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The event model was proposed by Lanos and Philippe (2018) to com-
bine measurements in the context of archaeological chronological dating. We
extend this model to luminescence dating and define a new strategy to de-
tect outliers from the hyperparameters of the event model. This procedure
is applied to the combination of Gaussian measurements, data count and
luminescence age estimation. We illustrate through simulations that it is
preferable, in terms of accuracy and precision, to exclude detected outliers
rather than use the robust estimation method (e.g. the event model).

keywords: application to luminescence dating method; event hierarchical
model; outliers.

1 Introduction

There are several Bayesian approaches to addressing the issue of outlying observations.
When outliers are present two approaches are possible: the outliers can either be inte-
grated in the modeling or a robust estimation method can be built. In this paper, we
propose a new approach for detecting outliers which is applied to calculate an age by the
luminescence dating method. Optically Stimulated Luminescence (0SL) is used to date
the latest exposure to sunlight of grains extracted from sediments. It is fairly common
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that the sample contains poorly bleached grains, i.e. grains that were not sufficiently
exposed to light to fully reset. For such a grain the OSL method will provide an older
age than the true one. From a statistical point of view, the poorly bleached grains can
be viewed as outliers.

Finite mixture distributions are the most studied models for taking into account dif-
ferent types of outliers (see for instance Box and Tiao, 1968; Verdinelli and Wasserman,
1991; Inverardi and Taufer, 2020). One of the components models the non outliers and
the others correspond to outliers. The modeling of outliers can be complex due to the
wide variety of sources of error and the small number of observations. This approach has
been applied for computing ages in archaeology for instance by Bronk Ramsey (2009);
Christen and Pérez (2009); Christophe et al. (2018). Note that Bronk Ramsey (2009)
uses the mixture model to detect outliers, which are then removed from the sample
before age estimation.

In a Bayesian framework, different prior distributions are introduced to obtain a robust
model (see West, 1984; Peña et al., 2009; Gagnon et al., 2018). Lanos and Philippe (2017,
2018) considered a hierarchical model to estimate the date of an archaeological event
from various dating techniques (radiocarbon, luminescence). This is a particular case
of meta-analysis with individual effect for the second stage variance. They showed that
this model (called event model) is robust for determinating the age of an event, and for
constructing chronologies of archaeological sites. The drawback of robust approaches
is the loss of efficiency (in the sense that the variance is not optimal in the absence of
outlier).

In this paper we propose a process in two steps. Using the variance parameters in the
event model we define a criterion to identify the observations with the worst agreement.
Then, we proposed two strategies for estimating the parameter of interest taking into
account of detected outliers.

The paper is organized as follows. In Section 2, we describe the methodology for
estimating a parameter in the presence of outliers. In Section 3, we apply this method
to popular hierarchical models: Normal-Normal model and Poisson counting model.
Numerical results are provided to illustrate its performances. An application from the
field of archaeology is given in Section 4. We propose a new approach for determinating
OSL ages.

2 Methodology

We observe a sample X1, ...Xn modelled by the Bayesian model. Assume that the likeli-
hood function of X1, ...Xn belongs to {p(n)(· | θ), θ ∈ Θ}, and we denote by π the prior
distribution on θ.

X1, ..., Xn ∼ p(n)(· | θ) (1)

We consider a hierarchical model parametrization, this is a classical way to include
random effects in practice (see for instance Spiegelhalter et al. (2004) for meta-analysis,
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Congdon (2020); Gelman and Carlin (2014) for numerous models).

p(n)(X1, ...Xn | θ) =

∫
f (n)(X1, ..., Xn, θ1, ..., θn | θ)dθ1...dθn

=

∫
f (n)(X1, ..., Xn | θ1, ..., θn, θ)π1(θ1, ..., θn | θ)dθ1...dθn.

The parameters θ1, ..., θn are introduced to assist in controlling the heterogeneity of the
observations X1, ...Xn. We will assume that for all i ∈ {1, ...n} the distribution of the
Xi depends on θi. Individual parameters θ1, ...θn will bring a possible variability around
the central parameter θ. In the other words, the random variables |θ1 − θ|, ..., |θn − θ|
measure this heterogeneity.
If no information is available to distinguish any of the parameters θi from any of the

others, we choose a prior distribution on (θ1, . . . , θn) satisfying the property of exchange-
ability (see Figure 1.A for the representation of this model by a Directed Acyclic Graphs
(DAG)):

π1(θ1, ..., θn | θ) =

n∏
i=1

πσ2(θi | θ), (2)

f (n)(X1, ..., Xn | θ1, ..., θn, θ) =

n∏
i=1

f(Xi | θi) (3)

We parametrize the common conditional distribution of θi given θ by a scale parameter
σ2. This unknown parameter controls the heterogeneity in the sample (θ1, ..., θn), since
we have

σ2 = Var(θi − θ | θ) = Var(θi | θ).

The choice of π1 given in (2) is not adapted to the presence of outliers in the sample
X1, ..., Xn. Indeed, the assumption that, conditionally to θ, θ1, ..., θn are identically
distributed is not justified. On the other hand, the assumption of independence can be
maintained. Therefore, to take into account the possible presence of outliers, we modify
the form of π1 by including individual scale parameters σ2

1, ..., σ
2
n, for all i ∈ {1, ..., n},

σ2
i = V ar(θi | θ).

More precisely, the prior distribution (2) is replaced by:

π1(θ1, . . . , θn | θ) =
n∏

i=1

πσ2
i
(θi | θ). (4)

The individual random effects bring robustness with respect to outliers, however this
strategy usually results in a loss of precision. We propose a new strategy to detect
outliers which is based on the unknown parameters σ2

1, ..., σ
2
n. To complete the definition

of the Bayesian model, we have to choose a prior distribution for σ2
1, . . . , σ

2
n. We assume

that σ2
1, ..., σ

2
n are independent and identically distributed (i.i.d.) from πs. The choice

of πs depends on the parametrical family {πσ2(• | θ), σ2 ∈ R+}.
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Figure 1: Summary of the models described in Section 2 . A: the DAG of the model
(2)-(3) with a common random effect, B: the DAG of the model (4)-(3) with
individual random effects and C: the DAG of the model (6)-(7) combining
A and B after identification of the outliers. Here J is the sample size of
observations non identified as outliers among the n observations.

Decision rule for detecting outliers We seek to identify the outliers among the
data. If the observation Xi is an outlier then the variable σi tends to infinity as | θi−θ |
goes to infinity. Using this property we propose a decision rule, based on the variation
between the prior and the posterior distributions of σi. Let α ∈]0, 1[ and q1−α be the
quantile of order 1 − α of the prior distribution i.e. P(σi > q1−α) = α. The decision is
the following:

if P(σi > q1−α | X1, ..., Xn) ≥ α, then the observation Xi is an outlier. (5)

i.e. the posterior quantile of order 1−α is greater than the prior quantile q1−α. According

with this decision rule, we denote by (X̃i)i∈{1,...,J} the resulting subsample of (Xi)i∈{1,...,n}
whose outliers (X̃i)i∈{J+1,...,n} have been excluded.

Remark 2.1. The decision rule (5) depends on the posterior distribution of σi. This
distribution will not be usually explicit. For instance, in the Normal-normal discussed in
Section 3), we get in (18) the joint posterior density of σ1, ..., σn (up to a multiplicative
constant) but the marginal densities are not. In practice, the implementation of MCMC
algorithm will be required to draw sample from the posterior distribution of the parame-
ters θ, θ1, ..., θn, σ1, ..., σn. This simulation step can be easily done using the well-known
applications JAGS, STAN, BUGS (see Plummer, 2019; Stan Development Team, 2020;
Lunn et al., 2009). All the numerical results provided in Sections 3 and 4 have been
performed using STAN software.

Estimation of θ After detecting outliers, we propose two different strategies to esti-
mate the parameter of interest θ.
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[OM-1] The first strategy consists in excluding the outliers to the observations. Then
we estimate the parameter of interest θ from the subsample (X̃i)i∈{1,...,J}. As
this subsample is assumed to be free of outliers, it is not necessary to include
individual random effects. Therefore, we use the model defined in (2)-(3):

f (J)(X̃1, ..., X̃J | θ1, ..., θJ) =
J∏

i=1

f(X̃i | θi) θi ∈ Θ

π1(θ1, . . . , θJ | θ, σ2) =

J∏
i=1

πe(θi | θ, σ2) (6)

Although the new estimation is made on a smaller sample, we hope that it will
be more precise than the model with individual random effects defined in (3)-
(2). This gain in precision would be more particularly important in presence of
a small number of outliers.

[OM-2] A second strategy is to add in the model [OM-1] the outliers with individual
random effects. Such approach has been addressed by Gumedze and Jackson
(2011) in a frequentist context. Our model can be written as follows (see Figure
1.C):

f (n)(X̃1, ..., X̃n | θ1, ..., θn) =
n∏

i=1

f(X̃i | θi) θi ∈ Θ (7)

π1(θ1, . . . , θn | θ, σ2
1, ..., σ

2
J , σ

2) =
J∏

i=1

πe(θi | θ, σ2)
n∏

i=J+1

πe(θi | θ, σ2
i ) (8)

The individual random effects on the outliers bring robustness by an automatic
penalty. Since the individual effects only affect the outliers, we should win in
precision with respect to the model (3)-(2). This treatment less drastic of the
outliers makes it possible to keep the observations that would be false positives.

Remark 2.2. In some applications, stronger information is available on the parameters
θ1, ..., θn: for instance θ1 = ... = θn = θ (see Luminescence Dating in Section 4). In this
case we can assume that σ2 = 0 in both models [OM-1] and [OM-2].

3 Practical application to hierarchical models

In this section, we show how to implement our approach on different well-known hier-
archical model. We present in detail the Normal-Normal model which is widely used
in applications, as for instance clinical meta-analysis, (see for instance Congdon, 2010;
Spiegelhalter et al., 2004; Gelman et al., 2014). For this model, we provide simulation
results and an application on real data coming from Radiocarbon dating. Note that from
the description of the Gaussian case we can also apply to all probability distributions
parametrized by the mean and the scale parameter, as for instance Student, lognormal
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distributions (see Section 4 for an application with Cauchy distribution for the determi-
nation of OSL age). We show also that our approach can be applied with other forms
of distributions . We describe the example of the Poisson distribution of which one can
find applications in the books previously mentioned for the Gaussian case.

3.1 Hierarchical Normal Model

This hierarchical model is defined as follows

Xi = θi + siϵi, ∀ i = 1, ..., n

θi = θ + σiρi (9)

where (ϵ1, ...ϵn, ρ1, ..., ρn) are independent and identically Gaussian distributed random
variables with zero mean and variance 1, and where s21, . . . , s

2
n are known. We denote

s−2
0 = 1

n

∑n
i=1 s

−2
i . This model called event model was applied by Lanos and Philippe

(2017, 2018) to combine repeated measurements or dates in archaeology. This is an
extension of the usual meta-analysis model (see for instance Spiegelhalter et al., 2004).
The classical choice of prior distribution on the second stage variances σ2

1, ..., σ
2
n is the

uniform shrinkage distribution, that is: for all i ∈ {1, ..., n}
s20

s20 + σ2
i

∼ Uniform[0, 1], σ2
1, ..., σ

2
n are independent.

Hereafter, we denote the uniform shrinkage distribution by Shrin(s20). The median of
this distribution is equal to s20, that quantifies measurement error. Therefore, this prior
choice ensures equal weight to these measurement errors and the model errors. This
choice is also motivated by the fact that this prior distribution has infinite moments.
This heavy tail property allows large values for σ2

i which can take into account the
presence of outliers. The posterior distributions of σ2

i have also infinite moments (see
Proposition 5.1 in appendix). A major drawback of this choice is that the Bayes estimate
under quadratic loss is infinite. Note that our quantile-decision rule is not affected by
the absence of posterior moments.

Data simulation with outliers: We illustrate the performance of our method on
simulated samples contaminated with outliers. We fix τ the rate of contamination of the
sample. We simulate two independent Gaussian samples:

� a sample X1, ..., Xn−[nτ ] of independent random variables from the true model

Xi ∼ N (θ, s2i ), i = 1, ..., n− [nτ ] (10)

� a sample Xn−[nτ ]+1, ..., Xn of independent random variables corresponding to out-
liers

Xi ∼ N (θ + µ, s2i ), i = n− [nτ ] + 1, ..., n (11)

where µ ̸= 0.

As the variances s2i are assumed known, we simulated these positive observations from
Gamma distribution with parameter (as, 1). All the simulations are done with as = 2.
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Outliers detection: Figure 2 and Table 1 give the performances of our decision rule
for detecting outliers. First, we fix µ, τ and we evaluate the sensitivity and the specificity
as function of the cut-off α. Recall that sensitivity (respectively specificity) is the ability
to detect true outliers (respectively true non-outliers)sensitivity. As usual, we have to
find a trade-off between the sensitivity and the specificity. When the cut-off α increases,
we improve the detection of outliers but the number of false outliers increases. The value
α = 0.01 ensures the best trade-off (see Figure 2). However, the estimation of θ using
model [OM-1] or model [OM-2], requires good performances in terms of sensitivity since
these models are not robust. Therefore, we recommend the choice of α = 0.05. Table
1 gives the properties of this choice as function of the values of µ, τ . The specificity is
not sensitive to the number and the mean value of the outliers. The sensitivity does not
depend of the contamination rate τ and improves as expected when µ increases. These
results confirm the good performance of the choice α = 0.05. We use this value of cut-off
in the rest of the simulations.

Figure 2: Performances of the decision rule as function of the cut-off α. [Left] Empirical
distribution of the number of detected outliers evaluated on simulated sample
containing 10 outliers. [Right] Representation of the sensitivity and specificity
as function of α. The number of replications is N = 500.

Estimation of θ: We compare the estimation of θ obtained by the models [OM-1]
and [OM-2] and the event model defined in (9). Note that event model corresponds
to the Gaussian version of the model defined in (3)-(2). To evaluate the precision of
the models, we estimate the standard deviation of the posterior distribution of θ and
we give informations on the credible interval (length and coverage probability). On the
other hand, the mean of the posterior distribution is used to assess the accuracy of the
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τ\µ 15 10 5

Sensitivity

5% 0.99 0.96 0.81

10% 0.99 0.96 0.80

20% 0.99 0.97 0.80

Specificity

5% 0.89 0.89 0.89

10% 0.89 0.89 0.89

20% 0.89 0.89 0.89

Table 1: Estimation of the sensitivity and the specificity as function of contamination
rate τ and the mean value µ of the distribution of the outliers. The cut-off is
fixed to α = 0.05, and the number of replications is N = 500.

estimations. Figure 3 and Figure 4 and Table 2 provide some properties of the posterior
distributions for the three models. In absence of outlier, the performances of the event
model confirm the loss of precision of robust model (see Figure 3). In this case, even
if observations are wrongly removed, [OM-1] provides more precise estimation. Figure
4 represents the posterior mean and the posterior standard deviation of θ as function
of the contamination rate τ and the mean value µ of the outlier component in (11).
When the contamination rate τ increases, as expected, the precision and the accuracy
of the models are deteriorated, however [OM-1] and [OM-2] are less affected by the
presence of outliers . The performances of the model [OM-1] remain excellent in all
configurations (see Table 2). The identification of outliers is easier for large values of µ
(see Table 1, the number of identified outliers tends to τ), this property leads to better
results in particular in terms of accuracy. In conclusion, despite a smaller number of
observations, the estimation results of model [OM-1] are better than [OM-2] and both
are much better than event model. Indeed, we get shorter credible intervals and their
empirical frequentist coverage is close to the nominal level (see Table 2).

empirical bias empirical coverage credible interval length

µ τ [OM-1] [OM-2] event model [OM-1] [OM-2] event model [OM-1] [OM-2] event model

no outlier 0.01 0.02 0.05 0.98 0.98 0.99 0.36 0.36 0.49

5

5 0.01 0.06 0.10 0.98 0.96 0.97 0.47 0.38 0.51

10 0.03 0.15 0.25 0.97 0.83 0.70 0.41 0.45 0.59

20 0.01 0.02 0.03 0.98 0.97 1.00 0.36 0.36 0.50

10

5 0.01 0.04 0.07 0.98 0.96 0.99 0.38 0.38 0.51

10 0.01 0.09 0.15 0.99 0.93 0.91 0.41 0.42 0.56

20 0.00 0.00 0.00 0.99 0.98 1.00 0.35 0.35 0.48

15

5 0.00 0.01 0.02 0.98 0.99 1.00 0.36 0.36 0.49

10 0.00 0.02 0.04 0.98 0.98 0.99 0.38 0.37 0.51

20 0.00 0.05 0.10 0.99 0.97 0.98 0.41 0.41 0.55

Table 2: Length and frequentist coverage probability of 95%-credible intervals calculated
on the same simulated samples as Figure 3 and Figure 4.
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Figure 3: Comparison of the three following models : [OM-1], [OM-2] and the event
model on simulated dataset without outlier (τ = 0). We represent the boxplot
of the mean (left) and standard deviation (Right) of the posterior distribution
of θ. The number of independent replications is N = 500 . We fix n = 100
(sample size) and α = 0.05 (cut-off).

3.2 Example in Radiocarbon dating

We analyse the dataset from context X in Tell Qasile provided by Boaretto et al. (2005);
Sharon et al. (2007) (see Table 3). All the archaeological samples QS1,...,QS11 are
assumed to have the same age. Bronk Ramsey (2009) has already addressed the problem
of outliers on this dataset using mixture model. In his approach, the outliers are modeled
by a component in a mixture Gaussian model. All the observations have 5% prior
probability to be an outlier. His study leads to the following conclusions: QS2 and QS6
are identified as outliers and QS3 is more likely to be an outlier than not.
We compare our methodology to these results. Figure 5 provides the posterior distri-

butions of the scale parameters σ1, ..., σ11 on which our decision rule (5) is constructed.
In Table 3, we provide for each date the posterior probability P(σi > qα | X1, ..., Xn).
For α = .05, our results confirm the identification of the two outliers QS2 and QS6.
Moreover, QS3 is not identified as an outlier but its posterior probability is very close
to the cut-off.

Using the model [OM-1] (i.e. after removing QS2 and QS6), the 95%-credible interval
of the common age θ is [2830, 2888]. Using the event model we get the credible region
[2814, 2881]. This confirms the gain in precision when outliers are removed.
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Figure 4: Comparison of the three models [OM-1], [OM-2], event model on simulated
dataset with outliers for different values of contaminated rates τ and parameter
µ defined in (10) and (11). We represent the boxplot of the mean (Top) and
standard deviation (Bottom) of the posterior distribution of θ calculated on
N = 500 replications. We fix n = 100 (sample size) and α = 0.05 (cut-off).
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method ident date Xi si P(σi > q.95 | X1, ..., Xn)

14C QS1 2818 26 0.017
14C QS2 2692 24 0.358
14C QS3 2911 26 0.046
14C QS4 2853 25 0.016
14C QS5 2895 25 0.030
14C QS6 2753 22 0.128
14C QS7 2800 25 0.030
14C QS8 2882 28 0.020
14C QS9 2864 40 0.015
14C QS10 2818 38 0.019
14C QS11 2897 44 0.023

Table 3: Dates from Tell Qasile X and outputs of the decision rule (5): bold values
indicate radiocarbon dates detected as outliers.

Figure 5: Posterior distribution of the individual scale parameters σ1, ..., σ11 of
QS1,...,QS11 dates.
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3.3 Hierarchical Poisson Model

Congdon (2010) suggests the following model for count data in which there is more
variability than that predicted by Poisson model. We propose to parametrize this model
as follows

Xi ∼ P(θi), ∀ i = 1, ..., n

log(θi) = log(θ) + εi

where P denotes the Poisson distribution. As previously, we assume that the errors
terms ε1, ..., εn have Gaussian independent distributions, ∀i ∈ {1, ..., n},

log(θi) ∼ N (log(θ), σ2
i ),

As in section 3.1, we assume that σ2
i has a shrinkage distribution, its parameter is fixed

so as not to favor measurement errors over the error between θi and θ. In Poisson model,
we can evaluate the measurement error by s20 where s

−2
0 = 1

n

∑n
i=1

1
Xi

. As σi corresponds
to the dispersion of log(θi) around log(θ), we fix the shrinkage parameter of the form
s2log = s20/θ

2, i.e. conditionally to θ,

σ2
i ∼ Shrin(s20/θ2), ∀ i = 1, ..., n

Indeed, using the approximation θi − θ = θ(exp(εi) − 1) ≃ θεi (for small εi), as θσi
corresponds the dispersion of θi around θ. Thus, the conditional distribution of σ2

i given
θ is

θ2σ2
i ∼ Shrin(s20),

in the other words σ2
i ∼ Shrin(s20/θ2).

Remark 3.1. Note that in the decision rule, we compare as previously s20
(1−α)

α the prior
quantile of θ2σ2

i with its posterior quantile. From the joint distribution of (θ, σi) ap-
proximated by MCMC experiments, we easily deduce the (1−α)-quantile of the posterior
distribution of θ2σ2

i .

Numerical results. We show that the decision rule, calibrated in the Gaussian case
with the cut-off α = 0.05, still provides good performances. We simulate samples con-
taminated with τ percent of outliers as described in (10) and (11)

� a sample X1, ..., Xn−[nτ ] of independent random variables from the true model

Xi ∼ P(θ), i = 1, ..., n− [nτ ]

� a sample Xn−[nτ ]+1, ..., Xn of independent random variables corresponding to out-
liers

Xi ∼ P(θ + µ), i = n− [nτ ] + 1, ..., n

where µ ̸= 0.
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Table 4 gives the sensitivity and the specificity as function of the values of µ, τ . As
already observed in Table 1, the specificity does not dependent of the number and the
mean value of the outliers. In Poisson case, the specificity is very close to 1 which means
that almost all the non-outliers are correctly identified. The sensitivity does not depend
of the contamination rate τ and improves as expected when µ increases. For µ = 5,
the loss of sensitivity is explained by the dissymmetry of the Poisson distribution. The
contaminated values keep a high probability in the true model. These results confirm
the good performance of the choice α = 0.05.

τ\µ 15 10 5

Sensitivity
5% 0.98 0.90 0.63

10% 0.99 0.90 0.66

Specificity
5% 0.99 0.99 0.99

10% 0.99 0.99 0.99

Table 4: Estimation of the sensitivity and the specificity as function of contamination
rate τ and the mean value µ of the distribution of the outliers. The cut-off is
fixed to α = 0.05, and the number of replications is N = 500.

4 Application to the determination of OSL age

4.1 The context

In a sediment, quartz grains are continuously irradiated by cosmic and gamma rays,
and by particles (alpha and beta) produced by the decay of natural radioelements.
Moreover, they behave as dosimeters in the sense that quartz grains are able to store the
radiation doses they receive. The luminescence technique allows determination of the
dose (hereafter named “equivalent dose”) accumulated by a grain since its last exposure
to daylight, before burial. In estimating the dose it received per year, or dose-rate, the
time elapsed since the burial of the grain i. e. the Age- can be calculated. In practice,
it is common to extract hundreds of grains from a sediment sample and individually
determine their equivalent dose, which gives a distribution of discrete values, each one
being affected by an experimental error. In parallel, modeling the sediment sample with
a software application such as DosiVox-2D (see Martin et al., 2018; Fang et al., 2018),
which allows particle-matter interactions with a Monte-Carlo, it is possible to compute
the distribution of dose-rates to which each grain have been exposed during its burial.
The equivalent doses and dose rates distributions should theoretically be similar (except
a scaling factor) but the former distribution may contain outliers corresponding to grains
that have not been exposed to daylight. As a consequence, we want to estimate the age
A of a sample dated by the luminescence method by considering the distributions of the
equivalent dose D and dose rate ḋ. The fundamental relationship between D and ḋ is

D
L
= Aḋ (12)
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whereX
L
= Y means that both variablesX and Y have the same probability distribution.

Modeling of ḋ: Numerical experiments provide a sample (
˜̇
di)i∈{1,...,N} from the dose

rate with a systematic relative error ε̇: d̃i = ḋi(1 + ε̇). In our context, the sample is
simulated using DosiVox-2D application. On the basis of an expert opinion, we assume
that the error ϵ̇ is Gaussian with zero mean and with standard deviation 10%. We fit a

parametric model on (
˜̇
di)i∈{1,...,N} defined as follows: for i ∈ {1, ..., n}

˜̇
di = ḋi(1 + ε̇)

ḋi ∼ LS(µ, σ)
ε̇ ∼ N (0, 0.01)

where LS denotes a location-scale family of probability distributions. The distribution
is parametrized by a location parameter µ and a scale parameter σ > 0, and the density
is of the form

x → 1

σ
f0

(
x− µ

σ

)
. (13)

where f0 is a probability density. The prior distribution on parameters (µ, σ) is the
Lebesgue measure on [0,+∞[2.

After a preliminar step of the modeling to select f0 in (13), the estimated parameters

on the (
˜̇
di)i∈{1,...,N} will be assumed fixed. We denote (µ̇, σ̇2) the value of estimates.

Modeling of D: For each quartz grain, its equivalent dose D is measured with a
Gaussian error with a known variance. We denoted (D̃j)j∈{1,...,n} the observed equivalent
doses determined for n grains:

D̃j ∼ N (Dj , s
2
Dj

), j ∈ {1, ..., n} (14)

where s2D1
, ..., s2Dn

are known and determined experimentally.
Each equivalent dose Dj is associated with an age Aj . According to (13), the condi-

tional distribution of Dj given Aj is

Dj ∼ LS
(
Ajµ̇, A

2
j σ̇

2
)
, j ∈ {1, ..., n} (15)

The parameters of the distribution of ε̇ are calibrated with prior information given by
the laboratory.
Then we use the same hierarchical event model defined in (9) to combine the ages

A1, . . . , Ak. Let A be the age of the target event, i.e. the burial time of the sediment
sample. The Bayesian is defined by the DAG in Figure 6 and the following conditional
distributions:

Aj ∼ N (A, σ2
j ), j ∈ {1, ..., n}

σ2
j ∼ Shrin(s20), j ∈ {1, ..., n}
A ∼ Uniform[A,A]
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(µ̇, σ̇) A s0

σj

Dj

Aj

sDj

D̃j

j ∈ 1, . . . , n

Figure 6: DAG of the model defined in (14) and (15)

where:

� The interval [A,A] designates the study period,

� Since the event model is applied latent variables A1, ..., An, a preliminary es-
timation of the Aj is required to calculate s20. In such situations, Lanos and
Philippe (2017, 2018) suggest to estimate A1, ..., An using n individual models, for
j ∈ {1, ..., n}:

D̃j ∼ N (Dj , s
2
Dj

),

Dj ∼ LS
(
Ajµ̇, A

2
j σ̇

2
)
,

Aj ∼ Uniform[A,A]

Then, we take s20 equal to the harmonic mean of the variances V ar(Aj | D̃j).

As described in Section 2, we detect outliers from the posterior distribution of σ1, ..., σn.
We identify these outliers according to the decision rule (5). We re-estimate the age A
from the subsample (D̃j)j∈J remaining after eliminating outliers. In this particular case,
we know that all the dated sample have the same age A1 = ... = AJ = A. Therefore, we
adapt model [OM-1] as follows:
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D̃j ∼ N (Dj , s
2
Dj

),

Dj ∼ LS
(
Aµ̇,A2σ̇2

)
,

A ∼ Uniform[A,A]

To approximate the posterior distribution of all the parameters, an MCMC algorithm
is required. In the following application, we use Stan software in the R interface (see
Stan Development Team, 2020).

4.2 Data analysis:

We analyse a sample of n = 384 equivalent doses. To estimate the age A of this sample,
we have a sample of size N values provided by the numerical modeling of the sedi-

ment and distributed according to the dose rate
˜̇
d. For the parametric modeling of˜̇

d, represented by a parametric family LS, we have selected the Cauchy distributions
i.e. f0(x) = 1

π
1

1+x2 in (13) . The estimated parameters of the Cauchy distribution
are µ̇ = 1.34 and σ̇ = 0.024. The study period is [10, 150]. According to the method
described above we obtain the value s0 = 4.53.

Outliers detection: On the equivalent doses sample, we apply our outliers detection
methodology. We detect 3% of outliers. Figure 7 represents the posterior mean distri-
bution of the standard deviation σj . It can be seen that the standard deviation of the
kept doses have the same order of magnitude.

Age estimation: After removing outliers, we estimate the parameter of interest A
with the remaining data (associated to the σj with the green boxplot in Figure 7).
Figure 8 represents the posterior distribution of the sample age. We also compare this
density with the posterior distribution of A resulting from the robust method. This
comparison shows the interest of our methodology in terms of precision (see also the
95%-CI in the caption of Figure 8).

Validation of the model: To check the choice of the model, we compare the cumu-
lative distribution of (Dj)j∈J with A × (ḋi)i∈1,...N . Firstly we compare the empirical
distribution of (ḋi)i∈1,...N with the adjusted Cauchy distribution (see Figure 9 [left]).
This adjustment is correct in particular around the median. Secondly, we compare the
cumulative distribution of the equivalent dose D and Aḋ. The empirical cumulative
distribution of equivalent doses (Dj)j∈J is

FD(t) :=
1

| J |
∑
j∈J

1Dj≤t (16)

where | J | denotes the cardinal of J . FD(t) is a function of these unknown doses:
its posterior distribution can be obtained from the posterior distribution of (Dj)j∈J . In
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particular, the Bayes estimate is

E
(
FD(t) | (D̃j)j∈J

)
=

1

| J |
∑
j∈J

F
Dj | D̃

(t).

where F
Dj | D̃

is the cumulative distribution function of the posterior distribution of

Dj . Similarly, the Cauchy distribution of Aḋ depends on unknown parameters (A, ε̇).
Therefore, the cumulative distribution function FAḋ is an unknown parameter

FAḋ(t) = Ġ

(
t

A

)
(17)

where Ġ is the Cauchy cumulative distribution function with location parameter µ̇ and
scale parameter σ̇. Its posterior distribution can be obtained by a change of variables
from the posterior distribution of A.

For fixed t, we construct MCMC sample from the posterior distribution of FD(t) and
FAḋ(t), we represent in Figure 9 [right] their 95%−credible intervals. The two intervals
coincide over a wide range of values around the median. This confirms the goodness of
fit between the distributions of D,Aḋ. However, a possible way to improve the model is
to take into account the asymmetry of the latent variable D.

5 Appendix:

In Proposition 5.1, we show that the unform shrinkage leads to posterior distribution
with infinite variance. One way to obtain posterior distribution with finite variances is
to use the extension of the uniform shrinkage introduced by Gustafson et al. (2006). It
is defined as follows:

C2
0 + σ2

1

C2
0

∼ P(1, b)

where b ≥ 1. The case b = 1 corresponds to the uniform case. We denote this distribution
by σ2

1 ∼ Shrink(b, C0).

The existence of the moments of the posterior distribution depends on the choice of
b. Note that, for arbitrary b, we can preserve the same prior information on the median
of σ2

1 by taking:

C2
0 = s20/(2

1/b − 1).

Proposition 5.1. Assume the variances σ2
i are independent and identically distributed

according to the non uniform shrinkage with parameters (b, C0). Their posterior distri-
bution admit finite moment of order p if and only if b > p.
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Figure 7: Boxplot of the posterior distributions of σj ordered by the posterior median of
ages Aj . The red color indicates the detected outliers.

Figure 8: Comparison of the posterior distributions of A: in blue the estimation after
removing outliers (posterior mean: 18.06 and 95%-CI= [17.78, 18.33]) and in
red the robust estimation on the total sample (posterior mean: 18.15 and
95%-CI= [17.65, 18.64]).
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Figure 9: Representation of the 95%−credible intervals of FD (red),FAḋ (green) defined
in (16), (17).

Proof. According to (9), the likelihood of the event model is:

f(X | θ, σ2
1, . . . , σ

2
n, s

2
1, . . . , s

2
n) =

exp

(
−1

2

n∑
i=1

(Xi − θ)2/(s2i + σ2
i )

)

(2π)n/2
n∏

i=1

√
s2i + σ2

i

where X := (X1, . . . , Xn). The prior distribution is

π(θ, σ2
1, ..., σ

2
n) ∝ IR(θ)

n∏
i=1

1

(C2
0 + σ2

i )
1+b

IR+(σ2
i )

Note that this prior distribution of σ2
i admits moments of order p if and only if b > p.

After integrating with respect to θ, the posterior distribution of σ2
1, ..., σ

2
n is:

π(σ2
1, ..., σ

2
n | X) ∝

n∏
i=1

1

(C2
0 + σ2

i )
1+bω

1/2
i

IR+(σ2
i )

1√∑n
i=1 ωi

exp

(
−1

2

n∑
i=1

ωiV (σ2
1, ..., σ

2
n)

)
(18)

where ωi =
1

s2i + σ2
i

and V (σ2
1, ..., σ

2
n) is the weighted empirical variance:

V (σ2
1, ..., σ

2
n) =

∑n
i=1X

2
i ωi∑n

i=1 ωi
−
(∑n

i=1Xiωi∑n
i=1 ωi

)2
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We have

exp

(
−1

2

n∑
i=1

ωiV (σ2
1, ..., σ

2
n)

)
= exp

(
−1

2

n∑
i=1

X2
i ωi +

1

2

(
n∑

i=1

Xiωi

)(
n∑

i=1

Xi
ωi∑n
i=1 ωi

))

For fixed n and X1, . . . , Xn in R,
n∑

i=1

Xi
ωi∑n
i=1 ωi

is bounded uniformly in σ2
1, . . . , σ

2
n.

Moreover, for arbitrary h function,
∑n

i=1 h(Xi)ωi tends to 0 as σ2
1, . . . , σ

2
n tends to in-

finity. Therefore, the asymptotic behavior of the posterior distribution defined in (18)
is

π(σ2
1, ..., σ

2
n | X) ∼

n∏
i=1

1

(σ2
i )

b+1
, as σ2

1 → ∞, . . . , σ2
n → ∞.

This conclude the proof.

References

Boaretto, E., Jull, A. J. T., Gilboa, A., and Sharon, I. (2005). Dating the Iron Age I/II
Transition in Israel: First Intercomparison Results. Radiocarbon, 47.

Box, G. E. P. and Tiao, G. C. (1968). A Bayesian Approach to Some Outlier Problems.
Biometrika, 55.

Bronk Ramsey, C. (2009). Dealing with outliers and offsets in radiocarbon dating.
Radiocarbon, 51(3):1023–1045.
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