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The non-parametric kernel density estimation is used in practice to esti-
mate population abundance using the line transect sampling method. Kernel
estimator of f(0) usually produces an underestimated value. Assuming the
kernel method, this article applies shifted logarithmic transformation to line
transect data that violating shoulder condition. Mathematically, the pro-
posed log-transform estimator was shown to be more efficient than the clas-
sical kernel estimator. The simulation results present the good properties of
the proposed estimator compared to the performance of the classical kernel
estimators.
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1 Introduction

Line transect sampling is a common method to estimate population abundance (density),
D. The population in line transect sampling consists of both living or non-living object
societies such as plants, animals, birds, and others (Burnham et al., 1980). In the line
transect method, the study area has at least a strip of width 2w and length L, in which
the transect line is randomly placed on the strip. Both sides of the line are observed
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before the detected objects are counted, and the perpendicular distances (x) between
the transect line and the detected object must be recorded. One of the advantages of the
sampling method is that it records the perpendicular distance of the detected objects
only.

Assuming that the observer detects a random sample of n objects x1, x2, ..., xn. The
probability of detecting an object at a perpendicular distance X = x is defined as the
conditional probability function P (detected an object given that it has perpendicular
distance x), say g(x). The random variable X has a probability density function (pdf) of
f(x), 0 ≤ x ≤ w, where the distribution shape of g(x) is the same as f(x). However, f(x)
is scaled by a constant, making it one unit under the curve because it is a probability
density function (pdf). The relationship between f(x) and g(x) is given by f(x) =
g(x)∫ w

0 g(t)dt
. A description of the line transect sampling and its fundamental concepts can

be found in Buckland et al. (2001).

The line transect method assumes the probability of detected objects, function g(x), is
non-increasing, which means that the closest object to the line has the highest probability
to be detected compared to the objects far from the line. Another assumption related
to the detection function g(x) is that the observer will never miss any object located
on the line g(0) = 1 (i.e. at x = 0). In fact, the shape of the detection function can
be split into two families, according to the distribution shape at x = 0; the first is the
flat distribution which is known from the literature by the shoulder condition (see Mack
and Quang (1998)), and the second is the spike distribution which violates the shoulder
condition.

The assumption of shoulder condition is valid if the shape of the detection function
g(x) has a shoulder at x = 0, or in other words, the probability of detected objects closer
to the transect line is still certain. Mathematically, the derivative of g(0) equals to zero,
and this is equivalent to f ′(0) = 0 (Buckland et al., 2001; Eidous, 2015).

Several approaches can be found in the literature to test the shoulder condition (Zhang,
2001). Recent researches present that the shoulder condition is invalid for several line
transect of wildlife data such as ruffed grouses, bobwhite quails, scaled quails, white-
tailed deer, jackrabbits, capercaillies, and cottontails (Buckland, 1985), and fin whales
and striped dolphins (Bauer et al., 2015).

Therefore, this study considers the case when the shoulder condition is violated.

Let D be the population abundance applied in a specific area A. Burnham et al. (1980)
has shown that the estimate of the population abundance, D, using the line transect
sampling is:

D̂ =
nf̂(0)

2L
(1)

where f̂(0) is an estimate of f(0) obtained using a robust method based on perpendicular
distances x1, x2, ..., xn random sample of size n, while L is the length of the transect line.

If the population area A is known, the population size N is estimated easily using the
formula:
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N̂ = D̂A (2)

As shown in (1), the estimation value of f(0) is critical to estimate abundance D in
the line transect sampling.

Many approaches in the literature have been proposed for estimating f(0). There are
two common methods: parametric and non-parametric. For the parametric method,
one assumes a specific parametric distribution for the detection function g(0), and the
parameters are then estimated using several methods (e.g. maximum likelihood estima-
tion). The negative exponential distribution (Gates et al., 1968) and the half-normal
distribution (Burnham et al., 1980) are popular models for fitting the density of per-
pendicular distances. The parametric models are mentioned in the literature (Barabesi,
2000; Buckland, 1985; Buckland et al., 2001; Miller and Thomas, 2015; Zhang, 2011).
The parametric approach is efficient and satisfactory when the data distribution is cor-
rectly chosen. Otherwise, it is deemed inappropriate (Buckland et al., 2001).

The second approach is the non-parametric methods such as the Fourier series (Crain
et al., 1979), where the series parameters are directly estimated from the perpendic-
ular distances. The kernel estimation is the most common non-parametric approach
introduced by Fix and Hodges (1951).

In this paper, the non-parametric method is considered when the shoulder condition is
invalid. A new estimator based on the logarithmic transformation is proposed, and the
density is obtained via back-transformation. Mathematically, the proposed transformed
estimator is shown to be more efficient than the kernel estimator. Simulation is also
carried out to study the performance between the proposed transform kernel estimators
and the classical one.

2 Kernel Density Estimation

Kernel density estimation is the popular non-parametric method that smooth the data
in histogram. For this method, inferences of a specific population value are made based
on the random sample. The advantage of this method compared to the parametric one
is that it requires no assumption regarding the shape of f(x), which is useful for non-
statistician researchers. Moreover, non-parametric methods allow the data to illustrate
on its own. Silverman (1986) stated the full description of the kernel Rosenblatt–Parzen
estimation method (KDE). The classical KDE is given by

f̂X(x) =
1

nh

n∑
i=1

K(
x− xi
h

), −∞ < x <∞ (3)

where h is the bandwidth (smoothing parameter), and K(.) is the kernel function;
it’s assumed to be satisfied the conditions

∫∞
−∞K(u)du = 1,

∫∞
−∞ uK(u)du = 0 and∫∞

−∞ u
2K(u)du 6= 0 (Silverman, 1986).

Assume that a line transect method, it has a non-negative random sample x1, x2, ..., xn
of size n of perpendicular distances, and has a continuous probability density function
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f(x), x ≥ 0. To reduce the bias around the boundary for the Rosenblatt–Parzen kernel
density estimation (KDE). Schuster (1985) and Silverman (1986) suggested to use a so-
called “re-normalization” method applying a reflection technique. The method replaces
each sampled data value xi with xi and it’s reflection −xi, if K(u) is considered as a
symmetric density function around zero; the obtained reflected estimator is:

f̂X(x) =
1

nh

n∑
i=1

K(
x− xi
h

) +K(
x+ xi
h

), x ≥ 0 (4)

The usual reflection kernel estimator of fX(0) is obtained simply by substituting x = 0
in (4), which gives (Chen, 1996)

f̂X(0) =
2

nh

n∑
i=1

K(
xi
h

) (5)

Thus, the bias and variance of f̂X(0) are:

Bias[f̂X(0)] = 2hf ′X(0)

∫ ∞
0

uK(u)du+O(h2) (6)

V ar[f̂X(0)] =
4

nh
fX(0)

∫ ∞
0

K2(u)du+ o(
1

nh
) (7)

If the small terms o(.) and O(.) are ignored, then the asymptotic mean squared error
(AMSE) of f̂X(0) is:

AMSE[f̂X(0)] =
4

nh
fX(0)

∫ ∞
0

K2(u)du+ (2hf ′X(0)

∫ ∞
0

uK(u)du)2 (8)

The AMSE is sensitive to the choice of bandwidth h, and thus, several approaches to
finding the ’best’ one are proposed in the literature. Therefore, our study suggests several
methods for the optimal bandwidth, and the description is provided in the subsection
“Optimal Bandwidth”.

Kernel method is commonly used in practice to find a good estimate of fX(0) for the
line transect data. As examples, Chen (1996) suggested and investigated the charac-
teristics of the estimator in equation (5), Mack (2002) suggested several bias reduction
techniques for fX(0), Eidous (2005) suggested some improvements of the kernel esti-
mator of fX(0), and Eidous (2012) proposed several simple kernel estimator for fX(0)
when the shoulder condition is violated. Albadareen and Ismail (2018) proposed an
adaptive kernel estimator based on a generalized form of Epanechnikov kernel function.
Recently, Albadareen and Ismail (2019, 2020) applied shifted power transformation to
reduce boundary effect of the kernel estimator using the line transect sampling, and
Zhang et al. (2020) estimated distribution function at the boundary based on the kernel
estimator.
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3 Log-Transformation Method for Kernel Density
Estimation

The non-parametric density estimation based on transformed data has existed for many
years. From the literature, the log-transformation is a transformation case stated by
Box and Cox (1964) to make the random variable X less restrictive from some assump-
tions such as normal, homoscedastic and linear model and to transform it to be more
appropriate for inference. An application of the kernel density using the logarithmic
transformation was also suggested by Devroye and Györfi (1985), and studied by Mar-
ron and Ruppert (1994). Other studies can also be found in Silverman (1986) who stated
that the transformation Y = log(X) can be used for dealing with the rising of spike.
Charpentier and Flachaire (2015) who showed that the logarithmic transformation of
Y = log(X) applied to the classical kernel density provided better fit for estimating the
density of heavy-tailed shape such as income distribution.

In this study, the line transect data are positive and the estimation of interest is
f(x) at x = 0. Since the logarithmic transformation Y = log(X) is unsatisfactory when
x = 0, we propose the transformation Y = log(X+1) in which Y is strictly an increasing
function, and the underlying density functions are fX(x) and fY (y) respectively. Using
the changing variable equation, the density function is

fY (y) = fX(x) | dx
dy
|= fX(ey − 1)ey, y ≥ 0 (9)

where | dxdy | is the Jacobian for the transformation of random variables from X to Y .
At x = 0, y = log(0 + 1) = 0 , and thus,

fY (0) = fX(0)e0 = fX(0) (10)

which shows that fX(0) = fY (0).

The estimation of fX(0) in equation (1) requires fY (0) to be substituted with f̂Y (0).
In our study, we use the kernel method, which is the common non-parametric method
to derive f̂Y (0):

f̂X(0) = f̂Y (0) =
2

nh

n∑
i=1

K(
yi
h

) , yi = log(xi + 1) (11)

The bias and variance of f̂Y (0) are:

Bias[f̂Y (0)] = 2hf ′Y (0)

∫ ∞
0

uK(u)du+ h2f ′′Y (0)

∫ ∞
0

u2K(u)du+ o(h2) (12)

= 2h(fX(0) + f ′X(0))

∫ ∞
0

uK(u)du+O(h2) (13)

V ar[f̂Y (0)] =
4

nh
fY (0)

∫ ∞
0

K2(u)du+ o(
1

nh
) (14)
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=
4

nh
fX(0)

∫ ∞
0

K2(u)du+ o(
1

nh
) (15)

If the small terms o(.) and O(.) are ignored, the asymptotic mean squared error of
f̂Y (0) is:

AMSE[f̂Y (0)] =
4

nh
fX(0)

∫ ∞
0

K2(u)du+ (2h(fX(0) + f ′X(0))

∫ ∞
0

uK(u)du)2 (16)

By comparing (15) and (7), it was found that V ar[f̂Y (0)] equals to V ar[f̂X(0)].
It should be noted that the transformed estimator (11) is applied when violated the

shoulder condition.
If the Gaussian kernel function K(u) is assumed, it is also important to note here that

the value of the reflection estimators at (4) and (5) decays to zero for x > w when w
value is sufficiently large such that w ≥ max(xi) + 4h. Because, when | x∓xi |> 4h; the
value of K(x∓xih ) is vanishing.

4 Simulation Study

The theoretical characteristics of the proposed estimator in terms of bias, variance and
MSE are asymptotic, implying that the estimator requires the assumption n → ∞.
In this simulation study, the performance of the proposed estimator is compared to
the classical kernel estimator using a wide range of sample sizes, which are n = 50,
100, and 500. The performance indicators are the relative bias (RB) and the relative
mean error (RME) which are computed using RB = E[f̂(0)− f(0)]/f(0) and RME =√
MSE[ f̂(0)]/ f(0).
The simulation study is focused on generating random samples from three common

density families under the line transect sampling that violate the shoulder condition.
Four models are considered for each density group, so that altogether there are 12 de-
tection functions. The detection functions cover several potential models for the per-
pendicular distances in the case of invalid shoulder condition, as demonstrated in Figure
1.

The three density families are:

a) Reserved logistic model (Burnham et al., 1980)

The detection function is g(x) = (1+b)e−βx

1+be−βx
and f(x) = βbe−βx

log(1+b)(1+be−βx)
, β, b >

0, 0 ≤ x ≤ w, where we use the following parameter values for the four models;
β = 1.5, 2.0, 2.5 and 3.0 with b = 2, and truncation point w = 5.0.

b) Beta (BE) model (Eberhardt, 1968)

The detection function is g(x) = (1 − x)β and f(x) = (1 + β)(1 − x)β, 0 ≤ x ≤
w, β ≥ 1, where parameter values are β = 1.5, 2.0, 2.5 and 3.0 and truncation
point w = 1 for the four models.
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c) Negative exponential model (Gates et al., 1968)

The detection function is g(x) = e−βx and f(x) = βe−βx, β > 0 ≤ x ≤ w. We use
parameter values β = 1.0, 1.5, 2.0 and 2.5 and truncation point w = 3.0 for the
four models.

4.1 Optimal Bandwidth

The estimator in equation (5) gives convergent results when the symmetric kernel func-
tions are chosen, such as Gaussian, biweight, and Epanechnikov, which are based on
the mean squared error (Wand and Jones, 1995). Therefore, we consider the Gaussian
kernel function in this paper.

The kernel density estimator is highly sensitive to the smoothing parameter (band-
width h) because the performance of f̂(0) depends on the value of h (Gerard and Schu-
cany, 1999). The approaches to choose an efficient bandwidth can be found from past
studies. In general, Ghosh (2018) recommended the use of a sequence of bandwidths
for the kernel estimators and their performance were compared to understand the un-
derlying structure of the unknown pdf because there is no “best” method in choosing
the bandwidth. The same approach is also used by Silverman (1981). Thus, different
bandwidths are used in this simulation study, along with some comparisons between the
estimators. We consider the following bandwidths and estimators for this simulation
study:

a) Rule of thumb (Silverman, 1986): h = 1.06σ̂n(−1/5)

The bandwidth is computed by minimizing the approximate mean squared error
(AMSE) of f̂X(x). In the line transect method, the half-normal distribution is
assumed as the reference density of f(x) to estimate σ via the maximum likelihood

estimator σ̂ =

√
n∑
i=1

x2
i

n . The bandwidth is applied to the original data which

resulted in the produced estimator, Est1.

b) Modified rule of thumb (Silverman, 1986): h = 0.9 min( IQR(X)
1.349 , σ̂)n(−1/5)

The bandwidth is similar to the previous bandwidth but is modified to the long-
tailed and skewed distribution, which better fits the density that has no shoulder
in the line transect data, where σ̂ is computed as illustrated in part (a) above, and
IQR(x) is the interquartile range of the perpendicular distancesX. The bandwidth
is applied to the original data which resulted in the produced estimator, Est2.

c) Similar to the h value in part (a). The bandwidth applied to the transformed data
will result in the produced estimator, Est3.

d) Similar to the h value in part (b). The bandwidth applied to the transformed data
will result in the produced estimator, Est4.
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Another efficient bandwidth can be obtained by minimizing the AMSE[f̂Y (0)] in
equation (16). If the AMSE[f̂Y (0)] is derived with respect to h. Then, the smoothing

parameter is: h = (
fX(0)

∫∞
0 [K(u)]2du

2n(fX(0)+f ′X(0))2(
∫∞
0 uK(u)du)2 )

1
3 .

Assuming that K(u) follows Gaussian distribution, the unknown values (f(0) and
f ′(0)) are estimated using a suitable density as the reference distribution family (see
Al-Bassam and Eidous (2018)). This bandwidth value will be used in parts (e) and (f).

The following bandwidths and estimators are also considered in this simulation study:

e) Assuming that the reference distribution model; fX(x) is the negative exponential
model in the case of violated shoulder condition. Applying the maximum likelihood

estimators (f̂X(0) = 1
x̄) and (f̂ ′X(0) = −1

x̄2 ); then: h = (
( 1
x̄

)( 1
4
√
π

)

2n( 1
x̄
− 1
x̄2 )2( 1√

2π
)2 )(1/3) =

( (
√
π)(x̄)3

4n(x̄−1)2 )
(1/3)

. The bandwidth applied to the transformed data will result in the

produced estimator, Est5.

f) Assuming that the reference distribution model; fX(x) is the half-normal model
in the case of validity of shoulder condition. Applying the maximum likelihood

estimators (f̂X(0) = 2
σ̂
√

2π
) and (f̂ ′X(0) = 0); then h = (

( 2
σ̂
√

2π
)( 1

4
√
π

)

2n( 2
σ̂
√

2π
+0)2( 1√

2π
)2 )

1
3

= ( σ̂π
4
√

2n
)

1
3 , where σ̂ is computed as illustrated in part (a) above. The bandwidth

applied to the transformed data will result in the produced estimator, Est6.

Our simulation study focused on six estimation values of f(0), where Est1 and Est2
are applied to the original data as suggested in the literature, while Est3, Est4, Est5
and Est6 are the proposed estimators using the transformed data.

Tables 1-3 provide the relative bias (RB) and the relative mean error (RME) for
the estimators under the reserved logistic model, beta model, and negative exponential
model based on the simulation study.

The simulation results show that the proposed estimator (Est4) (based on the modified
rule of thumb (Silverman, 1986)) is superior, in which it has smaller absolute relative
bias and relative mean error compared to the original kernel estimators (Est1 and Est2)
for each density family and all cases. The RME of (Est4) decreases as the sample size
increases, hence it is concluded that (Est4) is asymptotically consistent. The results are
depicted in Figures 2-4.

The proposed estimator (Est3) in the reserved logistic model is also more efficient
than other estimators at β = 1.5, 2.0 and 2.5 for all sample sizes. On the other hand,
the proposed estimators (Est4, Est5 and Est6) are generally performing well in the case
of negative exponential model compared to other estimators (Est1, Est2 and Est3) when
β = 1.5, 2.0 and 2.5 for all sample sizes. The proposed estimators (Est4, Est5 and
Est6) also have smaller RME than the kernel estimator when applied to the original
data (Est1) for all studied densities with large samples (n = 500).

Based on RB and RME, comparison between two bandwidths which are the modified
bandwidth introduced by Silverman (1986) h = 0.9 min( IQR(X)

1.349 , σ̂)n(−1/5) and the origi-

nal bandwidth introduced by Silverman (1986) h = 1.06σ̂n(−1/5) can be carried out. The
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modified bandwidth (Est2 and Est4) produces superior efficiency than the original band-
widths (Est1 and Est3) whether the data is log-transformed or not. Therefore, the modi-

fied bandwidth introduced by Silverman (1986) where h = 0.9 min( IQR(X)
1.349 , σ̂)n(−1/5), is

more appropriate for the line transect sampling when the shoulder condition is violated.

5 Conclusion

This study introduces an efficient and consistent estimator for population abundance
using the line transect sampling. The Log-transformation method applied to the kernel
estimation is proven to perform well compared to the classical kernel estimator in the case
of violated shoulder condition. The asymptotic bias, variance and mean squared error
(AMSE) of the proposed estimator were obtained. The proposed estimator was shown
to have smaller AMSE if the detection function has no shoulder. A simulation study
was conducted to compare the performance of the proposed estimators and the classical
kernel estimators. The simulation results showed that the proposed transformed estima-
tors have smaller relative mean error than not-transformed kernel estimators for each
density family. In addition, the proposed estimators have better performance than the
not-transformed kernel estimators in terms of absolute relative error with fixed variance
in all cases.
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Figure 1: The detection functions of a) Reserved logistic models at b = 2, b) Beta models,
c) Negative exponential models and d) All models
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Table 1: Simulation results for reserved logistic model

n = 50 n = 100 n = 500

Estimator RB RME RB RME RB RME

β = 1.5

Est1 -0.232 0.257 -0.202 0.218 -0.146 0.153

Est2 -0.127 0.216 -0.106 0.165 -0.072 0.100

Est3 -0.030 0.109 0.004 0.075 0.050 0.065

Est4 0.042 0.179 0.052 0.137 0.055 0.090

Est5 -0.168 0.348 -0.081 0.246 0.052 0.082

Est6 0.056 0.197 0.055 0.163 0.041 0.105

β = 2

Est1 -0.233 0.255 -0.203 0.219 -0.151 0.157

Est2 -0.126 0.209 -0.101 0.163 -0.076 0.101

Est3 -0.079 0.127 -0.049 0.092 -0.006 0.041

Est4 -0.002 0.165 0.016 0.129 0.018 0.071

Est5 -0.003 0.157 0.019 0.123 0.020 0.074

Est6 0.012 0.158 0.025 0.136 0.018 0.086

β = 2.5

Est1 -0.240 0.260 -0.207 0.222 -0.149 0.156

Est2 -0.136 0.209 -0.108 0.168 -0.072 0.101

Est3 -0.117 0.151 -0.083 0.112 -0.034 0.056

Est4 -0.039 0.163 -0.017 0.129 0.001 0.072

Est5 -0.025 0.160 -0.005 0.136 0.006 0.086

Est6 -0.037 0.137 -0.014 0.121 0.005 0.080

β = 3

Est1 -0.238 0.261 -0.210 0.224 -0.151 0.157

Est2 -0.134 0.217 -0.111 0.167 -0.075 0.101

Est3 -0.134 0.169 -0.107 0.131 -0.056 0.070

Est4 -0.054 0.179 -0.036 0.130 -0.014 0.069

Est5 -0.031 0.185 -0.019 0.146 -0.006 0.088

Est6 -0.066 0.143 -0.041 0.114 -0.012 0.071
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Table 2: Simulation results for beta model

n = 50 n = 100 n = 500

Estimator RB RME RB RME RB RME

β = 1.5

Est1 -0.193 0.223 -0.169 0.190 -0.125 0.135

Est2 -0.125 0.214 -0.100 0.166 -0.073 0.104

Est3 -0.113 0.154 -0.092 0.125 -0.060 0.078

Est4 -0.069 0.187 -0.048 0.141 -0.031 0.081

Est5 -0.041 0.215 -0.022 0.176 -0.018 0.109

Est6 -0.103 0.147 -0.073 0.119 -0.037 0.076

β = 2

Est1 -0.217 0.243 -0.193 0.209 -0.145 0.152

Est2 -0.136 0.216 -0.116 0.169 -0.083 0.108

Est3 -0.152 0.184 -0.130 0.152 -0.091 0.102

Est4 -0.090 0.191 -0.072 0.143 -0.048 0.084

Est5 -0.053 0.216 -0.044 0.170 -0.024 0.106

Est6 -0.154 0.180 -0.117 0.142 -0.064 0.086

β = 2.5

Est1 -0.241 0.261 -0.209 0.224 -0.160 0.166

Est2 -0.150 0.217 -0.120 0.172 -0.092 0.114

Est3 -0.187 0.210 -0.157 0.176 -0.114 0.122

Est4 -0.109 0.191 -0.082 0.148 -0.061 0.091

Est5 -0.069 0.213 -0.042 0.175 -0.030 0.107

Est6 -0.201 0.217 -0.153 0.170 -0.088 0.102

β = 3

Est1 -0.245 0.267 -0.224 0.239 -0.173 0.179

Est2 -0.146 0.221 -0.134 0.182 -0.101 0.122

Est3 -0.198 0.224 -0.178 0.195 -0.133 0.140

Est4 -0.111 0.199 -0.101 0.159 -0.074 0.101

Est5 -0.066 0.219 -0.061 0.181 -0.039 0.111

Est6 -0.231 0.243 -0.187 0.199 -0.111 0.122
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Table 3: Simulation results for negative exponential model

n = 50 n = 100 n = 500

Estimator RB RME RB RME RB RME

β = 1.0

Est1 -0.272 0.291 -0.245 0.259 -0.179 0.185

Est2 -0.156 0.220 -0.138 0.182 -0.088 0.110

Est3 -0.093 0.132 -0.065 0.099 -0.012 0.043

Est4 -0.002 0.151 0.008 0.118 0.032 0.074

Est5 -0.169 0.305 -0.109 0.231 0.009 0.062

Est6 0.026 0.175 0.032 0.150 0.048 0.108

β = 1.5

Est1 -0.340 0.353 -0.311 0.319 -0.244 0.247

Est2 -0.203 0.255 -0.184 0.216 -0.138 0.151

Est3 -0.227 0.244 -0.195 0.207 -0.133 0.139

Est4 -0.103 0.183 -0.089 0.143 -0.059 0.085

Est5 -0.116 0.197 -0.092 0.151 -0.047 0.085

Est6 -0.094 0.165 -0.074 0.137 -0.037 0.085

β = 2.0

Est1 -0.359 0.372 -0.328 0.336 -0.263 0.266

Est2 -0.217 0.263 -0.191 0.221 -0.148 0.159

Est3 -0.274 0.290 -0.243 0.253 -0.181 0.184

Est4 -0.144 0.206 -0.121 0.164 -0.089 0.106

Est5 -0.128 0.205 -0.099 0.161 -0.061 0.098

Est6 -0.167 0.202 -0.128 0.161 -0.076 0.099

β = 2.5

Est1 -0.367 0.378 -0.334 0.342 -0.267 0.270

Est2 -0.226 0.264 -0.192 0.222 -0.149 0.160

Est3 -0.300 0.313 -0.267 0.276 -0.201 0.204

Est4 -0.168 0.216 -0.136 0.176 -0.102 0.118

Est5 -0.137 0.210 -0.101 0.170 -0.064 0.102

Est6 -0.215 0.235 -0.168 0.190 -0.102 0.117
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Figure 2: Relative bias and relative mean error of reserved logistic models at b = 2
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Figure 3: Relative bias and relative mean error of beta model
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Figure 4: Relative bias and relative mean error of negative exponential model


