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The vast availability of massive (or large scale) and big data has increased
the computational cost of data analysis. One such case is the computational
cost of the univariate filtering that typically involves fitting many univariate
regression models and is essential for numerous variable selection algorithms
to reduce the number of predictor variables. The paper manifests how to
dramatically reduce that computational cost by employing the score test or
the simple Pearson correlation. Extensive Monte Carlo simulation studies
will demonstrate their advantages and disadvantages compared to the likeli-
hood ratio test and examples with real data will illustrate the performance
of the score test and the log-likelihood ratio test under realistic scenarios.
Depending on the regression model used, the score test is 30 — 6,000 times
faster than the log-likelihood ratio test and produces nearly the same results.
Hence this paper strongly recommends to substitute the log-likelihood ratio
test with the score test for the task of univariate filtering when coping with
massive data, big data, or even data whose sample size is in the order of a
few tens of thousands or higher.

keywords: Univariate filtering, computational efficiency, score test, likeli-
hood ratio tests, high-dimensional data.

1 Introduction

Massive or large scale data, which require high computing power, have become a frequent
phenomenon nowadays. Reducing the computational cost entailed by massive data, using
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computationally efficient algorithms, is beneficiary for research and industry related
purposes. In bionformatics for instance, analysis of numerous gene expression data
that contain 55,000 variables and in computer science, analysis of big data! (order of
Terabytes and higher) are common tasks. Computationally efficient algorithms are also
highly desirable and required by banks, large scale institutions and companies that
handle big data because those algorithms not only reduce the waiting time but further
have an economic impact since they can reduce electricity expenses.

A common task met in both research and industry is variable selection (VS), described
as follows. When a response variable Y (for example a phenotype, disease status, survival
time) is given along with a set X of d predictor (or independent) variables, both con-
sisting of n observations, VS attempts to identify the minimal set of predictor variables
whose predictive capability on the response is optimal. In bioinformatics for instance,
the goal is to identify the genes whose expression levels allow for early diagnosis of some
disease Tsamardinos and Aliferis (2003).

Over the years, there has been an accumulation of VS algorithms in many data sci-
ence fields, such as bioinformatics, statistics, machine learning, and signal processing.
Most algorithms tackle the VS problem from an agglomerative, forward selection per-
spective. They commence with an empty set of variables and move forward by adding
one or more variables at each time. Statistically Equivalent Signatures (Lagani et al.,
2017), Forward Backward with Early Dropping (Borboudakis and Tsamardinos, 2019),
Orthogonal Matching Pursuit (Chen et al., 1989; Pati et al., 1993; Davis et al., 1994),
Sure Independence Screening (Fan and Lv, 2008; Fan and Song, 2010), forward selection
(Weisberg, 1980) and forward stepwise regression (Weisberg, 1980) are some examples
of VS algorithms that begin with univariate filtering. At that filtering step the most
statistically significant variable, or the variable mostly correlated with the response is
detected, while significant variables or a fraction of the most significant variables are
retained for further analysis.

Univariate filtering with continuous responses is fast enough because of the fast im-
plementation of the correlation between y and each of the x;s. With non-continuous
responses though (count data, nominal, ordinal, survival), d univariate regressions and
hence d log-likelihood ratio tests must be performed. This can be computationally really
heavy with tens of thousands of variables or even with large sample sizes (hundreds of
thousands).

Statistical softwares, such as R, are not computationally efficient in fitting numerous
regression models when built-in commands are applied, such as glm or any regression
model offered by a package, inside a for loop. Self implementation of the regression mod-
els and employment of parallel computing can assist reduce the execution time in R. The
same recipe can be applied with C+4, resulting in higher computational gains?. This
raises the question of whether univariate filtering can become more efficient or extremely
efficient, and effectively reduce the computational cost of numerous VS algorithms. The

!The main difference between big data and massive data is that the first cannot fit to the hard drive
of a conventional desktop.
2Numerous C++ regressions models can be found in the R package Rfast (Papadakis et al., 2019).
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answer is yes, by employment of the score test or of the Pearson correlation coefficient
that allows for extremely computationally efficient univariate filtering. Further, specifi-
cally for logistic regression, the Welch’s t-test (Welch, 1951) is another possibility.

We must note though that R has numerous packages that perform fast VS, according to
different algorithms, for instance glmnet (Friedman et al., 2010), leaps (Lumley, 2020)
and bestglm (McLeod et al., 2020). The drawback of those packages is that they are
devised for certain classes of regression models.

In this paper we demonstrate, via simulation studies and experiments with real data at
which different types of regression models will be considered, the computational advan-
tages of the score test when employed for univariate filtering. The score test, also known
as Rao’s test (Rao, 1948) or Lagrange Multiplier test (Greene, 2003), is robust in the
sense that it does not depend on the functional relationship between the response and
the predictor variable(s) and it depends on the null distribution of the response y only
through the MLE of the distribution under the Hy (Chen, 1983). It is asymptotically
equivalent to the log-likelihood ratio test (Greene, 2003) and for logistic and Poisson
regression its formula is similar to the Pearson correlation coefficient (Hosmer Jr et al.,
2013). Both the score test and Pearson correlation coefficient are applicable to numerous
regression models, such as logistic, Poisson, negative binomial, Beta, Gamma, Weibull,
etc. Further, we illustrate the performance of the Welch’s t-test when the response
variable is binary.

As a final task we apply all aforementioned testing procedures to two real datasets
with large sample sizes. We expose the high computational gains of the score test (and of
the Welch’s t-test where applicable) in comparison to the log-likelihood ratio test. The
first dataset contains 6,000 observations, whereas the second one contains nearly 40, 000
observations. The rationale is to show the differences between the testing procedures
and highlight that the score test requires the sample size to be at the order of tens
of thousands so as to produce p-values that are equal to the p-values produced by the
log-likelihood ratio test.

The next section presents the log-likelihood ratio test that relies upon fitting regression
models, the score test, the Pearson correlation coefficient and the Welch’ t-test and we
show how one can apply them for the task of univariate filtering. Section 3 illustrates, via
Monte Carlo simulation studies the computational gains of the score test, the Pearson
correlation and of the Welch’s t-test compared to the log-likelihood ratio test. Various
regression models are examined, including inter comparisons among the tests in terms of
type I error, correlation of the p-values and percentage of agreement of rejection of the
Hjy and proportion of times the score test selects the most significant predictor variable.
Section 4 illustrates the log-likelihood ratio and the score test using real data and finally
Section 5 concludes the paper.
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2 Log-likelihood ratio and Score tests for regression
models and Pearson correlation coefficient

2.1 Computational efficiency

The issue of computational efficiency during the univariate filtering step has drawn
sufficient research interest. Sikorska et al. (2013) proposed a computationally efficient
approximation test when fitting thousands univariate logistic regressions, but it is not as
computationally efficient as the score test. Redden et al. (2004) proposed a fast method,
based on logistic regression, for obtaining the p-values of many median regressions.
Obtaining the p-value of a logistic regression is much faster than obtaining the p-value
of a median regression. When large sample sizes are available, adoption of the score
test can make their method extremely computationally efficient compared to conducting
numerous logistic regressions.

Computer nowadays have made parallel computations easier and more efficient. Tsamardi-
nos et al. (2019) took advantage of the parallel computing and adopted the Forward
Backward with Early Dropping algorithm (Borboudakis and Tsamardinos, 2019) to big
(and massive) data. Parallel computing takes place not only across the predictor vari-
ables, but across the observations as well. The observations are split into folds and a
logistic regression model is fitted in each fold. The results are then meta-analytically
combined. This process produces accurate results with hundreds of thousands of obser-
vations and can lead to substantial improvements in terms of execution time, up to 10
times faster. The computational reduction during the univariate filtering though is not
comparable to the one achieved by the score test.

On a different direction, Erdogdu et al. (2019) proved that, asymptotically, the regres-
sion coefficients of generalised linear models are proportional to the regression coeflicients
of a linear model. Our simulation studies (not shown here as they are outside the scope
of this paper) provided evidence that this holds true for other regression models also, e.g.
Weibull regression. Despite fitting a linear model is much cheaper than fitting a logistic
regression model for instance, the computational gains are not as significant as one would
think. Finding the proportionality factor, requires application of the Newton-Raphson
or the golden-ratio algorithm that goes through the whole dataset at each step. Un-
doubtedly, this process is faster than simply fitting many (non-linear) regression models,
yet, it is not as efficient as performing many score tests.

Another direction is to use sub-samples of the data instead of the whole dataset
(Park et al., 2018) with accuracy being this strategy’s trade-off. According to Park
et al. (2018), their proposed method, that uses a portion of the data, can speed-up the
maximum likelihood estimation of the model from 6 up to 629 times compared to using
the full dataset while guaranteeing the same model predictions with 95% probability. The
score test on the contrary, will be shown to produce the same results (almost equivalent
p-values) as the log-likelihood ratio test with large sample sizes.



394 Tsagris, Alenazi, Fafalios

2.2 Univariate filtering

Assume a response variable Y, a n x 1 vector of observations y and a set of predictor
variables, an n X d matrix X, where n denotes the sample size and d denotes the number
of variables are given. At first a regression model with only the intercept is fitted and
its log-likelihood is computed. Then for each variable a regression model is fitted and
the following hypotheses are tested:

Hy : g(E(y)) = a;.
H, g(E(y)) = a; —|—bj£L'j (] = 1,...,d).

Univariate filtering identifies the statistically significant predictor variables, or the b;s
that are statistically significantly different from zero.

2.3 Log-likelihood ratio test

For each regression model in H; its associated log-likelihood is computed and hence the
log-likelihood ratio test statistic is computed by

A=2(t1 — ), (1)

where /1 and ¢y are the log-likelihood values under the H; and Hy respectively. Under
Hy, the log-likelihood ratio test follows a x? distribution with 1 degree of freedom, A~x?
(Young and Smith, 2005).

2.4 Score test

The score function is the derivative of the log-likelihood U (0) = 82—%‘0, where ¢ and 6

denote the log-likelihood and the value of the parameter of interest respectively. Appli-
cation of the central limit theorem combined with Slutsky’s lemma, states that under
the Hy, n=Y2U (6p) LY (O, I—! (90)), where 6y denotes the parameter value under Hy
and I (0) is the Fisher information. Hence the score test asymptotically follows a x?
distribution with 1 degree of freedom

U(6)* .

5= Varw )

(2)

2.5 Pearson correlation coefficient
The sample Pearson correlation coefficient is computed by
- N iy Tl = D iy Ti )iy Vi .
\/” Y@l — (T xz)Q\/” S v - (i w)’

Under Hy (the two variables X and Y are linearly independent), the test statistic Z =

0.5log 1121/ — 3~N(0, 1) distribution, while for small n, N (0, 1) can be substituted by

the t,_3 distribution, where ¢, denotes the t distribution with v degree of freedom.

(3)
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2.6 Large sample asymptotics of the score test

The asymptotic proximity of the two tests can be explained by the fact, that the log-
likelihood ratio test and the score test differ by O, (n_l/ %) Young and Smith (2005),
where the Op() notation indicates a random variable that is asymptotically bounded in
probability®. In addition, both scores are parametrisation invariant*. For a comparison
of the log-likelihood ratio test and score test in terms of the expected length of their
confidence intervals the reader is referred to Mukerjee and Reid (2001).

2.7 Score test formula for some selected regression models

Below we present some formulas of the (square root of the) score test for some common
regression models.

e With binary responses (0 or 1), logistic regression is usually employed. The log-
likelihood of the logistic regression is given by
n
0= [yilogp; + (1 —y;) log (1 = pi)] ,
i=1
where p; = ————. The score test takes the following form® (Hosmer et al.,

1+4e—a—ba;
2013)
Spin = Do Yilti — DY i T
(St (S /] 51— )

where p =3 1 &

17"

(4)

e With strictly positive response values, Gamma regression is an ordinarily selected
model, whose log-likelihood is given by

= Z [a — & —log (1) + alog (ay;) — log (a)} ,

i=1 v

where ji; = e¢t%%. The score test for Gamma regression has the following formula
noo D Vit
D (5)
Ga —

N

3Broadly speaking, the notation Y, = Op(an) means that Y, /a, is bounded in probability as n — oo.
That is, given € > 0, there exists k > 0 and no such that, for all n > no, P(|Yn/an| < k) >1—e.
4Parametrisation invariance requires that the conclusions of a statistical analysis be unchanged for any
reasonably smooth one-to-one function of 6 (Young and Smith, 2005).

®The formula in (4) is equivalent to the square of the Cochran-Armitage test statistic for testing trends
in a single 2 x J contingency table (Chen, 1983). It is also worthwhile noticing that the formula for the
logistic regression (4) and for the Poisson regression (see Appendix) are very similar to the Pearson
correlation coefficient (3). This is a cornerstone feature of the score test for these two regression
models that will reduce the computational burden significantly. R’s command cor is pretty fast and
the score test for the Poisson and the logistic regression rely on this command to achieve high speed.
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where & and B are the MLE estimates of the parameters of the Gamma regression
under Hy.

e Beta regression is appropriate for responses that lie within (0,1) with the log-
likelihood being

n

tr= ) {logI'(¢) —logT (i) —log T [(1 — ) @] + (picd — 1) log () +
=1

+ [(1 = i) ¢ — 1]log (1 — wi) },

where p; = H—e*%bzz The relevant score test is given by

R o (@) - w(d)] | o
\/ Sy a? [v(@) + v (B)]

where & and B are the MLE estimates of the parameters of the Beta regression
under Hy, ¢(.) and ¢'(.) are the digamma and trigamma functions respectively.
Note, that we consider regression for the location parameter only and not for the
dispersion parameter.

2.8 Welch’s t-test when the response is binary

When the response is binary, the Welch’s t-test Welch (1951) can also be used and its
test statistic is given by

T, =225l )

2 2
54 %
n1 no

where, in our case, Z1 and Ty & 3% and s% denote the two sample means and variances
of the predictor variable z in the two subgroups y = 1 and y = 0 respectively. Under
Hy, T\, ~ t,, where v is given by (Satterthwaite, 1946; Welch, 1951)

Ve —— — (8)

According to (Boulesteix, 2007) this is one of the standard approaches for such cases.
To the best of our knowledge this test is not frequently employed by variable selection
algorithms and has gone unnoticed. One possible reason could be that no one has
performed simulation studies or empirical evaluation studies to show its, undermined,
value. The non parametric alternative, Wilcoxon-Mann-Whitney test is not suggested
because it tends to inflate the type I error (Tsagris et al., 2020a).
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3 Monte Carlo simulations

Three regression models will be examined: logistic regression, Gamma regression and
Beta regression. For all regression models, response values were generated from the
relevant distributions and predictor variables were generated from the standard normal
distribution. Since the score test for the logistic regression is very similar to the Pearson
correlation, the latter will be excluded from this regression. In all cases, the five axes of
comparison or five metrics are: a) Computational cost, b) Type I error, c) Correlation
of the p-values (of the score test, of the log-likelihood ratio test and of the Welch’s ¢-
test & Pearson correlation when performed), d) Agreement in the decision (reject/not
reject Hp) and e) Proportion of times the test detects the most significant predictor
variable. The motivation behind this last metric can be seen in VS algorithms such as
the (generalised) Orthogonal Matching Pursuit (Tsagris et al., 2018, 2020b) that selects
the most significant variable in the first step.

3.1 Example 1: Logistic regression

Binary response values were generated from a Bernoulli distribution (Ber(p)) with vari-
ous probabilities of success p = (0.1, 0.2,0.3,0.4, 0.5) while for each case, d = 500 random
predictor variables were generated from a standard normal distribution. The sample size
varied from 10,000 up to 1,000, 000. For each combination of probability of success and
sample size the aforementioned four metrics (a)-(d) were computed. This process was
repeated 10 times and the average performance metrics are reported.

Table 1 shows computational cost (in seconds) of each test for the 500 predictor
variables for different sample sizes. The computational cost of both tests increases with
the sample size, with the log-likelihood ratio test requiring up to 6 minutes with large
sample sizes, while the score test never exceeds 6 seconds. Figure 1 presents the speed-up
factorS across the various probabilities of success as a function of the sample size. The
log-likelihood ratio test is between 30 to 70 times slower than the score test.

Table 2 contains the estimated type I error for both tests. These are in close agreement
and when the sample size is 20, 000 or higher the estimated errors have the same value
up to the 3rd digit. The correlation of the p-values of the two tests is perfect when
the sample size is 20,000 or larger (see Table 3). The percentage of agreement in the
decision of rejection of the Hy is also perfect (see Table 3) for the same sample sizes.

The Welch’s t-test produces similar results to the score test and hence are not pre-
sented. The speed-up factors ranged from 34 up to 59 and the estimated type I errors
were almost identical. The correlation of the log-likelihood ratio test p-values with the
Welch’s t-test p-values was always 1 and the percentage of agreement in rejecting the
null hypothesis was either 0.998, 0.999 or 1.

The fifth axis of comparison is the proportion of times the test detects the most signif-
icant predictor variable. For this purpose we randomly selected a predictor variable X’
and associated it with the response variable via the following formula ¥ ~ Ber(ﬁ),

where § = (0.1,0.2,0.3,0.4,0.5) and the sample sizes n were the same. We counted the

5The number of times the log-likelihood ratio test is slower than the score test.
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Table 1: Logistic regression: Computational cost (in seconds) of the log-likelihood
ratio test (A) and the score test (S?) for different sample sizes and probabilities
of success. The fastest method is highlighted in bold.

Probability of success
p=0.1 p=0.2 p=0.3 p=04 p=20.5
Sample size A 52 A 52 A 52 A 52 A 52
1x104 1.72  0.04| 1.52 0.03 1.3 0.04 | 183 0.04| 178 0.04
2x10% 411 0.12 | 3.09 0.07| 3.08 0.07| 388 0.06 | 3.15 0.05
5x10% 13,5 0.34 | 9.26 0.2 779 0.17 | 11.18 0.16 | 838 0.15
1x10° 25.99 0.63 | 18.27 0.34 | 14.99 0.3 20.2 0.29 | 16.55 0.31
2x10° 58.86 1.23 | 38.16 0.68 | 32.34 0.66 | 43.31 0.69 | 33.85 0.61
3x10° 87.67 1.96 | 58.00 1.07 | 48.85 0.98 | 62.26 0.91 | 50.67 0.92
5x10° 107.04 2.24 | 104.1 2.18 | 81.51 1.64 | 105.2 1.62 | 86.32 1.58
7x10° 183.1 3.94 | 132.19 2.51 | 113.28 2.33 | 146.48 2.25 | 123.37 2.15
1x106 254.99 5.62 | 178.27 3.26 | 156.82 3.24 | 207.02 3.26 | 178.18 3.10

60
|

Speed-up factor
50
|

40

30
|

T T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Sample size

Figure 1: Logistic regression: Speed-up factor of the A test against the S? test. This
is an estimate of how many times the A test is slower than the S? test.
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Table 2: Logistic regression: Estimated type I error of the log-likelihood ratio test (A)
and the score test (S2) for different sample sizes and probabilities of success.

Probability of success

Sample p=20.1 p=20.2 p=20.3 p=04 p=20.5
size A 52 A S? A S? A S? A S?
1x10* | 0.056 0.056 | 0.053 0.053 | 0.053 0.052 | 0.052 0.051 | 0.049 0.049
2x10* | 0.051 0.051 | 0.055 0.055 | 0.049 0.049 | 0.048 0.048 | 0.048 0.048
5x10%* | 0.053 0.053 | 0.050 0.050 | 0.052 0.052 | 0.053 0.053 | 0.045 0.045
1x10° | 0.051 0.051 | 0.052 0.052 | 0.050 0.050 | 0.047 0.047 | 0.048 0.048
2x105 | 0.048 0.048 | 0.053 0.053 | 0.052 0.052 | 0.050 0.050 | 0.050 0.050
3x105 | 0.047 0.047 | 0.048 0.048 | 0.051 0.051 | 0.049 0.049 | 0.057 0.057
5x105 | 0.052 0.052 | 0.052 0.052 | 0.049 0.049 | 0.048 0.048 | 0.046 0.046
7x105 | 0.050 0.050 | 0.048 0.048 | 0.054 0.054 | 0.052 0.052 | 0.047 0.047
1x10% | 0.050 0.050 | 0.052 0.052 | 0.045 0.045 | 0.048 0.048 | 0.051 0.051

Table 3: Logistic regression: Correlation of the A and S? test p-values and percent-
age of agreement in rejecting Hy for different sample sizes and probabilities of
success.

Correlation of the p-values

Percentage of agreement

Probability of success (p)

Probability of success (p)

Sample size | 0.1 0.2 0.3 0.4 0.5 \ \ 01 02 0.3 04 05
1x10* 1 1 1 1 1 1 1 0999 0999 1
> 2x10% 11 1 1 1 11 1 1 1

number of times the score test, the log-likelihood ratio test and the Welch’s t-test selected
that variable as the one with the lowest p-value. All tests were always, unanimously,
detecting the randomly selected variable except for n = 10,000 and 8 = 0.1, in which
case all tests detected this variables in 94% of the times.

3.2 Example 2: Gamma regression

Response values were generated from Gamma distribution with shape and scale param-
eters equal to 1 and 5 (Ga(1,5)) and equal to 5 and 5 (Ga(5,5)). Accordingly, d = 500
random predictor variables were independently generated from the standard normal dis-
tribution. The sample sizes varied from 10,000 up to 1,000,000 and for each Gamma
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distribution and sample size the four performance metrics were computed and averaged
over 10 repetitions. The results are presented in Tables 4, 5 and 6.

Table 4 summarizes the computational cost of the log-likelihood ratio test and of the
score test. The computational cost of the log-likelihood ratio test for large sample sizes
is as high as 6 minutes, whereas for the score test it never exceeds the 4 seconds. The
speed-up factor varies from 52 up to 93. For both Gamma distributions considered the
computational gain (speed-up factor) of the score test is large and then decreases until
it reaches a plateau at about 55, for sample sizes equal to hundreds of thousands.

The estimated type I errors of both tests are in close agreement as can be seen in
Table 5, even for sample sizes equal to 10,000. Their estimated type I errors become
equal when the sample sizes are 50,000 or more for both Gamma distributions.

The correlation of the p-values of both tests (see Table 6) reaches 1 for sample sizes
equal to or greater than 100,000. The percentage of agreement of the tests in rejecting
the Hy or not (see Table 6) also reaches 1 for the sample sizes equal to or greater than
100, 000. Nonetheless, the correlation is satisfactorily high for smaller sample sizes and
never drops below 0.999.

Table 4: Gamma regression: Computational cost (in seconds) of the log-likelihood
ratio test (A) and the score test (S2) for different sample sizes and parameter
values with d = 500 predictor variables. Fastest method is highlighted in bold.
The speed-up factor columns depict the number of times A is slower than S?.

Gamma parameters
a=1, =5 a=5 =5
Sample size A 52 ‘ Speed-up factor A 52 ‘ Speed-up factor
1x10* 1.43  0.02 71.50 1.87  0.02 93.50
2x10* 2.83 0.04 70.75 3.61 0.04 90.25
5x10% 7.24 0.10 72.40 8.68 0.11 78.91
1x10° 16.21 0.23 70.48 18.85 0.30 62.83
2x10° 28.74 0.56 51.32 34.28 0.60 57.13
3x10° 47.08 0.87 54.11 53.21  0.96 55.43
5x10° 84.17 1.47 57.23 82.26 1.58 52.06
7x10° 132.08 2.43 54.36 103.29 1.97 52.43
1x106 188.98 3.40 55.58 143.54 2.54 56.51

For the proportion of times the test detects the most significant predictor variable
we randomly selected a predictor variable X’ and associated it with the response vari-
able via the following formula ¥ ~ Ga(e?X' 5) and Y ~ Ga(e?X',10), where g =
(0.1,0.2,0.3,0.4,0.5) and the sample sizes n were the same as before. We counted the
number of times the score test and the log-likelihood ratio test selected that variable as
the one with the lowest p-value. All tests were always and in both cases, unanimously,
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Table 5: Gamma regression: Estimated type I error of the log-likelihood ratio test
(A) and the score test (S?) for different sample sizes and parameter values with
d = 100 predictor variables.

Gamma parameters
a=1,=5 a=58=5
Sample size A 52 ‘ A 52

1x10* 0.048 0.049 | 0.046 0.045
2x10* 0.048 0.048 | 0.050 0.050
5x10% 0.052 0.052 | 0.049 0.049
1x10° 0.056 0.055 | 0.055 0.055
2x10° 0.048 0.047 | 0.047 0.047
3x10° 0.049 0.050 | 0.050 0.050
5x10° 0.046 0.046 | 0.052 0.052
7x10° 0.055 0.055 | 0.046 0.046
1x106 0.050 0.050 | 0.049 0.049

Table 6: Gamma regression: Correlation of the A and S? test p-values and percent-
age of agreement in rejecting Hy for different sample sizes and probabilities of
success.

Correlation of p-values Percentage of agreement

Gamma parameters
Sample size | a =1, =05 a:5,,8:5‘a:1,[3:5 a=1,4=5

1x104 0.999 0.999 0.999 0.999

2x10% 0.999 1 0.999 0.999

5x10% 0.999 1 0.999 1
> 1x10° 1 1 1 1

detecting the randomly selected variable regardless of the sample size and the magnitude
of the regression coefficient .

3.3 Example 3: Beta regression

The response values this time were generated from a Beta distribution Be(«, ), where
the shape parameters were («, 5)=(5, 10), (0.5, 0.5) and (10, 5). In this scenario
d = 100 and d = 500 random predictor variables were generated from standard normal
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distribution, while the sample sizes varied from 100 up to 20,000. The reason we chose
small sample sizes is that the score test has been shown to be size correct even for small
sample sizes (Cribari-Neto and Queiroz, 2014). Beta regression, implemented in the R
package betareg (Cribari-Neto and Zeileis, 2010), is not implemented in C++ but utilizes
the R built-in function optim and hence the computational cost increases considerably
with sample size.

The average duration (in seconds) of computing the p-values of the log-likelihood ratio
test after 100 univariate Beta regressions and the p-values of 100 score tests appears in
Table 7. The speed-up factors are more than 4,000, meaning that the application of
100 Beta regressions can be more than 4,000 times slower than the application of 100
score tests. The estimated type I errors (see Table 8) are nearly the same. Note that
this time the sample size was only as large as 20,000, as the time required for the Beta
regressions increases with the sample size. A similar picture is seen by examining the
computational cost in Table 9 and the estimated type I error in Table 10 for the case of
500 predictor variables. The computational cost is dramatically smaller than performing
500 Beta regressions in R. The speed-up factor ranges from 154 up to 5,809, indicating
that performing many Beta regressions can be thousands of times slower than performing
many score tests.

Surprisingly enough, computation of many score tests is faster than computation of
many Pearson correlation coefficients (see Table 9). However, Table 10 shows that the
estimated type I error of the score test and of the Pearson correlation coefficient do not
fully agree even for sample sizes equal to 1,000, 000.

In order to see whether this disagreement was significant and to see what are the
possible implications, the probability of identifying the most significant variable was
computed for the score test and for the Pearson correlation coefficient. If the score test
and the Pearson correlation coefficient agree in the most significant variable, then their
type I error differences can be deemed negligible. In this case, one predictor variable
(X') was randomly chosen from the 500 predictor variables. The response values were

1 1 1
then generated from Be (W,Oﬁ), Be (W’ 5) and Be (W’ 10). The results,

presented in Table 11, show that when the sample sizes exceed 500 there is perfect
agreement, in detecting the most statistically significant variable, between the score test
and the Pearson correlation coefficient.

4 Examples with real data

Monte Carlo studies are based on simulating the predictor variables and the response
variable from parametric models followed by parametric regression models. Hence, the
data generating mechanism is expected to be recovered with large sample sizes. This
is the ideal scenario where we expect the testing procedures to perform well. On the
contrary, with real data will we cannot know beforehand the true generating model of
the real data. Practitioners working with real data are more interested to know the
performance of a testing procedure (and of an algorithm in general) with real data,
under realistic situations. We compared the performance of the score test with the



Electronic Journal of Applied Statistical Analysis 403

Table 7: Beta regression: Computational cost (in seconds) of the log-likelihood ratio
test (A) and the score test (S?) for different sample sizes and parameter values
with p = 100 predictor variables. Fastest method is highlighted in bold. The
speed-up factor columns depict the number of times A is slower than S2.

Beta parameters

a=5,8=10 a=05 8=05 a=10,8=5

Speed-up Speed-up Speed-up

Sample size
A 52 factor A 52 factor A 52 factor

100 1.54 0.01 154 1.64 0.01 164 1.73 0.01 173
500 2.73 0.01 273 2.63 0.01 263 3.19 0.01 319
1,000 4.37 0.01 437 4.11 0.01 411 5.71 0.01 071

5,000 21.18 0.01 2118 16.61 0.01 1661 24.11 0.01 2411
10,000 54.99 0.01 5499 35.46 0.01 1773 58.09 0.01 5809
20,000 88.68 0.02 4434 66.03 0.02 3315 91.62 0.02 4581

Table 8: Beta regression: Estimated type I error of the log-likelihood ratio test (A)
and the score test (S?) for different sample sizes and parameter values with
p = 100 predictor variables.

Beta parameters
a=5 =10 a=05 =05 a=10,8=5

Sample size ‘ A S? ‘ A 52 ‘ A S?
100 0.052 0.048 | 0.064 0.061 0.054 0.052
500 0.051 0.048 | 0.0564  0.053 | 0.037 0.036

1,000 0.050  0.051 | 0.048 0.047 0.059  0.057
5,000 0.067 0.066 | 0.044 0.044 0.046  0.046
10,000 0.047 0.047 | 0.041 0.041 0.048 0.048
20,000 0.052  0.052 | 0.054 0.054 0.047  0.047

log-likelihood ratio test, where we assume that the parametric regression fits the data
adequately. The computational cost of the log-likelihood and of the score test, the corre-
lation of their corresponding p-values and the percentage of agreement in rejecting/not
rejecting the Hy were assessed.

Two datasets were downloaded from the https://archive.ics.uci.edu/ml/index.phpUC
Irvine Machine Learning Repository, namely the Gisette dataset and the Online News
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Table 9: Beta regression: Computational cost (in seconds) of the score test (S2) and
the Pearson correlation coefficient test (Z) for different sample sizes and pa-
rameter values with d = 500 predictor variables. Fastest method is highlighted

in bold.
Beta parameters
a=5 =10 a=056=05 a=10,8=5
Sample size | 52 z | s z | s Z
100 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00  0.00 | 0.00 0.01 0.00  0.00
5,000 0.02 0.02 | 0.01 0.02 0.01  0.02
1x10* 0.03 0.04 | 0.02 0.03 0.02 0.03
2x10* 0.05 0.06 | 0.05 0.06 0.05 0.06
5x10% 0.12 0.17 | 0.12 0.15 0.12 0.16
1x10° 0.29 041 | 0.23 0.29 0.25 0.30
2x10° 0.56 0.68 | 0.47 0.60 0.47 0.61
5x10° 1.36  1.74 | 1.19 1.53 1.34  1.66
7x10° 1.94 254 | 1.65 2.13 2.02 241
1x106 2.48 3.09 | 2.72 3.17 2.88 345

Popularity dataset. Both datasets have a binary response and are thus suitable for
logistic regression. The first dataset is a handwritten digit recognition problem where
the goal is to separate the highly confusible digits ”4” and ”79”. This dataset is one
of five datasets of the NIPS 2003 feature selection challenge (Guyon et al., 2005) and
contains 5,999 binary observations and 5,000 predictor variables. The second dataset
summarizes a heterogeneous set of features about articles published by Mashable in a
period of two years (Fernandes et al., 2015) with the goal of predicting the popularity
in social networks. The popularity of online news is often measured by considering the
number of interactions in the Web and social networks (e.g., number of shares, likes and
comments). The authors have binarised the popularity using a threshold of 1,400 shares
and thus have turned the regression problem into a classification problem. This dataset
contains 39, 644 observations and 64 predictor variables.

For logistic regression in particular examination of the tests is straightforward since
the response values are binary. To assess the score test in Gamma and Beta regressions
some modifications must take place. All three cases are presented below.

e Logistic regression and score test. In order to obtain a better and more
accurate picture of the computational cost and of the relevant performance metrics,
we implemented 10 repetitions. Each time a bootstrap sample was generated
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Table 10: Beta regression: Estimated type I error of the score test (S?) and the Pear-
son correlation coefficient test (Z) for different sample sizes and parameter

values with d = 500 predictor variables.

Beta parameters
a=5 =10 a=05 =05 a=10,8=5
Sample size ‘ S? VA ‘ 5?2 Z ‘ 52 VA

100 0.048 0.046 | 0.052 0.049 0.052 0.048
500 0.055 0.058 | 0.045 0.047 0.047 0.047
1,000 0.055 0.054 | 0.054 0.051 0.055 0.055
5,000 0.049 0.048 | 0.055 0.054 0.051 0.052
1x10* 0.052  0.053 | 0.053 0.051 0.052 0.051
2x10* 0.051 0.052 | 0.048 0.050 0.051 0.051
5x10* 0.051  0.055 | 0.045 0.045 0.051  0.053
1x10° 0.046  0.047 | 0.045 0.047 0.055 0.052
2x10° 0.052  0.049 | 0.049 0.047 0.045 0.046
5x10° 0.054 0.054 | 0.044 0.046 0.049  0.050
7x10° 0.055 0.054 | 0.054 0.053 0.047  0.047
1x108 0.045 0.046 | 0.048 0.051 0.045 0.045

Table 11: Beta regression: Estimated probability of identifying the most significant
predictor variable of the score test (S?) and the Pearson correlation coefficient
test (Z) for different sample sizes and parameter values with p = 500 predictor
variables. The highest probability is highlighted in bold.

Beta parameters
B =10 B=05 B=5
Samplesize | S> 7z | 2  Z | & Z
100 0.92 064|090 0.62]0.88 0.50
> 500 1.00 1.00 | 1.00 1.00 | 1.00  1.00

containing the response vector and the predictor variables matrix (the pairing was
not distorted). For each bootstrap sample we computed the p-values from the
score and the log-likelihood ratio tests and Welch’s ¢-test.

e Gamma regression and score test. Since the response values are binary we
created new response values. We generated non negative continuous random values
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from a mixture of a Weibull and a folded normal distribution with the mixing
proportion being equal to 50%. This process was repeated 10 times and each time
we computed the p-values from the score and the log-likelihood ratio tests.

¢ Beta regression and score test. Similarly to the Gamma regression case, new
response values were generated. We generated percentages from a mixture of a
logistic normal distribution and a simplex distribution with the mixing proportion
being equal to 50%. This process was repeated 5 times only for the first dataset
(and 10 times for the second dataset), because fitting thousands of Beta regressions
was shown to be highly computationally expensive. Each time we computed the
p-values from the score and the log-likelihood ratio tests.

The performance metrics that were computed are a) the computational cost of the
log-likelihood ratio test and of the score test, b) the correlation of their corresponding
p-values and c) the percentage of agreement in rejecting/not rejecting the Hy. The
average numbers of all metrics are reported in Table 12, corroborating the evidence of
the simulation studies.

The first dataset (Gisette) contains 5,999 observations and this explains why the
correlation between the log-likelihood ratio p-values and score test p-values is 0.999. The
second dataset (Online) contains 39,644 observations and this is why the correlation of
the p-values is 1. The same conclusions were drawn for Welch’s t-test. Figure 2 visualizes
the p-values obtained from the log-likelihood ratio test, the score test and the Welch’s
t-test. The results agree with the simulation studies also, for the Gamma and Beta
regressions. The correlation of the p-values is only 0.997 even for the second dataset
(Online). Table 6 reported that in order for the correlation of the p-values of the score
test and the log-likelihood ratio test to be exactly 1 requires samples sizes of tens of
thousands of observations. Finally the computational advantage of the score test (and
of the Welch’s t-test) over the log-likelihood ratio test is again evident for all three types
of regressions.

5 Conclusions

The score test was suggested as a faster alternative to log-likelihood ratio test that
involves fitting many simple (with one predictor) regression models. Score test’s only
requirement, in order to be equivalent to the log-likelihood ratio test, is large sample
size. This might sound like a disadvantage at first, but is actually an advantage. With
massive or big data, computational cost becomes a serious problem and score test solves
this problem effectively.

The score test and the Pearson correlation coefficient when used for univariate filter-
ing were shown to be extremely computationally efficient when compared to the log-
likelihood ratio test and produced exactly the same results with large sample sizes (
n > 10,000) for logistic regression and Gamma regression. In addition, the Welch’s ¢-
test produced almost identical results to the score test. Hence, with massive or big data,
the score test could substitute the log-likelihood ratio test, while for logistic regression
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Figure 2: Scatter plot of the score test (S?) p-values and of the Welch’s t-test p-values
versus the log-likelihood ratio test (A) p-values (using logistic regression). The
dashed line refers to the 45° line that passes through the origin. The red lines
delimit the rejection region at the 5% significance level for each test.
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Table 12: Real data examples: Computational cost (in seconds) of A and S? tests,
correlation of their p-values and percentage of agreement in rejecting Hy for
the two datasets and the three regression models.

Computational Correlation Percent of
cost of p-values agreement
Regression | Dataset A 52 Welch 5?2 Welch S2 Welch
_ Gisette 19.875  0.230 0.242 | 0.999 0.999 | 0.991 0.991
Logistic .
Online 1.438 0.020 0.016 1 0.999 1 1
Gisette 13.913  0.251 0.995 0.973
Gamma ]
Online 0.908 0.008 0.997 0.983
Gisette | 1208.310 0.250 1 0.998
Beta
Onine 70.988  0.112 1 1

the Welch’s t-test is another option. For Beta distributed response values, the Pearson
correlation coefficient and the score test did not reach 100% agreement for small sample
sizes. An interesting conclusion is that the score test is size correct even for small sample
sizes corroborating the findings of Cribari-Neto and Queiroz (2014). This implies that
the score test could replace the log-likelihood ratio test even for small sample sizes with
Beta distributed response values.

In case of binary responses, computation of many score tests is between 30 to 70 times
faster than the computation of a C++ implementation of the relevant, logistic regres-
sion based, log-likelihood ratio tests. With Beta regression, computation of numerous
score tests is more than 6,000 times faster than performing many log-likelihood ratio
tests using Beta regression that has been implemented in R. Score test’s computational
efficiency is attributed to the fact that it fits a single regression model only, under the
null hypothesis, unlike the log-likelihood ratio test that requires fitting many regression
models under the alternative hypothesis as well.

Another conclusion this paper has reached to, is that despite R being rather ”slow” (in
comparison to Python or Matlab), with the proper computations it becomes extremely
fast. The general advice ” It’s your algorithm” suits the results of this paper. Continuing
with this, we would like to inform the reader that many score and log-likelihood ratio
tests have been implemented in the R packages Rfast (Papadakis et al., 2020) and
Rfast2 (Papadakis et al., 2019). Furthermore, we are working towards improving the
computational efficiency of the score test.

Due to the paper’s space limitations not many regression cases could be covered. For
instance, Poisson and negative binomial and Weibull regression for which the formulas
of the score test are provided in the Appendix. The case of multinomial regression was
not examined either, for which Welch’s F-test for multiple samples (Welch, 1951) can
be an alternative to the log-likelihood ratio test, with computational cost nearly equal
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to that of the score test and results of similar accuracy.

In all cases and examples considered in this paper, only continuous predictor variables
were used. Evidently, real data are not constrained to continuous predictors, but may
include categorical variables as well. We could modify our R function to apply the score
test for categorical predictors, but that would entail the employment of a for loop in
R, thus increasing the computational burden. Tsagris et al. (2020b) treats categorical
variables by applying Analysis of Variance.

Appendix

Asymptotic equivalence of the score test and log-likelihood ratio test

Below is a short proof of the asymptotic equivalence of the score test and log-likelihood
ratio test when 6 is scalar, as in the case this paper examines. By expanding the score
function U (0) using Taylor series about 0 one can obtain (Brazzale et al., 2007; Young
and Smith, 2005)

(é - 9) 102 =1(0)72U (0)[1 + 0,(1)] .

A similar expression for the log-likelihood ratio test gives
. 2
AO) = (0-0) T(0)[1+0,(1)],

where 0,(1) indicates a random variable that converges in probability to 0.

Score test formulas for some other regression models

Formulas of the score test for some other common regression models.

e With count data, the Poisson regression is the simplest model employed and its
log-likelihood is given by

n

to= " [yilog (A) — i — log ()],
i=1

atbzi  The form of the score test in this case is

Yo YT — YD i T

Spois = ;
VS Sy i) o

where \; = ¢

where g =Y I | &

i=1 n"*

In general, the notation Y,, = op(a») means that Y, /a, — 0 as n — oo.
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e With count data that exhibit overdispersion (variance is greater than the mean),

the negative binomial regression is more suitable than the Poisson regression that
assumes the dispersion parameter is 1 (mean is equal to the variance). The relevant
log-likelihood is given by

n

r 7
l = Z [1ogf(yi+r) —log (!) —log (r) +7log <T+M‘> Filos (Ti,uﬂ ’

i=1 v

a+bx;

where p; = e . The corresponding score test is given by

P 2?21 TilYi — (1 - ]3) 7 2?21 T
VPG + 77 S 23

where g is the sample mean, p and 7 are the MLE estimates of the parameters of
the Negative Binomial regression under Hy.

Syp = (10)

An alternative to Gamma regression is the Weibull regression, that is mainly used
in biostatistics. Its log-likelihood is given by

3 . N\ K
0= ; {log(/@) Clog (M) + (5 — 1) log <?;> B (i) ] |
where \; = e¢tb%i, The relevant score test takes the following form

i Tiyf n
5\;%, == ZZ:I "EZ

Sweib = — , (11)
D1 T

where # and ) are the MLE estimates of the parameters of the Weibull regression
under Hy.
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