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The paper investigates the use of a finite mixture model with an addi-
tional uniform density for outlier detection and robust estimation. The main
contribution of this paper lies in the analysis of the properties of the im-
proper component and the introduction of a modified EM algorithm which,
beyond providing the maximum likelihood estimates of the mixture parame-
ters, endogenously provides a numerical value for the density of the uniform
distribution used for the improper component. The mixing proportion of
outliers may be known or unknown. Applications to robust estimation and
outlier detection will be discussed with particular attention to the normal
mixture case.
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1 Introduction

Mixture models have been widely employed in many statistical procedures such as dis-
criminant analysis or cluster analysis and primarily for checking the stability of classical
inferential techniques under violation of the underlying assumptions. Mixture models
also play a relevant role in the detection of outliers, an important task in data mining
since it has applications in problems such as fraud detection, intrusion detection, anal-
ysis of microarray experiments for gene expression and data cleaning (Chandola et al.,
2009).
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The goal of outlier detection is to find an unusual/atypical datum (outlier) in a given
dataset. Many measures have been proposed to detect/classify outliers. This goal can
also be addressed by mixture modelling (McLachlan and Peel, 2000), in which one or a
few components are reserved for outliers or contaminants (Banfield and Raftery, 1993),
(Longford and D’Urso, 2011).

Some recent and less recent contributions in outlier detection are those of Kutsuna
and Yamamoto (2017) based on binary decision diagrams, Ernst and Haesbroeck (2017)
which consider methods for spatial data, (Longford and D’Urso, 2011) and Longford
(2013) which discuss a method based on a mixture with an improper component; Limas
et al. (2004) which address multivariate non normal data and Yamanishi et al. (2004)
which discuss an algorithm based on Gaussian mixtures and a kernel version of it.

This paper investigates the use of a finite mixture model for outlier detection and ro-
bust estimation of the parameters of a given distribution. More specifically, the use of an
improper component of the mixture will be the main tool to detect outliers. The addition
of a mixture component accounting for noise as a uniform distribution was discussed by
Fraley and Raftery (1998) and Hennig (2004) in the context of cluster analysis while
some other recent contributions (given above) introduce it in outlier detection. A com-
mon feature of the these papers is that the numerical value of the improper component
is determined exogenously.

The main contribution of this paper lies in the analysis of the properties of the im-
proper component and the introduction, as we term it, of an Improper EM-Algorithm
(I-EM) which, beyond providing the maximum likelihood estimates of the mixture pa-
rameters, endogenously provides a numerical value for the density of the uniform dis-
tribution used for the improper component. The mixing proportion of outliers may
be known or unknown. The posterior probabilities permit to identify the observations
which are outliers and to use them to reduce their influence in the parameter estimation
procedure. Applications to robust estimation and outlier detection will be discussed.

In the following section we present the rationale of the proposed procedure focusing on
a simple mixture of two components f1 and f0 which may be univariate or multivariate
densities. This simple structure allows us to analyze from a theoretical point of view
some important features of the procedure. Section 3 is devoted to the generalisation of
the I-EM algorithm which the proper component may itself be a mixture. We compare
this algorithm to some of its competitors. The last section is devoted to the conclusions.

2 The proposed procedure

Mixture distributions may represent a natural environment for facing the problem of
outliers detection. Consider a mixture pdf f(y; θ) = π f1(y; θ) + (1 − π)f0(y), where
π ∈ (0, 1) and f1 depends on some unknown parameter θ ∈ Θ ⊆ Rk, k ∈ IN (and may
be a mixture itself) while the component f0 can be regarded as an improper pdf that
may generate/accommodate outliers or atypical data. The commonly used method of
estimating the parameters of a mixture model is the EM -Algorithm, based on a sample
(z1, y1), . . . , (zn, yn) where zj are the values of the (unobserved) indicator variable Zj ,
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with P [Zj = 1] = π and P [Zj = 0] = 1 − π. Conditionally on Zj = α, Yj has pdf
fα(y), α = 0, 1. The complete data log-likelihood function (if the value of Zj is known
for each j) is given by

`C(π, θ) =

n∑
j=1

[zj log π + (1− zj) log(1− π)] +

n∑
j=1

zj log f1(yj ; θ)+

+

n∑
j=1

(1− zj) log f0(yj). (1)

The first sum in (1) is a Binomial log-likelihood which is maximized at π = 1
n

∑n
j=1 zj .

The second sum indicates the log-likelihood function for θ. Typically, the third sum
would also be a log-likelihood function for parameters that determine f0, but for the
moment f0 is regarded as known. For instance, if f1 is a normal pdf with unknown
mean and variance, we set θ = (µ, σ2), and the second term in (1) reaches its maximum
at

µ =

∑n
j=1 yj∑n
j=1 zj

, σ2 =

∑n
j=1(yj − µ)2∑n

j=1 zj
. (2)

For unobserved zj , the E-Step of the EM -Algorithm replaces the zj by their conditional
expectation

π1j = E[Zj |yj ] =
πf1(yj ; θ)

πf1(yj ; θ) + (1− π)f0(yj)
, j = 1, 2, . . . , n, (3)

and the M -Step maximizes (1) with the zj replaced by the π1j . Assuming again that
f0 is known and that f1 is a normal pdf with unknown mean and variance, the EM -
Algorithm starting with some initial values (π(0), θ(0)), iterates until convergence between
the following two steps:

E-Step:

π1j = E[Zj |yj ] =
πf1(yj ; θ)

πf1(yj ; θ) + (1− π)f0(yj)
, j = 1, 2, . . . , n, (4)

using current parameter values in the evaluation of f1, and

M-Step:

π =
1

n

n∑
j=1

π1j (5)

µ =

∑n
j=1 π1jyj∑n
j=1 π1j

, (6)

σ2 =

∑n
j=1 π1j(yj − µ)2∑n

j=1 π1j
. (7)
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2.1 The Improper EM-Algorithm

The key idea in our approach is to choose for f0 a density which does not depend on
y, to accommodate arbitrarily large outliers and values that are unlikely under f1. To
achieve this, we will set

f0(yj) = c, j = 1, . . . , n, (8)

where c > 0 is a constant. We will refer to f0 as the improper component of the mixture
distribution f(y; θ) and the choice of c represents one of the most crucial aspects of our
approach.

Suppose at first that π ∈ (0, 1) is given. Note that if the mixing proportion π is
assumed to be known, then the equation (5) disappears from the calculations while all
other equations remain unchanged. Now continuing with the familiar normal density for
f1, the EM -Algorithm then uses equations (6) and (7) for the M -Step, while the E-Step
is given by equation (3). An important question now arises: how should c be chosen?
By the usual rule of conditioning,

E[Zj ] = π, E[Zj |yj ] = π1j , E[Zj ] = E[E(Zj |yj)] (9)

which suggest to exploit equation (5) for choosing the value of c. Consequently equation
(5) is brought back in again, but its purpose is now to give a hint for choosing appropri-
ately the value of c rather than estimate π. Writing f1j = f(yj ; θ) for sake of simplicity
and using (3) in equation (5) we obtain,

0 =
n∑
j=1

πf1j
πf1j + (1− π) · c

− nπ

= π(1− π)

n∑
j=1

f1j − c
π(f1j − c) + c

= π(1− π)h(c, π)

(10)

or equivalently,

h(c, π) =
n∑
j=1

f1j − c
π(f1j − c) + c

= 0. (11)

It is straightforward to prove that h(c, π) is a decreasing function of c with limits n
π and

− n
1−π when c = 0 and c→ +∞, respectively.
Therefore for each given π ∈ (0, 1) there is a unique solution c > 0 such that the

equation (11) holds. Thus, for a given π, we will use as estimates of µ, σ2, π0j and π1j
the values obtained by iterating until convergence the following procedure:

I-EM1

Step 1: Fix the precision level ε and the value π = πopt, the known proportion of
non-contaminated observations

Step 1.1 ( Improper E-Step): Evaluate f1j at the current parameter values
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Step 1.2: Find the value c0 which solves the equation (11)

Step 1.3: Given πopt, f1j and f0j = c0 from equation (3) compute the posterior
probabilities

π1j =
πopt f1j

πopt f1j + (1− πopt) c0
and π0j = 1− π1j

Step 1.4 ( M-Step): Update µ and σ2 according to the equations (6) and
(7) using the current values of π1j and π0j and compute the logLik for the k =
1, 2, 3, . . . current iteration

Step 1.5: If

| logLik(k) − logLik(k−1) | > ε : Iterate again Step 1.1 - Step 1.5

| logLik(k) − logLik(k−1) | ≤ ε : Stop the estimation procedure: goto Step 2

Step 2: Return final parameter estimates µ̂ and σ̂2, ĉ and posterior probabilities π̂1j
and π̂0j for the data

The Step 1.2 of I-EM1 involves the solution of the equation h(c, π) = 0 with respect to
c and this may be difficult to do. For fixed π, c0 can be found by the Newton-Raphson
algorithm, using the expression (11). The objective function is well behaved and the
algorithm is unlikely to require more than a handful of iterations.

The purpose of the following two simple examples is to illustrate the role of the I-EM1
procedure in terms of robust estimation and suggest a possible rule for choosing the
value of π when no information is available on it. Section 2.3 and Section 3.1 will give
a definitely more convincing examples about how I-EM1 works as a robust estimator
and/or outlier detector on more complex real and simulated datasets.

Example 1. 35 observations were generated from a N (0, 1) distribution, and 5
further data values equal to -15, -30 and 31, 40 and 6 were added as atypical data. The
algorithm was run with π = 35/40 = 0.8750, using the sample mean and variance of
all 40 data points as initial parameters values; the estimation procedure stops when the
difference between two consecutive log likelihood functions is less than 10−6. Running
the Improper EM algorithm, seven iterations were required for reaching convergence of
the estimation procedure, giving final values µ̂ = −0.0361 and σ̂2 = 0.9491 as displayed
in Table 1:

The final values practically coincide with the mean and variance of the 35 ”good” ob-
servations (-0.0362 and 0.9484 respectively). At the solution posterior probabilities π̂1j
are equal to 1 for the good (or non contaminated) observations (except for observation 9
where the posterior probability was equal to 0.9996) or equal to 0 for the atypical obser-
vations (except for observation 40 where the posterior probability was equal to 0.0008).
This is the reason for that the estimates given back by the Improper EM algorithm
slightly differ from mean and variance of the 35 non contaminated observations.
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Table 1: Protocol of the estimation procedure via I-EM algorithm with known non-
contaminated proportion π

Iteration c Mean Variance logLik Difference

1.000 1.7073E-02 -2.0024E-01 1.346E+01 4.9854E+01

2.000 1.9655E-02 1.1479E-01 1.910E+00 1.1447E+01

3.000 2.8703E-03 -2.2254E-02 1.021E+00 5.0467E+00

4.000 3.6900E-05 -3.5937E-02 9.497E-01 2.4592E+00

5.000 1.7400E-05 -3.6077E-02 9.491E-01 2.2827E-02

6.000 1.7300E-05 -3.6078E-02 9.491E-01 1.7036E-04

7.000 1.7300E-05 -3.6078E-02 9.491E-01 1.9120E-06

The results of Example 1 are practically the same as removing the five atypical ob-
servations from the sample. This is not at all surprising because we have assumed the
mixing proportion π to be known. But, in most practical situations, this will be not the
case; so that, we will need some rule for choosing π. Example 2 is a natural continuation
of Example 1 and provides some ideas in that sense.

Example 2. Using the same dataset as in Example 1, the Improper EM -algorithm
was run for values of π between 0.5 and 0.99 (step: 0.01). Figure 1 shows ĉ , log ĉ,
µ̂, ln(σ̂2) as functions of π. Once π exceeds the true (correct) value 35

40 = 0.875, the
parameter estimates change suddenly, but the most striking aspect of the graph is that
at π = 35

40 the value of ĉ reaches practically 0. This suggest a heuristic rule: choose
the smallest value of π for which ĉ is ”very small” (minimum). Table 2 illustrates the
Improper EM algorithm protocol: as before, the estimation procedure stops when the
difference between two consecutive log likelihood functions is less than 10−6 and thirteen
iterations were needed for reaching convergence getting the final values µ̂ = −0.0348,
σ̂2 = 0.9503 and π̂ = 0.880.

Some theoretical analysis supporting this rule is given later, but just for comparison
Figure 2 shows the analogous graph using a sample of size n = 100 from standard normal
distribution without contamination. In Figure 2, π varies from 0.5 to 0.99 (step: 0.01);
note that in that interval c(π) decreases regularly and never reaches the value 0.

2.2 More on the behaviour of c and the choice of π

To better understand the behaviour of c as a function of π it is useful to study the case
there is no unknown parameter in f1. Of course this case has no practical importance,
but it gives some theoretical insights.
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Table 2: Protocol of the estimation procedure via I-EM algorithm with unknown non-
contaminated proportion π

Iteration c Mean Variance logLik Difference

1.000 1.635E-02 -2.020E-01 1.400E+01 1.044E+01

2.000 1.635E-02 1.143E-01 1.974E+00 1.144E+01

3.000 1.097E-03 3.045E-03 1.175E+00 5.310E+00

4.000 4.000E-06 -1.358E-02 1.079E+00 5.264E-01

5.000 2.000E-06 -2.428E-02 1.014E+00 6.634E-01

6.000 2.000E-06 -3.193E-02 9.679E-01 1.470E+00

7.000 2.000E-06 -3.431E-02 9.534E-01 2.337E-01

8.000 2.000E-06 -3.474E-02 9.508E-01 4.946E-02

9.000 2.000E-06 -3.481E-02 9.504E-01 7.934E-03

10.000 2.000E-06 -3.482E-02 9.503E-01 1.209E-03

11.000 2.000E-06 -3.482E-02 9.503E-01 1.828E-04

12.000 2.000E-06 -3.482E-02 9.503E-01 2.761E-05

13.000 2.000E-06 -3.482E-02 9.503E-01 4.169E-06

Let f1j = f1(yj), j = 1, 2, . . . , n be known positive constants. Since for any given
π ∈ (0, 1), equation (11) has a unique solution, it implicitly defines a function

c = c(π), 0 < π < 1. (12)

Lemma 1 For given constants f11, f12, . . . , f1n, the function c = c(π) is monotonically

decreasing from c(0) = 1
n

∑n
j=1 f1j to c(1) = n

(∑n
j=1 f

−1
1j

)−1
. If all f1j are identical,

then c(π) is constant.

Proof: The values c(0) and c(1) follow directly by solving the equations h(c, 0) = 0
and h(c, 1) = 0. Equation (11) defines a contour of constant value 0 of h(c, π) considered
as a function of two variables c and π. Since

∂

∂c
h(c, π) < 0, ∀π ∈ (0, 1)

and
∂

∂π
h(c, π) ≤ 0, ∀c > 0

monotonicity follows.
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Figure 1: Behaviour of ĉ, log(ĉ), µ̂ and log(σ̂2) as functions of π for Example 1 contam-
inated data.

Lemma 1 suggests that if the parameter θ determining f1 is reasonably well estimated
by the data at a given value π0 of π, we can expect ĉ(π) to decrease monotonically in a
neighbourhood of π0. On the other hand, if a small change in π affects the parameter
values drastically, then the values of the f1j will change, and the function c(π) might
then increase or stay roughly constant. This gives some support to the heuristic rule
formulated at the end of Example 1.

More support for the heuristic rule can be given by considering the case where some of
the observations are outside the support of the pdf f1, as given in the following theorem.

Lemma 2 Suppose the support of f1 does not depend on the unknown parameter
θ, and n2 < n of the observations are outside of the support, i.e., f1j = 0 for some n2
observations, and n1 = n− n2 observations are inside. Then,

ĉ
(n1
n

)
= 0. (13)

Proof: Suppose for simplicity that f1j > 0 for j = 1, 2, . . . , n1 and f1j = 0 for
j = n1 + 1, . . . , n. Then

h(c, π) =

n1∑
j=1

f1j − c
π (f1j − c) + c

− n2
1− π

, (14)
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Figure 2: Behaviour of ĉ, log(ĉ), µ̂ and log(σ̂2) as functions of π for non-contaminated
standard normal data.

and h(0;n1/n) = 0.

By Lemma 2, we can vary π only in the range from 0 to n1/n, because for π >
n1/n there exists no positive constant c that solves the equation (11). This is perfectly
reasonable because at this point we have exhausted” all information given by the n1
observations within the support of f1. For further illustration, suppose again that θ is
known, and that f1j = α > 0 for j = 1, 2, . . . , n1, while f1j = 0 for j = n1 + 1, . . . , n.
Then the equation h(c;π) = 0 has an explicit solution

c(π) = α
n1
n − π
1− π

, (15)

showing that values of π larger then n1/n must be excluded.

In practical applications with unknown θ one would probably exclude observations
outside the support of f1 a priori, but nevertheless Lemma 2 gives a valuable insight: if
some n2 observations are distinct outliers, and π approaches the value n1/n from below,
then f1j will be extremely small for the outliers, and by a continuity argument we can
the expect the function ĉ(π) to take values very close to zero for π ≥ n1/n. On the
other hand, for an uncontaminated distribution we expect that ĉ(π) be monotonically
decreasing in π. Thus, any increase in ĉ(π) indicates the observations that are very
unlikely under f1 are becoming influential for the parameter estimates.
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Turning to the general setup where f1 depends on the parameter θ, the above lemma
suggests that if the parameter θ determining f1 is reasonably well estimated by the data
at a given value πopt of π, we can expect c(π) to decrease monotonically when we are
approaching πopt. In other words, if a small change in π affects the parameter values
drastically, then the values of the f1j will change and the function c(π) might then
increase or stay roughly constant. Keeping in mind that π is the proportion of ”good”
data which follow the component f1 of the mixture and that the function (or component)
c(π) was introduced with the aim to accommodate arbitrarily large outliers and values
that are unlikely under f1, this provides an empirical rule for the choice of π.

Finally, the estimation procedure may be set in the following way:

I-EM2

Step 1: Fix the precision level ε, the starting value of π ∈ (0, 1) and the increment dπ
of π

Step 1.1 Run the I-EM1 algorithm

Step 1.2 Save π, c0, h(c0, π), final parameter estimates µ̂ and σ̂2, posterior
probabilities π̂1j and π̂0j for the observations; then goto Step 2

Step 2: Until π < 1, put π = π + dπ and goto Step 1.1

Step 3 : Return as estimate of the unknown value of π the value πopt corresponding
to the minimum of c0 values and the corresponding values of c0, µ̂, σ̂2, π̂1j and
π̂0j as estimates of the improper density component, parameters and posterior
probabilities, respectively

2.3 Adulteration in wine production

Monetti et al. (1996) studied the chemical composition of n = 344 commercial samples
of concentrated grape must (CGM) in wine production. In sugar adulteration controls,
chemical values of a suspect sample are compared with those of a reference one. To
improve classification the authors suggest using a multivariate approach and show that
data can be modelled with a two multivariate normal components mixture.

Their dataset contains data collected on four variables (D/HI , myo- and scyllo-
inositol, D/HII) suitable for discovering adulterations with added sugar from plants
other than grapes: two polyalcohols ( myo-inositol and scyllo-inositol) and two D/H
ratios (D/HI and D/HII) in the methyl and methylene position of ethanol which depend
on photosynthetic and physiological factors. The polyalcohol variables myo-inositol and
scyllo-inositol have been logarithmically transformed. See plots of the data in Figure 3.

Here we are interested in separation of the group of adulterated grape samples from
the other and in parameter estimation of the non-adulterated component of the CGM
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Figure 3: Plots of the Wine data along the (ln(Myo)− ln(Schyllo))), (ln(Myo)-D/HI),
(ln(Myo)-D/HII), (ln(Schyllo)-D/HI), (ln(Schyllo)-D/HII) and (D/HI -
D/HII) directions.

samples without assuming knowledge of reference values. In practice the second com-
ponent associated with the adulterated samples will be modelled through the density
f0.

To this end the I-EM2 algorithm was run using the sample mean and covariance
matrix of all 344 data points as initial values given by(

100.3831 6.9556 5.0907 126.8483
)

and 
11.2105 1.6893 2.1252 0.9270

1.6893 0.3625 0.4223 0.0853

2.1252 0.4223 0.5629 0.0532

0.9270 0.0853 0.0532 4.0071


The I-EM2 algorithm returned π̂ = 0.76 for the proportion of non-adulterated musts

in the original sample, very close to the number of non-adulterated samples equal to 261
as discussed at length in Monetti et al. (1996). In other words, 24% of the original 344
(83) concentrated grape musts have been recognized as adulterated by sugar addition.

Once π has been determined, 25 iterations have been required to the known propor-
tion I-EM1 to reach convergence, giving back the final estimates for mean vector and
covariance matrix of the set of four variables (D/HI , myo-inositol, scyllo-inositol and
D/HII) for non-adulterated samples

µ̂′ =
(

102.0385 7.2400 5.4354 126.8276
)
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Figure 4: Posterior probabilities histogram (Wine data - Monetti et al. (1996))

and

Σ̂ =


2.2549 0.0930 0.2037 1.1761

0.0930 0.0594 0.0472 0.0725

0.2037 0.0472 0.0774 0.0197

1.1761 0.0725 0.0197 4.4815


Finally the inspection of the posterior probabilities associated to the original units per-
mits to identify the adulterated (or outlier) samples. Figure 4 refers to the histogram of
posterior probabilities and we may adopt a threshold of 0.4 or 0.5 to split the original
344 wine samples in adulterated (π1j ≤ 0.5) and non-adulterared (π1j > 0.5). Estimates
parameters of non-adulterated samples strongly agree with those of Monetti et al. (1996).

3 Generalizing the algorithm

Depending on the form of f1, which might be a mixture itself, it might be not always
possible to determine the value πopt as discussed in Section 2.2 since, as simulations
show, a numerical search for πopt may lead to a trivial unit value.

Notwithstanding, it will be shown that the I-EM algorithm can still perform very well
in outlier detection when the posterior probabilities associated with f0 are used to rank
potential outlying observations

Under the assumption that f1 is Gaussian or a finite Gaussian mixture, we propose here
a generalization of the I-EM2 algorithm which does not rely on a fixed value of π = πopt,
rather, it provides an automatic update of the value π. As we see, there will be no formal
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proof the final value of π obtained by the algorithm will be a good estimate of the true
proportion of outliers in the data, however, the posterior probabilities associated with
f0 do provide an effective tool for evaluating each observation. The proposed algorithm
runs as follows:

I-EM3

Step 1: in M- Step of the I-EM2 algorithm include updating of π according to equation
(5)

Step 2: Return final parameter estimates µ̂ and σ̂2, π̂, ĉ and posterior probabilities
π̂1j and π̂0j for the data

Extensive simulations show that the performance of the algorithm in outlier detection
is rather insensitive to the initial choice of π and better performances are observed when
π is in the range [0.6, 0.9].

If f1 is a mixture of K normal (multivariate) distributions, set πk = π/K, k = 1, . . . ,K
and use the standard updating equations of the EM algorithm. Also, an initial estimate
of f1 can be obtained by separate analysis, using, e.g. the mclust function of the mclust
package (Scrucca et al., 2017) with no pre-determined number of groups.

In the next Section synthetic and real data will be used to evaluate the I-EM algorithm
as an automatic outlier detection method and show the relevance of the empirical rules
given above.

3.1 Application to outlier detection

Comparisons will be done with established outlier detection methods: the one-class
support vector machine method (SVM); the local outlier factor (LOF) and the Isolation
Forest (IF). For these methods, packages for their implementation in R (R Core Team,
2018) are available. The following functions and packages were used: ksvm from the
kernlab package (Karatzoglou et al., 2004), the lofactor function from the package DMwR
(Torgo, 2010) and the function IsolationTrees in the IsolationForest package (Liu et al.,
2008)

3.1.1 Gaussian mixture data

As a first example we replicate an experiment carried on in Yamanishi et al. (2004)
where the data and outliers are provided by mixtures of tri-variate normal distributions.
We generate random numbers from a distribution with density

f(y) = πf1(y) + (1− π)f0(y) (16)

where both densities f1 and f0 are a Gaussian mixture, namely

f1(y) = π11f(y;µ1,Λ1) + (1− π11)f(y;µ2,Λ2) (17)
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and the outlier part is

f0(y) = π01f(y;µ3,Λ3) + π02f(y;µ4,Λ4) + π03f(y;µ5,Λ5) (18)

with π01 + π02 + π03 = 1. The parameter values for the experiments are set to π = 0.97,
π11 = 1/2, π01 = π02 = π03 = 1/3. For f1(y) set µ1 = (0, 0, 0)′, µ2 = (0, 7, 0)′, Λ1 =
diag(1.2, 1, 1) and Λ2 = diag(1, 1.2, 1). For f0(y) set µ3 = (3.5, 0, 0)′, µ4 = (3.5, 2, 0)′,
µ5 = (9,−3, 0)′ Λ3 = Λ4 = Λ5 = diag(0.2, 0.2, 0.2). We refer to the outliers generated
around µ3, µ4, µ5 respectively as groups 1, 2 and 3.

Figure 5: Plots of the data generated from the mixture (16) along the x1 − x2, x1 − x3
and x2 − x3 directions. In darker colours the outlier groups. Blue: group 1,
red: group 2, dark green: group 3.

Figure 5 shows 30000 simulated data from the mixture (16) from different points of
view. On the direction x1, x2 outliers from group 3 are far from the bulk distribution
with respect to the Euclidean distance, hence are expected to be easily detected by while
those in group 2, are between the means of the two Gaussian components of f1(y) and
are expected to be difficult to detect.

The simulation is run as follows: a data set of n = 30000 was generated according
to the parameters set above and an initial estimate of f1(y) was obtained by running
the mclust function of the mclust package (Scrucca et al., 2017) with no pre-determined
number of groups; then the I-EM3 algorithm was run by setting an initial value π = 0.8
and the estimated π0i, i = 1, . . . , 30000 obtained by the algorithm where used to evaluate
the probability of a single observation to be an outlier.

This experiment was iterated m = 50 times. For the function ksvm we set the following
options: kernel=”rbfdot”, kpar=”automatic” and ν = 0.1; in the function lofactor the
number of neighbours was set to k = 10 and k = 50 and the default setting was used for
the function IsolationTrees.

In order to compare the performances, the area under the ROC curve (AUC) was
computed separately for each group of outliers and for all outliers grouped together.
Recall that the ROC curve is created by plotting the true positive rate (TPR) of outliers
classification against the false positive rate (FPR) at various threshold settings; the
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AUC is widely used in comparing the performance of classification techniques, see, e.g.
Bradley (1997). In our computations for the ROC analysis the package ROCR (Sing
et al., 2005) was used.

Table 3 reports the mean AUC and the mean timing for the experiment. We observe
that the I-EM3 always outperform the other algorithms. A careful inspection of the
results in Yamanishi et al. (2004) shows that the I-EM3 also outperforms, especially
for groups 1 and 2, either the Gaussian mixture-based and kernel-based SmartSifter
approach of Yamanishi et al. (2004) and the method of Burge and Shawe-Taylor (1997).
As far as the setting of the value π for the I-EM3 algorithm, we tried different starting
values obtaining always similar results, indicating that this parameter may not be crucial
in the performance of the algorithm.

It is worth noting that the estimated parameters for the two main (non-outlier groups)
agree strongly with the parameter values obtained by applying the mclust function of
the mclust package with no pre-determined number of groups.

Table 3: Gaussian mixture data: average AUC and timing over the 50 experiments. Data
from mixture (16) with n = 30000 randomly generated data.

G1 G2 G3 All Timing

I-EM 0.965 0.991 0.984 0.981 0.515

SVM 0.909 0.818 0.979 0.903 23.643

IF 0.821 0.930 0.974 0.909 0.214

LOF10 0.645 0.603 0.678 0.642 68.177

LOF50 0.645 0.603 0.678 0.918 71.503

3.1.2 Swiss Banknotes

The Swiss Banknotes dataset (Flury and Riedwyl, 1988) is a well-known benchmark
dataset and contains data on 100 genuine and 100 forged banknotes; for classification
purposes there are 6 different measurements on each banknote (length, left, right bottom,
top, diagonal). Since the variable diagonal perfectly separates the two groups, it is
excluded from the computations; classification of outliers is then done using only the
first five variables.

We run an experiment as follows: 50 new data sets are created; each data set contains
the 100 genuine banknotes and 5 randomly selected forged banknotes. On each dataset
the I-EM3 and the other competing algorithms are run in order to detect the forged
notes.

In order to run the I-EM3 algorithm, since in this case the data does not show the
presence of any mixture, the initial estimate of f1(y) is obtained by simply estimating
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of the mean vector and covariance matrix of the observations. The initial value for π is
again set to 0.8.

Table 4 contains the mean AUC and the mean timing of the algorithms tested. In
this case LOF has the best performance, however the I-EM3 is quite close to the highest
precision.

For one of the datasets generated, Figure 6 reports the data points with size propor-
tional to the probability of being an outlier produced by the I-EM3 algorithm along the
directions Length-Left and Right-Bottom. For this example all forged banknotes were
assigned a probability of being an outlier greater than 0.98; as far as the genuine ban-
knotes are concerned, 4% of them had an assigned probability of being an outlier greater
than 0.90; 11% was assigned a probability greater than 0.5.

Table 4: Swiss banknotes data: average AUC and timing over the 50 experiments for
outlier detection. Genuine banknotes:100; forged banknotes: 5.

I-EM SVM IF LOF10 LOF50

AUC 0.978 0.848 0.923 0.982 0.989

Timing 0.027 0.023 0.082 0.030 0.043

Figure 6: Plot of the datapoints with size proportional to the probability of being an
outlier for one dataset of genuine and forged banknotes along the directions
Length-Left and Right-Bottom. Blue (darker) points: forged; orange (lighter)
points: genuine.
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4 Conclusions

We have discussed and approach to robust estimation and outlier detection with finite
mixtures and an improper component with special reference to Gaussian mixtures. An
EM algorithm including an additional step taking care of the improper component has
been discussed from practical and theoretical point of view. The approach has shown an
excellent performance in many examples. A further interesting development will be to
consider general mixtures or kernel based mixtures as, for example in Yamanishi et al.
(2004).
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