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İstem Köymen Keser*and İpek Deveci Kocakoç
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The danger of a global pandemic, such as the new Coronavirus (Covid-19),
is obvious. This study aims to investigate the behavior and relationship of the
number of daily new confirmed deaths per million and the stringency index
of twenty-seven European Union (EU) countries by utilizing functional clus-
ter analysis and functional canonical correlation analysis. Functional cluster
analysis was used to observe how countries cluster together according to daily
deaths during the time interval between March and July 2020. Functional
canonical correlation analysis was also utilized to measure the correlation
between the frequency index and daily deaths, and also to determine the
relative positions of countries concerning their respective variability struc-
ture. The data is obtained from OWID. Here, it is seen that Italy, Spain,
Belgium, and France are particularly affected by the pandemic during the
time interval within the EU countries, and the course of daily deaths is in a
different position compared to other EU countries. At the same time, a very
high relationship emerged between the stringency index and daily deaths as
expected.
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1 Introduction

The danger of a global pandemic, such as the new Coronavirus (Covid-19), is obvious.
As of July 1, 2020, the number of Covid-19 cases worldwide was 10,708,589 and 516,570
people died due to Covid-19 (Worldometer, 2020). The World Health Organization
(WHO) describes Covid-19 at the High-Risk level. In order to avoid the high level of
pandemic risk, countries have mainly adopted regional quarantines, restriction of going
out of home, and social distance/isolation policy. As a result of this, significant re-
strictions and workplace closings were made in cafes, restaurants, entertainment venues,
hairdressers, hotels, shopping malls, urban and intercity land/sea/air transportation ser-
vices, where people often come together. The effects of these measures on the spread
of the disease are still under investigation. There are many organizations that keep the
track of events related to the pandemic by many variables such as daily and total cases,
deaths, recoveries, and test numbers. In this study, we focused on daily confirmed new
deaths per million population. According to ECDC (2020), as of 01 July 2020, 177,122
Covid-19 based deaths have been reported in the EU/EEA and the UK. Although the
7-day rolling average of daily confirmed COVID-19 deaths per million people slightly
decreases (Figure 1), the course of daily confirmed COVID-19 deaths in the world based
on continents (Figure 2) shows that the pandemic is not ending soon, and some policy
measures are still needed.

Figure 1: A 7-day rolling average of daily confirmed COVID-19 deaths per million people
Source: https://ourworldindata.org/grapher/covid-daily-deaths-trajectory-
per-million

To date, non-pharmacological interventions (NPI) have been the mainstay for control-
ling the coronavirus disease-2019 (COVID-19) pandemic Chowdhury et al. (2020). The
Oxford COVID-19 Government Response Tracker (OxCGRT) systematically collects in-
formation on several different common policy responses that governments have taken to
respond to the pandemic on 17 indicators such as school closures and travel restrictions.
Data is collected from public sources by a team of over one hundred Oxford University



Electronic Journal of Applied Statistical Analysis 199

Figure 2: Daily confirmed COVID-19 deaths
Source: https://ourworldindata.org/grapher/daily-covid-deaths-region

students and staff from every part of the world. The Government Response Stringency
Index is a composite measure based on nine response indicators including school closures,
workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest
response) (Oxford University Government Response Tracker, 2020). This study aims to
investigate the behavior and relationship of daily new deaths per million and the strin-
gency index of the twenty-seven European Union (EU) countries by utilizing functional
cluster analysis and functional canonical correlation analysis. Functional cluster analy-
sis was used to observe how countries are clustered together according to the number of
new deaths over the period of interest. Functional canonical correlation analysis was also
used to measure the correlation between the stringency index and new deaths, as well
as to determine the relative positions of countries in relation to the variability structure.
In Figure 3, the relationship between the number of new cases and the stringency index
is examined for one day. However, since the number of new cases is closely related to
the number of tests performed, it may not necessarily reflect the impact of the measures
taken. Therefore, in this study, we examined the relationship between the number of
deaths, a more robust variable, and the stringency index for a period of time.

2 Methods

2.1 Functional data analysis

Finite discrete time series are typically viewed as multivariate data. This approach,
however, ignores significant details about the stochastic method that created the data.
Thus, considering a more general element as the unit of measurement under analysis
is often beneficial. FDA provides the techniques to analyze, model, and predict time
data series when the intrinsic structure of the data is functional, i.e. when there is an
underlying function that generates the observed data (Matabuena et al., 2019). With
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Figure 3: Biweekly growth in cases and stringency index in Europe as of 1st of July,
2020
Source:https://ourworldindata.org/grapher/government-response-stringency-
index-vs-biweekly-change-in-confirmed-covid-19-cases?time=2020-07-01

the development of technology, especially in data storage capacities, the required func-
tional equivalents of classical statistical methods have been developed. The concept of
functional data first entered the literature with Ramsay (1982) and Ramsay and Dalzell
(1991). Ramsay and Silverman (1997) provided and identified examples of functional
data formulation of many statistical methods such as linear regression analysis, princi-
pal components analysis, canonical correlation analysis, and discriminant analysis. The
basic philosophy of functional data analysis is approaching observed data functions not
as a line of consecutive individual observations, but as unique inputs (Keser, 2014).

In this study, curvilinear data will be dealt with as functional data. In the functional
data analysis approach, the underlying curve is assumed to be smooth. If the measured
process is well controlled and measured accurately, some kind of interpolation of the
observed data values may be sufficient to provide a smooth curve. However, if the data
values are subject to measurement errors, a method that generally smoothes the data
will be required to ensure the function’s smoothness. By assuming that the underlying
curve is smooth, additional information can be obtained by getting the derivatives of
the functions. One of the strongest aspects of this method is that the desired degree
derivatives of the curves of interest can be taken. Functional data is often observed
intermittently and consists of n pairs as a functional observation (yj , tj) of a single
function x(t) that can be expressed as

yj = x (tj) + ϵj j = 1, 2, . . . ,n. (1)

Here yj is a scaler and the observation of the function x(t) at time tj and εj denotes
errors. Also, t is assumed to be limited in the range T = [t1, tn]. The function x(t)
provides a logical smoothing in T . One way to obtain smooth functions in the form
of x(t) during the time t is the linear combination of the K basis functions in form of



Electronic Journal of Applied Statistical Analysis 201

(ϕ1, ϕ2, . . . , ϕK).

x(t) =
K∑
k=1

ckϕK(t) = cΦ(t) ∀t ∈ T . (2)

ϕK(t) are known basis functions defined in the same time interval as x(t), and Φ(t)
is the vector of these basis functions. ck is the basis function coefficients and c is the
coefficients vector.

There are different types of basis functions with different strengths and weaknesses.
The best choice largely depends on the nature of the underlying smooth curve. For
example, if a regular periodic structure is available, the Fourier basis is suitable, while
less powerful, with strong local properties.

There may be undesirable high-frequency fluctuations that affect derivatives between
the observation points of many bases that work well for function prediction. Typically for
this, one or more derivatives of the basis function approach are selected to act logically.
For computational reasons, it is preferable to select the K value, which indicates the
number of basis functions, as small as possible (Strandberg, 2013). However, there are
other systems.

While obtaining some function coefficients, methods such as the least-squares method
or roughness penalty method are used. In this study, the roughness penalty method that
provides smoothing with a certain smoothing parameter is used.

In the roughness penalty method, while obtaining the roughness penalty estimates
of the coefficients, let the function x(t) be a function whose derivative can be defined
in the range T = [t1, tn] and λ be the smoothing parameter. Penalized least squares
PENSSEλ can be defined as

PENSSE λ =
∑
J

(yj − x (tj))
2 + λ

∥∥D2x
∥∥2 =

∑
J

(yj − x (tj))
2 + λ

∫ (
D2x(t)

)2
dt. (3)

Here, ∥D2x∥2 is a globally accepted way to measure the roughness of a curve and can
be expressed in terms of vector-based as

PENSSEλ = [y − θc]T [y − θc] + λcTRc. (4)

Here R is the roughness penalty matrix. Curve estimation that minimizes the Penalty
Sum of Squares is the best compromise between smoothing and goodness of fit.

2.2 Functional Cluster Analysis

Cluster analysis is an analysis used to find logical interpretable subgroups of individuals
or objects. The aim is to separate the sample of objects (individuals or objects) into
a small number of mutually exclusive groups based on similarities. In other words, the
objects in a data set should be grouped so that the objects in the same set should be
similar and the objects in different sets should be dissimilar.
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In classical cluster analysis, there are two basic clustering techniques, k-means, and
hierarchical clustering. Hierarchical clustering involves the establishment of a tree-like
structural hierarchy using combiner or separator procedures. In the k-means method,
when the number of clusters to be arranged is determined, the objects are assigned
to the clusters (Giraldo et al., 2012). As stated by Di Battista and Fortuna (2016),
since the functional centroids are representative of a cluster, they should belong to the
same function space as the observed functions. In functional cluster analysis, clustering
algorithms are used to create subgroups for a set of curves. While the curves in clusters
are similar to each other in clustering, they are not as similar to other clusters as possible
(Strandberg, 2013).

In certain cases, the same kind of information is recorded in the same unit at different
points in time. Each unit’s data is also collected at unevenly scaled times. In order to
aggregate these data , the data format and time data structure should be taken into
account. These data are also obtained in a format that is unevenly sized. Because of the
alignment with conventional ”variable-to-variable” records, at regular times there are
several blank records. These empty records are known to be lost data. Moreover, while
all units are observed at the same time, typical clusters do not take into account the
structure of the temporal order that is supposed to have similar values for the individuals.
Functional data is available to aggregate this type of data (Tzeng et al., 2018). The
infinite dimensionality of functional data is a common problem for all clustering methods
and leads to some additional difficulties, such as the absence of a functional random
variable’s probability density function, the definition of distances, or the estimation of
noisy data. Several methods have been developed to solve these problems (Jacques and
Preda, 2014; Tzeng et al., 2018), which can be primarily divided into three approaches:
two-stage clustering, distance-based clustering, or non-parametric clustering and model-
based clustering (Léger and Mazzuco, 2020). In Jacques and Preda (2014), a thorough
analysis of clustering methods can be found.

In this study, distance-based methods were used. Distance-based clustering approaches
usually consist of identifying unique distances or dissimilarities for functional data and
then applying a hierarchical or k-means approach as clustering algorithms (Léger and
Mazzuco, 2020). In clustering functional data, it is useful to smooth out observations and
cluster smoothed curves rather than observed data (Hitchcock et al., 2007). Distance-
based methods prefer to use coefficients of some functions as input. A relatively modest
amount of smoothing is applied to the functional data observed as the main strategy.
The aim is not to change the structure of the curves before clustering, but to remove
noise (Ferreira and Hitchcock, 2009).

Suppose we have an example of curves such as x1(t), x2(t), . . . , xn(t), and the curves
of the integrable functions defined in T = [t1, tn] belong to the separable Hilbert space
H (Giraldo et al., 2012).

In this study, the hierarchical clustering method based on the distance matrix is used.
Cluster analysis methods based on the distances matrix are developed as in the classical
layout, but the distances are treated as distances between the xi(t) and xj(t) curves
(Giraldo et al., 2012; Henderson, 2006; Hitchcock et al., 2007; Ferreira and Hitchcock,
2009). By using the expression basis function expansion in Eq.(5),



Electronic Journal of Applied Statistical Analysis 203

dij =

√∫
[t1,tn]

(xi(t) − xj(t))
2 dt. (5)

dij =

√∫
[t1,tn]

(ci − cj)
T Φ(t)Φ(t)T (ci − cj) dt. (6)

W =

√∫
[t1,tn]

Φ(t)Φ(t)Tdt. (7)

dij =

√
(ci − cj)

T W (ci − cj). (8)

can be obtained.

Here, ci and cj are vectors of basis coefficients for i.th and j.th individuals. The Gram
matrix W is the unit matrix for any orthonormal basis, such as the Fourier basis. W
must be determined by numerical integration for other base functions, such as B-Splines.
After calculating these distance matrices, standard combiner or separator clustering
methods can be applied. However, the functions of interest may be of the desired degree
derivatives, for example, first derivatives. For example, in a study on the length data of
boys and girls, the main concern may be the first derivative (growth rates), or the rate of
change in growth rate (i.e. acceleration) given by the second derivative (Clarkson et al.,
2005).

For example, if the main point of interest is the growth rate, the distances between
two growth curves functions x1(t) and x2(t) for two individuals as the square root of
integrable square distances between the first derivatives of the two length curves can be
defined as

d (x1(t), x2(t)) =

√∫ (
dx1(t)

dt
− dx2(t)

dt

)2

dt. (9)

Length measurements depend on the rate of growth change rather than final lengths
(Clarkson et al., 2005).

If generalized, the distances between the two curves, xi(t), and xj(t), depending on
the desired order derivative, can be expressed as in Eq(10) (Huzurbazar and Humphrey,
2008; Jacques and Preda, 2014).

d (xi(t), xj(t)) =

√∫ (
xli(t) − xlj(t)

)2
dt. (10)

2.3 Functional canonical correlation analysis

Canonical Correlation Analysis (CCA) deals with associations between two sets of ran-
dom variables. CCA for data that are essential in the form of curves is different from
those that are multivariate, due to the infinite dimensionality of the spaces that the data
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belong to (Hosseininasab et al., 2012). Functional canonical correlation analysis (FCCA)
is a useful tool to quantify the relationship between paired functional data Shin and Lee
(2015). Principle components analysis (PCA) may be used to examine the variation in
a curve set, however, it does not give explicit information about the interaction between
two curve sets such as xi(t) and yi(t) (i = 1, 2, . . . ,N, t ∈ T )). xi(t) and yi(t) are as-
sumed to be observed in a finite range (T) and all functions are integrable. Functional
canonical correlation analysis (FCCA) is the functional analogous of CCA and explains
the interaction between two different curve sets. For example, one may try to find out
the interaction between the variation in the stringency index in the Covid-19 cycle and
the variation in new deaths from the Covid-19 cycle.

The correlation surface, r(s, t); (s, t ∈ T ) in Equation (11), gives correlations between
every pair of xi(t) and yi(t). The height of the surface indicates the variation of the curves
at every point of time (or relevant variable) and gives a measure of covariation. However,
when the data is huge, the surface becomes very complicated and hard to interpret.
Then, it becomes impossible to visually reveal the dominant modes of variation between
two curve sets. The same situation arises in multivariate data analysis when interpreting
the variance-covariance matrix. Due to the difficulty of interpreting a multi-dimensional
variance-covariance matrix, CCA is utilized. In CCA, the interaction between two sets
of random vectors is explained in terms of several carefully chosen covariances.

r(s, t) = cor rX,Y =
covx,y, (s, t)√

varx(s)
√

vary(t)
. (11)

FCCA gives the function pair (ξ(t), η(t)) that maximizes the correlation between the
canonical variates, which are linear components such as

∫
ξ(t)xi(t)dt and

∫
η(t)yi(t)dt.

For example, ξ(t) and η(t) can be assumed to be the components of variation which
explains most of the interaction between stringency index in Covid-19 and new deaths
from Covid-19. In other words, ξ(t) and η(t) are the canonical variable weight functions
corresponding to stringency index and new deaths.

We need to find ξ(t) and η(t) that maximizes (12) under the constraints (13).

Cov

(∫
ξXi,

∫
ηYi

)
=

∫∫
ξ(s)Γ12(s, t)η(t)dsdt. (12)

(
var

∫
ξXi

)
=

∫∫
ξ(s)Γ11(s, t)ξ(t)dsdt = 1,(

var

∫
ηYi

)
=

∫∫
η(s)Γ22(s, t)η(t)dsdt = 1.

(13)

Γ11(s, t) = E(x(s), x(t)),

Γ22(s, t) = E(y(s), y(t)),

Γ12(s, t) = E(x(s), y(t)).

(14)

Here, (14) are the covariance functions. We benefit from and combine the notations
of Leurgans et al. (1993) and Ramsay and Silverman (2005) in this study.
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However, applying this maximization directly does not give meaningful results. When
directly applied, “there is always a pair of linear functionals of x and y that are perfect
correlated on the basis of the sample”. It is worth noting that the presence of unit
canonical correlations is also present with discretized data when the number of readings
on the “time” ordinate exceeds the number of sample curves (Kupresanin, 2008).

Optimizing at the same time with respect to two probes makes CCA an extremely
greedy technique where data mining uses this concept. CCA can capitalize on the
smallest difference in any set of functions in optimizing this ratio to the degree that it
may be difficult to see anything of significance in the result unless we exert any control
over the method. In practice , it is important to impose strong smoothness on the two
weight functions of ξ(t) and η(t) to limit this greediness. This can be achieved either
by choosing a low-dimensional basis for each one or by using an explicit penalty for
roughness in the same way as possible for functional PCA (He et al., 2004; Kupresanin,
2008; Ramsay et al., 2009; Keser, 2014).

Unlike PCA, the need for smoothing in FCCA is not a feature specific to certain data
sets but rather a general feature that must be followed for all data sets. In order to add
the smoothing into the analysis, constraints in Eq(13) should be modified to include the
roughness penalty term as follows:

var
(∫

ξxi
)

+ λ1

∥∥D2ξ
∥∥2 =

∫∫
ξ(s)Γ11(s, t)ξ(s)dsdt + λ1

∫ (
D2ξ(t)

)2
dt = 1,

var
(∫

ηxi
)

+ λ2

∥∥D2η
∥∥ =

∫∫
η(s)Γ11(s, t)η(s)dsdt + λ1

∫ (
D2η(t)

)2
dt = 1.

(15)

Here, λi(i = 1, 2) is a positive value and is referred to as the smoothing parameter
chosen for regularizing the variances of canonical variates. The problem of maximizing
the covariance in (12) under (15) constraints is equal to the maximization of the penalized
squared correlation in (16) in terms of ε and η.

ccors qλ(ξ, η) =
cov

(∫
ξxi,

∫
ηyi

)2{
var

(∫
ξxi

)
+ λ1 ∥D2ξ∥2

}{
var

(∫
ηxi

)
+ λ2 ∥D2η∥2

} . (16)

This procedure is referred to as smoothed canonical correlation analysis (SCCA) (Leur-
gans et al., 1993). Clearly the larger value of λ1 and λ2, the more emphasis will be placed
on the roughness penalty and the smaller will be the true correlation of the variates found
by SCCA. A good choice of the smoothing parameters is essential so that we have a pair
of canonical variates possessing fairly smooth weight functions and correlation that is
not unreasonably low (Leurgans et al., 1993). In practice, values of λ are often taken
identical.

After obtaining the first components of variation, ξ1(t) and η1(t), other components
of variation can also be found. They must ensure the following assumptions:

� correlation between and should be high.

� weight functions should be orthogonal as in (17).



206 Keser, Kocakoç

∫
ξi(t)ξj(t)dt = 0 i ̸= j and

∫
ηi(t)ηj(t)dt = 0 i ̸= j. (17)

In classical canonical correlation analysis, the number of eigenvectors that maximize
the correlation between two variable sets is equal to the number of variables in the
smaller set. In FCCA, the number of eigenvectors is taken as the smallest one of N,
which is the dimension of xi and yi, or K, which is the number of basis functions for ξ
and η. The first canonical correlation gives us most of the information about the relation
between the curve sets.

The factor having a canonical variate as its coefficient has a directional interpretation
in the data space in the sense that it shows the functional change in one process along
with the associated functional changes in the other process (Shin and Lee, 2015).

The studies of He et al. (2000, 2003, 2004) give alternative approaches to basis func-
tions for canonical correlation analysis. The historical progress of FCCA is given in
Hosseininasab et al. (2012). Several approaches for FCCA have been developed so far.
Recent work on FCCA includes Cupidon et al. (2007, 2008); Eubank and Hsing (2008);
Krzyśko and Waszak (2013); Madrigal (2017); Górecki et al. (2018, 2020).

3 Data and analysis

In this study, the number of daily deaths per million for 27 countries that are in the
European Union was examined. The primary reason for the examination of the European
Union countries is that the virus is more easily spread because of the free movement in
the European Union members and the catastrophic start of the pandemic in Italy.

Our data source is the OWID (Our World In Data) data repository (Beltekian, 2020)
for the number of daily deaths per million. OWID is a collaborative effort between
researchers at the University of Oxford, who are the scientific editors of the website
content; and the non-profit organization Global Change Data Lab, who publishes and
maintains the website and the data tools. Stringency index data is taken from Oxford
University Government Response Tracker (2020).

The number of new deaths was analyzed between 12.03.2020 -23.06.2020. Twenty-
seven individual new deaths functions, one for each country, are obtained by using
the roughness penalty approach via B-Spline basis functions. The lambda smoothing
parameter was taken as 0.01, subjectively so as not to disturb the general appearance of
the data.

It is seen that there are noticeable increases for all countries between 12.03.2020 and
23.06.2020. However, there are some countries that are prominent in these increases, and
these can be seen on the legend in Figure 4, beginning from the highest peak points. The
increase in new deaths started primarily in Italy, followed by countries such as Spain,
Belgium, France, Sweden, and the Netherlands. In fact, when peak points are examined,
it is seen that Spain, France, and Belgium have crossed Italy. Although the names of
Italy, Spain, and France, which are among the member states of the European Union,
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Figure 4: 27 individual new deaths curves

are in the foreground in the spread of the Covid 19 epidemic, it is seen that Belgium has
a much higher mortality rate than others in a wide period.

In this study, while examining the curve corresponding to each country, one of the
most important points is of course the reliability of the data. In some European Union
countries, there is confusion in reporting the number of deaths. Some citizens criticize
their government for not disclosing the correct numbers. In Germany, Italy, and Spain,
it is stated that only those who died in hospitals are registered and those who died
in nursing homes and homes are not included in these statistics, while Belgium faces
a different problem. It is stated that Belgium has a different reporting method than
other European Union countries and that even suspicious deaths in nursing homes are
recorded as Covid-19.

In terms of new deaths, the dendrogram created according to the results of the coun-
tries’ hierarchical clustering analysis for functional data is given in Figure 5 and the
clustering table created according to the dendrogram is given in Figure 6.

When the dendrogram in Figure 5 is examined, it is clearly seen that Belgium is at
the top as a separate cluster, as observed from the curves. It is seen that France is also
a separate cluster from the others. Even though Italy and Spain seem closer than others
in terms of distance, it is seen that Italy and Spain are actually separate clusters when
all time intervals and curves increase and decrease rates are examined.

The reason why Italy and Spain are relatively close to each other is that they share
many features such as high social citizens, beautiful weather conditions, densely popu-
lated cities, physically loving social interactions, and older elderly populations. Besides,
officials in both countries have initially underestimated how quickly the virus can spread
and how quickly it can push health systems to the brink of collapse.

In summary, attention should be paid to the formation of logical clusters in cluster
analysis as well as statistical calculations. Here, 6 clusters have been determined by
considering the dendogram, k-means cluster and the social structures of the countries
together.
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Figure 5: Dendrogram created according to hierarchical cluster analysis for functional
data

When the cluster mean curves in Figure 7 are analyzed, it is seen that the mean curve
of the cluster-1, which has the highest number of countries, is quite lower than the others
in the entire time interval. The mean curve of the fourth cluster of Ireland, Sweden, and
the Netherlands is relatively higher than the first cluster and appears to have peaked in
early May. However, other clusters, in other words, Belgium, Spain, France, and Italy,
in total, are far above in terms of mortality compared to these 23 countries. It was
observed that the peak timings of Belgium and France and Italy and Spain were close to
each other, but the number of new deaths was different, so they were in different clusters.
Belgium followed the peak in Italy soon with a higher value and the peak in France with
a higher value for a while. Belgium and France are two neighboring countries. These
peaks and the magnitudes of the ups and downs can be observed even more comfortably
in the first derivative functions (Figure 8).

When the first derivative functions of the new deaths of the countries in Figure 8
are analyzed, in other words, when the increase and decrease rates of new deaths are
analyzed, the changes in the speed functions of Belgium and Spain are clearly seen. The
speed curves of other countries vary in the range of ± 1 band. France and Italy, which
followed Belgium and Spain in new deaths, did not go beyond the lower and upper limits
of this band, although the new deaths increased and decreased. With the help of the
derivative function, the size of the ups and downs of new deaths between countries can
be compared more easily.

If classical cluster analysis were used, Spain and Italy would most likely be in the same
cluster when a time point where the curves were close was examined, but since the two
countries showed different ups and downs throughout the relevant time point, they were
actually in two separate clusters. We can see them much more clearly in Figure 8, which
gives the first derivative curves of the curves, in other words, the increase and decrease
rates, and Figure 9, which gives the cluster according to the first derivatives. However,
it is seen that Italy, Spain, France, and Belgium, which are prominent countries in the
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Figure 6: Clusters created according to hierarchical cluster analysis for functional data

Figure 7: Cluster mean curves

outbreak of 20 countries, are clustered separately.

These results are consistent with the study of da Silva and Tsigaris (2020), which
states that as countries’ GDP increases, mortality rates also increase. They stated that
as the GDP value of the countries increased, they travel more, and their possibility of
getting sick increased. The countries that have the highest death rate increase are in
the higher position in terms of GDP.

When the hierarchical cluster analysis is made according to the first derivative (Figure
9), which also takes into account the ups and downs of the new deaths, it is seen that
the first cluster is not separated, in other words, the speed curves of the new deaths
are similar in this period. However, Belgium and Spain are at the far end, as separate
clusters, as they are the curves with the highest ups and downs. Italy and France
also took place as separate clusters and even Italy and Spain diverged. Sweden and
the Netherlands, which are in the same cluster here, have two closest countries again
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Figure 8: First derivative curves

Figure 9: Functional hierarchical cluster analysis by first derivatives

and Ireland is located not far from them. In other words, in the cluster of Sweden,
Netherlands, and Ireland, Sweden and Netherlands are closer to each other than Ireland
in terms of the speed of new deaths.

Considering that the effects of Covid-19 may have been reflected in some countries
later, curve registration, which is frequently used in functional data analysis, has been
applied and it has been investigated whether this delay has an effect on the clustering
of countries. When the results were examined, it was seen that there was no big change
in the clusters and only the Netherlands, which is in the same cluster with Ireland and
Switzerland, clustered together with France. In other words, it cannot be said that the
onset of the epidemic later in other countries has a significant effect on the curves and
the changes they show. The registered curves and the result of their cluster analysis are
given in (Figure 10) and (Figure 11).

With the functional cluster analysis, after examining the clusters of the curves accord-
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Figure 10: Registered Curves

Figure 11: Functional hierarchical cluster analysis by registered curves

ing to themselves and then to their first derivatives, and determining the basic clusters,
the relationship between the ”stringency index” was created according to the measures
developed against Covid 19 and the number of deaths was investigated. At the same
time, the positions of the countries according to their highly related variability structures
were determined.

The functional curves of the stringency index for 27 countries (Figure 12) were ob-
tained again by using the Roughness Penalty approach via B-Spline basis functions. The
first canonical correlation between the index and new deaths was 0.978. Naturally, a
strong relationship is expected between the new deaths and the index, which reflects
strict security measures. This high relationship value meets these expectations.

In addition, when we tested the importance of the canonical correlation coefficient,
the p value was found to be 0.00068, and accordingly, it can be said that the correlation
coefficient is significant. For the significance test, code from Lin et al. (2017) article was
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Figure 12: Stringency index for 27 countries

used.

Figure 13: First canonical weight functions associated with the first canonical correlation

Figure 13 shows the two interacted canonical weight functions associated with the
first canonical correlation. These two functions show related variability structures and
fluctuations appear to follow each other very closely. It can be concluded that new
deaths per million and stringency index are highly linearly correlated.

Figure 14 shows the relative positions of 27 EU countries due to the degree of the rela-
tionship between two variables characterizing them: the daily new deaths from Covid-19
and the stringency index, recorded in the days 12.03.2020-23.06.2020. The extreme po-
sition is occupied as expected by Italy. Especially, many countries in the first cluster
were found to be in a close position here.
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Figure 14: Canonical scores for the first pair of canonical variables

4 Discussion

When the number of new deaths per million population of the European Union member
countries in the period of interest is analyzed by functional analysis, the countries that
differ from and resemble each other can be clearly seen. While twenty countries in cluster
1, which is a member of the European Union, are located very close to each other in
terms of both the ups and downs of the curves and their distance from each other, it is
seen that the main fluctuations and extreme situations are in Belgium, Italy, Spain, and
France. These countries need to be followed carefully and the measures to be increased.
However, Belgium and Spain are at the far end, as separate clusters, as they are the
curves with the highest ups and downs.

At the same time, a very high relationship of 0.978 between the stringency index,
which reflects the measures taken against the epidemic, and the number of new deaths,
as expected, has been revealed. When the positions of the countries with respect to each
other are examined here, it can be seen that Italy can be evaluated as an extreme value
and the positions of the countries in cluster 1 are very close.

Although these results are not very surprising, using functional data analysis instead of
usual line graphs or time series analysis and making the statistical connections between
stringency index and the number of new deaths might give future researchers a new
perspective to use. Functional data analysis allowed the examination of the new deaths
and stringency curves of the countries individually and the derivative curves taking into
account the ups and downs of the curves in the relevant period, and also the clusters of
the countries with the original curves could be compared.
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(2019). Application of functional data analysis for the prediction of maximum heart
rate. IEEE Access, 7:121841–121852.

Oxford University Government Response Tracker (2020). Coronavirus government re-
sponse tracker.

Ramsay, J. (1982). When the data are functions. Psychometrika, 47(4):379–396.

Ramsay, J., Hooker, G., and Graves, S. (2009). Introduction to functional data analysis.
In Functional data analysis with R and MATLAB, pages 1–19. Springer.

Ramsay, J. and Silverman, B. (1997). Functional Data Analysis. Springer-Verlag.

Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer.



216 Keser, Kocakoç
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