bias, the mean squared error (MSE) and the coverage probabilities
of the confidence intervals for the parameters α and β based on the delta method. The
bias in the estimation of a parameter θ is estimated by

B̂ias(θ̂ML) =
1

B

B∑
b=1

(
θ̂
(b)
ML − θN

)
and the corresponding MSE is estimated by

M̂SE(θ̂ML) =
1

B

B∑
b=1

(
θ̂
(b)
ML − θN

)2
,

where θ̂ML ∈ (α̂ML, β̂ML) is the ML estimate for a given parameter, θ̂
(b)
ML is the ML

estimate obtained for θ considering the b-th simulated sample, θN is the corresponding
nominal value for θ, θ ∈ (α, β), and B is the number of simulated samples. The bias
informs to what extent the average of an estimated value is far from the true parameter,
and the MSE is a measure of the average of the squared errors. Values of bias and
MSE that are closer to zero are desirable.

We generated B = 1, 000 random samples each of size n = 25, 30, 35, 40, ..., 400, using
the R functions provided in the Appendix at the end of this article, including censored
data. The results from the simulation study are presented in Figure 2, considering a
nominal confidence coefficient of 95% and three sets of arbitrary values for the parameters
of the GS distribution, given by for (a) (α, β) = (1, 2), (b) (α, β) = (3, 4) and (c)
(α, β) = (2, 2).
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Table 1: Maximum likelihood and Bayesian estimates for the parameters of the model
based on GS distribution.

Nominal Maximum likelihood estimates Bayesian estimates

Values n Parameter Estimate Std. error 95%CI Estimate Std. dev. 95%HDI

GS(1, 2) 30 α 2.2574 0.8045 (1.0556, 4.8304) 1.1820 0.4011 (0.5061, 1.9934)

β 5.2225 2.4389 (1.9199, 14.2149) 1.9490 1.1084 (0.2472, 4.2501)

60 α 0.7706 0.2400 (0.4707, 1.2614) 0.7511 0.1789 (0.4497, 1.1115)

β 1.0216 0.8346 (0.2914, 3.5808) 0.9920 0.6096 (0.0024, 2.1566)

100 α 0.9301 0.2146 (0.5893, 1.4683) 0.9166 0.2042 (0.5617, 1.3351)

β 1.7807 0.8633 (0.6878, 4.6107) 1.7755 0.8333 (0.4265, 3.5248)

250 α 0.9671 0.1088 (0.7427, 1.2596) 0.9630 0.1327 (0.7268, 1.2364)

β 1.9121 0.4233 (1.1141, 3.2826) 1.9170 0.5453 (0.9413, 3.0135)

500 α 1.2589 0.1164 (1.0366, 1.5293) 1.2580 0.1381 (0.9897, 1.5232)

β 2.8919 0.4560 (2.0567, 4.0690) 2.9010 0.5597 (1.9043, 4.0442)

1000 α 1.0772 0.0756 (0.9522, 1.2186) 1.0759 0.0735 (0.9301, 1.2167)

β 2.3281 0.3123 (1.8426, 2.9423) 2.3292 0.3056 (1.7468, 2.9291)

GS(3, 4) 30 α 2.8092 2.7296 (0.1770, 44.5887) 1.4193 0.5374 (0.6434, 2.5069)

β 3.3978 4.5817 (0.0727, 158.6691) 1.1909 0.8718 (0.0003, 2.8640)

60 α 2.3900 1.2588 (0.9439, 6.0493) 1.5716 0.5236 (0.7110, 2.6106)

β 2.7227 2.0666 (0.7147, 10.3675) 1.4364 0.8448 (0.0006, 3.0411)

100 α 3.5399 1.6230 (1.1068, 11.2486) 3.2627 2.1510 (0.6462, 7.4184)

β 4.3054 2.5274 (0.9702, 18.9424) 3.9512 3.4260 (0.0001, 10.5278)

250 α 2.2289 0.5489 (1.3435, 3.6960) 2.2606 0.5919 (1.2636, 3.4180)

β 2.5317 0.9393 (1.1798, 5.4285) 2.6095 1.0304 (0.9387, 4.6491)

500 α 2.9686 0.5036 (1.8872, 4.6889) 2.9996 0.6422 (1.9129, 4.3007)

β 4.0217 0.9122 (2.1916, 7.4208) 4.0945 1.1675 (2.1189, 6.4703)

1000 α 2.7683 0.4075 (1.8982, 4.0377) 2.7766 0.3688 (2.1023, 3.5153)

β 3.6252 0.7357 (2.1523, 6.1072) 3.6475 0.6688 (2.5161, 5.0590)

GS(2, 2) 30 α 1.5980 1.1190 (0.3738, 6.8326) 1.2600 0.3525 (0.6594, 1.9484)

β 1.3883 1.7682 (0.0987, 19.5321) 0.9264 0.5476 (0.0523, 1.9809)

60 α 0.9234 0.3825 (0.4083, 2.0882) 1.1188 0.2643 (0.7154, 1.6751)

β 0.3364 0.5882 (0.0107, 10.5448) 0.6845 0.4186 (0.0487, 1.5316)

100 α 2.5278 1.2319 (0.9231, 6.9249) 2.3529 1.5287 (0.6456, 5.2016)

β 2.3752 1.6842 (0.5487, 10.2871) 2.1885 2.1600 (0.0001, 6.0814)

250 α 1.8726 0.4403 (1.1722, 2.9915) 1.8645 0.4655 (1.0429, 2.7914)

β 1.6267 0.6485 (0.7352, 3.5993) 1.6314 0.6923 (0.4839, 3.0658)

500 α 1.9657 0.3429 (1.3964, 2.7670) 1.9704 0.3486 (1.3515, 2.6725)

β 1.9629 0.5505 (1.1329, 3.4010) 1.9795 0.5638 (0.9932, 3.1171)

1000 α 1.7861 0.1863 (1.4317, 2.2281) 1.7851 0.1989 (1.4116, 2.1764)

β 1.6274 0.2916 (1.1129, 2.3799) 1.6295 0.3117 (1.0586, 2.2638)
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Figure 2: Results from the simulation study. The graphs show the estimates of the
coverage probabilities of the 95% confidence intervals for the parameters α
and β based on the delta method, the average bias, and the mean squared
error (MSE).

We can note in Figure 2 that in all simulations, the biases and the MSE always
approached zero as the sample size increased, as it is expected. However, the simulations
suggest that a better performance of the ML approach is observed for (α, β) = (1, 2),
where we can notice a better approximation of the coverage probabilities to the nominal
value of 95% even when the sample size is relatively small. When considering (α, β) =
(3, 4), the coverage probability is below the nominal level even for large sample sizes,
and the bias and MSE need relatively large sample sizes to reach values close to zero. In
summary, this simulation study suggests that the ML approach has a worse performance
for higher parameter values.

3.3 Applications to real data sets

3.3.1 Special educators data

Now let us consider a real dataset introduced by Singer and Willett (1993), where they
evaluated the number of consecutive years in teaching for 3, 941 special educators hired
in Michigan public schools between 1972 and 1978. The event time is right-censored
if an educator was still teaching when the data collection was finished. Approximately
44% of the observations are censored. Table 2 shows the ML estimates, standard errors
and Wald-type confidence intervals obtained from the analyses based on the standard
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Sibuya, generalized Sibuya and discrete Pareto distributions. Considering the model
based on the GS distribution, it was not possible to estimate the mean of the number
of consecutive years in teaching because the correspondent ML estimate for α is lower
than 1.

Table 2: Maximum likelihood estimates, standard errors, 95% confidence intervals
(95%CI), AIC and BIC values for the models based on the standard Sibuya,
generalized Sibuya and discrete Pareto distributions, applied to the special ed-
ucators data.

Distribution Parameter Estimate Std. error 95%CI AIC BIC

Sibuya (β = 0) α 0.2310 0.0045 (0.2223, 0.2400) 15335 15341

Generalized Sibuya α 0.7869 0.0282 (0.7335, 0.8442) 14667 14679

β 5.0520 0.2536 (4.5787, 5.5743)

Discrete Pareto (α = 1) β 7.0950 0.1748 (6.7345, 7.4731) 14674 14680
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Figure 3: Survival function for the special educators data estimated by the Kaplan-Meier
method and by using the models based on the generalized Sibuya, standard
Sibuya and discrete Pareto distributions.
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Table 3: Bayesian estimates, 95% HDI and LPML values for the models based on the
standard Sibuya, generalized Sibuya and discrete Pareto distributions, applied
to the special educators data.

Posterior 95%HDI Geweke’s

Distribution Parameter mean Std. dev. interval Z-score LPML

Sibuya (β = 0) α 0.2311 0.0045 (0.2225, 0.2399) −0.2700 −7667.17

Generalized Sibuya α 0.7699 0.0540 (0.6718, 0.8789) −0.4318 −7333.35

β 4.8360 0.5311 (3.8177, 5.8678) −0.5891

Discrete Pareto (α = 1) β 7.0622 0.2001 (6.6868, 7.4627) −0.5172 −7336.74
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Figure 4: Posterior samples for the model parameters of the Generalized Sibuya distribu-
tion applied to the special educators data. (a) Traceplots of posterior samples,
(b) histograms and posterior densities with the correspondent 95% highest
density interval (HDI) intervals, and (c) auto-correlation function (ACF) plots
for the posterior samples of the model parameters.

Figure 3 compares the Kaplan-Meier estimates and the ML estimates for the survival
function obtained from the three assumed parametric models. We can observe that
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the estimates for the survival function obtained from the models based on the GS and
discrete Pareto distributions are closer to those obtained by the Kaplan-Meier method,
than the estimates obtained from the model based on the standard Sibuya distribution.
In addition, the AIC and BIC values shown in Table 2 suggest that the GS and discrete
Pareto models provided a better fit for the special educators data compared to the
standard Sibuya model. In fact, as suggested by the shape of the Kaplan-Meier curve,
heavy tail distributions seem to be more appropriate to be fitted by the data.

For a Bayesian analysis of the data, it was assumed α ∼ Uniform(0, β + 1) and
the same approximately non-informative gamma prior distribution for the parameter
β as considered in the simulation study presented in Subsection 3.1. The Bayesian
estimates were obtained using MCMC methods. Table 3 shows the Bayesian estimates
of the parameters of the models based on the standard Sibuya, GS and discrete Pareto
distributions, when applied to the special educators data, with their respective 95% HDI.
As seen from Table 3, the Bayesian estimates are close to those based on the ML approach
(Table 2). Table 3 also shows the Geweke’s Z-scores for each parameter. Since all
absolute Z-scores are less than 1.96, the Geweke’s diagnostic evidenced the convergence of
the correspondent chains. Similar to the frequentist analyses, the Bayesian models based
on the GS and discrete Pareto distributions have the highest LPML values, suggesting
that these models provide the best fit to the data.

Posterior samples for the model parameters of the GS distribution applied to the
special educators data are described in Figure 4. Traceplots again indicate that the gen-
erated samples reached good convergence, and the plots of the auto-correlation function
(ACF) show that the posterior samples are approximately uncorrelated. Histograms
suggest that the posterior samples have slightly skewed distributions. Smooth kernel
density estimates are superimposed to the histograms.

3.3.2 Breastfeeding duration data

A prospective cohort study of 1, 803 live-born children and their mothers was conducted
in a tertiary obstetric hospital in Australia (Oddy et al., 2006). Let us consider a
subsample of this study involving 324 overweight and obese women. The variable of
interest is the age of the children in months at the moment when breastfeeding stopped.
This study does not include censored observations. As the data were available in figures
and not in numerical form, we used the open-source software WebPlotDigitizer, which is
a web based tool to extract numerical data from images (Drevon et al., 2017; Rohatgi,
2020). Table 4 shows the ML estimates, standard errors and Wald-type confidence
intervals obtained from the analyses based on the standard Sibuya, GS and discrete
Pareto distributions. Considering the GS model, the mean of breastfeeding duration
was obtained by the equation (8) and the respective standard error was obtained by the
delta method as described in the Methods section. The model based on GS distribution
showed a lower AIC and BIC values compared with the others, indicating a better fit of
this model to the observed data.
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Figure 5 compares the survival function estimated by the Kaplan-Meier method and
fitted by parametric models using ML estimation method. The Kaplan-Meier estimates
do not suggest that the time-to-event variable has a heavy-tail distribution, and in this
case the GS model can produce estimates for the survival function closest to the empirical
values when compared with the discrete Pareto model.

Table 4: Maximum likelihood estimates, standard errors, 95% confidence intervals
(95%CI), AIC and BIC values for the models based on the standard Sibuya,
generalized Sibuya and discrete Pareto distributions, applied to the breastfeed-
ing duration data.

Distribution Parameter Estimate Std. error 95%CI AIC BIC

Sibuya (β = 0) α 0.4178 0.0189 (0.3818, 0.4576) 2004.13 2009.63

Generalized Sibuya α 4.6308 0.3268 (4.0326, 5.3176) 1837.14 1848.13

β 25.0712 0.6932 (23.7487, 26.4672)

Mean 6.9052 0.5113 (5.9031, 7.9074)

Discrete Pareto (α = 1) β 2.9987 0.2908 (2.4796, 3.6265) 1871.88 1877.37

Table 5: Bayesian estimates, 95% HDI and LPML values for the models based on the
standard Sibuya, generalized Sibuya and discrete Pareto distributions, applied
to the breastfeeding duration data.

Posterior 95%HDI Geweke’s

Distribution Parameter mean Std. dev. interval Z-score LPML

Sibuya (β = 0) α 0.4178 0.0189 (0.3816, 0.4554) −0.2284 −1001.71

Generalized Sibuya α 3.6233 1.0763 (1.8343, 5.7367) 1.901 −918.54

β 18.5591 6.9327 (7.3648, 32.1564) 2.090

Mean 7.2068 0.6164 (6.1259, 8.4636) −0.897

Discrete Pareto (α = 1) β 3.0082 0.2881 (2.4599, 3.5810) −0.1597 −935.89
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Figure 5: Survival function for the breastfeeding duration data estimated by the Kaplan-
Meier method and by using the models based on the generalized Sibuya, stan-
dard Sibuya and discrete Pareto distributions.

Table 5 shows the Bayesian posterior estimates of the parametric models also assuming
α ∼ Uniform(0, β + 1) and approximately non-informative gamma prior distributions
for the parameter β of the proposed models. These estimates are relatively close to those
obtained from the ML method, showed in 4. The results of the GS model provide the
highest LPML value, suggesting that this model provides the best fit to the data among
these three models. The results from Figure 6 indicate satisfactory convergence for both
simulated chains, despite we note in Table 5 a Geweke’s Z-score a little larger than 1.96
for the β parameter.

4 Concluding remarks

In this article, we explored the potential of the GS distribution introduced by Kozubowski
and Podgórski (2018) to get better analysis of discrete time-to-event data, including cen-
sored observations. Maximum likelihood (ML) and Bayesian approaches were used to
estimate the parameters α and β of the model. Applications to simulated data showed
that both the ML and Bayesian approaches are computationally feasible to estimate the
parameters of GS distribution. However, we have noticed that ML and Bayesian are rel-
atively distant from each other when the sample size is small, perhaps due to some sense
of information provided by the choice of the prior distributions. Therefore, future stud-
ies should investigate the possibility of obtaining less informative prior distributions. In
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Figure 6: Posterior samples for the model parameters of the Generalized Sibuya distri-
bution applied to the breastfeeding duration data. (a) Traceplots of poste-
rior samples, (b) histograms and posterior densities with the correspondent
95% highest density interval (HDI) intervals, and (c) auto-correlation function
(ACF) plots for the posterior samples of the model parameters.

this study, we assumed approximately non-informative gamma prior distributions for the
parameters of the models in the simulation and real data applications. In practical work,
we could use prior opinion of experts to get more informative priors, especially when
we have small sample sizes, a situation where the elicitation of priors is an important
Bayesian issue to get more accurate inference results.

The estimation performance of the ML method was investigated in a simulation study.
We observed that the ML method perform well when the nominal values of the α and
β parameters are relatively small, and in this case the estimated bias and MSE values
are satisfactorily low even for small samples. We also conducted a simulation study
to investigate the coverage probability of the Wald-type confidence intervals for α and
β parameters based on expression (7) (results not shown), but we have noticed that
the intervals based on the delta method and logarithmic transformation generally yields
coverage probabilities closer to nominal.

Applications with real data have shown that the GS probability distribution can fits
the data very well, under both the ML and Bayesian frameworks. The example that
considers the special educators data shows that both GS and discrete Pareto distributions
are suitable for the data analysis, considering a heavy tail distribution. However, the
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analysis of the breastfeeding duration data evidenced that GS model fits the data better,
considering a distribution without heavy tail. In a situation like this, the GS model is
found to be advantageous over the model based on the discrete Pareto distribution.

The GS model can be easily implemented in existing free computational programs
as R, as showed in the Appendix. An important limitation of the generalized Sibuya
distribution is to have a lack of flexibility on the hazard function. Its hazard function
h(t) is always a decreasing function in t, a fact that could be become a serious obstacle
in the application of the model to real data.
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Appendix 1: Simulating samples from a generalized Sibuya
distribution

The Proposition 7 of the article by Kozubowski and Podgórski (2018) establish that if

T ∼ GS(α, β) we have T
d
= N(X), where X is given by

X
d
=

T1

T2(α, β)

and is independent of a standard Poisson process {N(t), t > 0}. T1 follows standard
exponential distribution and T2(α, β) follows a continuous beta distribution of the second
kind, with probability density function given by

f(x) =
1

B(α, β − α+ 1)

xα−1

(1 + x)β+1
,

where B(a, b) denotes the beta function, x ≥ 0, β ≥ 0 and 0 < α < β + 1. We also
consider independence between T1 and T2(α, β).

For generating random samples from a beta distribution of the second kind, the R
package GB2 can be used (Graf and Nedyalkova, 2015). The function rgb2(n,shape1,

scale, shape2, shape3) included in the GB2 package generates random samples from
a generalized beta distribution of the second kind, which is a four-parameter distribution.
In order to generate n samples from a beta distribution of the second kind, we can use
rgb2(n,1,1,shape2,shape3).

The following R function rGsib is used to generate random samples of size n from a
generalized Sibuya distribution with parameters α and β.

# Loading the GB2 package

library(GB2)

# Simulating samples from a generalized Sibuya distribution

rGsib <- function(n,alpha,beta) {

if (alpha >= (beta+1)) { stop("Alpha must be less than (beta - 1)") }

if (beta<0) { stop("Beta must be greater or equal to zero") }

if (alpha<=0) { stop("Alpha must be greater than zero") }

T1 <- rexp(n,1)

T2 <- rgb2(n,1, 1, alpha, beta - alpha + 1)

X <- T1/T2

rGsib <- rep(NA,n)

for (i in 1:n) rsib[i] <- 1 + rpois(1,X[i])

return(rGsib) }

In order to simulate a sample of size n from the generalized Sibuya distribution with
randomly right-censored data, we can use the Algorithm 6 of the article by Ramos et al.
(2020). To do this, we can use the following R function.



Electronic Journal of Applied Statistical Analysis 73

# Generating a discrete uniform random variable

rdu <- function(n,k) sample(1:k,n,replace=T)

# Generating a GS random variable

rGsibC <- function(n,alpha,beta) {

x <- rGsib(n,alpha,beta)

c <- rdu(n,max(x))

t <- pmin(x,c)

d <- as.numeric(x<=c)

sampl <- data.frame(t,d)

return(sampl) }

Appendix 2: Maximum likelihood estimation

Under the frequentist approach, the following R code can be used for the model using
the function maxLik of the maxLik package (Henningsen and Toomet, 2011) for the
maximization of the likelihood function.

# Loading the maxLik package

library(maxLik)

# Defining the Pochhammer function

pochhammer <- function(a,b) pochhammer <- gamma(a+b)/gamma(a)

# The likelihood function

log.f <- function(parms) {

alpha <- parms[1]

beta <- parms[2]

if (parms[1]<0) return(-Inf)

if (parms[2]<0) return(-Inf)

ft <- alpha/(beta+t)*pochhammer(beta+1-alpha,t-1)/pochhammer(beta+1,t-1)

St <- pochhammer(beta+1-alpha,t)/pochhammer(beta+1,t)

like <- ft^d*St^(1-d)

L <- sum(log(like))

if (is.na(L)==TRUE) {return(-Inf)} else {return(L)} }

# Obtaining the ML estimates

mle <- maxLik(logLik=log.f,start=c(alpha.0,beta.0))

summary(mle)

# The AIC value

print(paste("AIC = ", AIC(mle)))

# ML estimates

alphaML <- mle$estimate[1]

betaML <- mle$estimate[2]

# Obtaining the variance-covariance matrix

s <- vcov(mle)

# Obtaining the 95% CI for alpha e beta

Lalpha <- round(exp(log(alphaML) - qnorm(0.975)*sqrt(s[1,1])/alphaML),4)
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Ualpha <- round(exp(log(alphaML) + qnorm(0.975)*sqrt(s[1,1])/alphaML),4)

Lbeta <- round(exp(log(betaML) - qnorm(0.975)*sqrt(s[2,2])/betaML),4)

Ubeta <- round(exp(log(betaML) + qnorm(0.975)*sqrt(s[2,2])/betaML),4)

cat("Alpha = ",alphaML,"95%CI: (",Lalpha,",",Ualpha,") \n")

cat("Beta = ",betaML, "95%CI: (",Lbeta, ",",Ubeta, ") \n")

In this code ft is the probability function, St is the survival function, like is the
likelihood function, t is the time-to-event variable, d is the censoring indicator, and
alpha.0 and beta.0 are respectively the initial values for α and β.

Appendix 3: Bayesian estimation

The following R code can be used to obtain the Bayesian estimates. The MCMCpack
package also allows users to obtain the HPD intervals and the Geweke’s Z-scores.

# Loading the MCMCpack package

library(MCMCpack)

# Defining the Pochhammer function

pochhammer <- function(a,b) pochhammer <- gamma(a+b)/gamma(a)

# The log posterior function

log.post <- function(t,d,parms) {

alpha <- parms[1]

beta <- parms[2]

if (parms[1]<0) return(-Inf)

if (parms[2]<0) return(-Inf)

ft <- alpha/(beta+t)*pochhammer(beta+1-alpha,t-1)/pochhammer(beta+1,t-1)

St <- pochhammer(beta+1-alpha,t)/pochhammer(beta+1,t)

like <- ft^d*St^(1-d)

log.like <- sum(log(like))

prior <- dunif(alpha,0,beta+1)*dgamma(beta,.1,.1)

log.prior <- log(prior)

L <- log.like + log.prior

if (is.na(L)==TRUE) {return(-Inf)} else {return(L)} }

# Obtaining the MCMC estimates

posterior <- MCMCmetrop1R(log.post,

theta.init=c(alpha=0.5,beta=1.7), burnin=10000,

mcmc=1000000, thin=200, logfun=T, t=t, d=d, verbose=100000, tune = 1)

varnames(posterior)<-c("alpha","beta")

summary(posterior)

# Obtaining the HPD intervals

HPDinterval(posterior, prob = 0.95)

# Geweke Z scores

geweke.diag(posterior)


