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The presence of multicollinearity among the explanatory variables has un-
desirable effects on the maximum likelihood estimator (MLE). The inverse
Gaussian regression (IGR) model is a well-known model in application when
the response variable positively skewed. To address the problem of multi-
collinearity, a two-parameter estimator is proposed (TPE). The TPE enjoys
the advantage that its mean squared error (MSE) is less than MLE. The TPE
is derived and the performance of this estimator is investigated under sev-
eral conditions. Monte Carlo simulation results indicate that the proposed
estimator performs better than the MLE estimator in terms of MSE. Fur-
thermore, a real chemometrics dataset application is utilized and the results
demonstrate the excellent performance of the suggested estimator when the
multicollinearity is present in IGR model.

keywords: Multicollinearity,two-parameter estimator,inverse Gaussian re-
gression model, Monte Carlo simulation.

1 Introduction

In many applications of regression model, there exists a natural correlation among the ex-
planatory variables. When the correlations are high, it causes unstable estimation of the
regression parameters leading to difficulties in interpreting the estimates of the regression
coefficients (Månsson and Shukur, 2011). When the problem of multicollinearity exists,
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it is difficult to estimate the individual effects of each explanatory variable in the regres-
sion model. Moreover, the sampling variance of the regression coefficients will inflate
affecting both inference and prediction. There are numerous methods that have been
proposed to solve multicollinearity problem in the literature. In linear regression model,
Hoerl and Kennard (1970) proposed a ridge estimator to deal with multicollinearity.
This proposed estimator is biased, but it gives smaller mean squared error (MSE) than
ordinary least squares (OLS) estimator. Nevertheless, ridge estimator has drawbacks
that the estimated parameters are nonlinear functions of the ridge parameter and that
the small ridge parameter chosen in the process may not be large enough to overcome
multicollinearity (Asar and Genç, 2015).

Liu (1993) proposed an estimator, which is called Liu estimator, combining the Stein
estimator with the ridge estimator. Comparing with ridge estimator, the Liu estimator is
a linear function of the shrinkage parameter, therefore it is easy to choose the shrinkage
parameter than to choose ridge parameter. The idea of the two-parameter estimator,
which is a merging between the ridge estimator and Liu estimator, was proposed by
Özkale and Kaciranlar (2007); Yang and Chang (2010).

The inverse Gaussian regression(IGR) has been widely used in industrial engineering,
life testing, reliability, marketing, and social sciences (Bhattacharyya and Fries, 1982;
Ducharme, 2001; Folks and Davis, 1981; Fries and Bhattacharyya, 1986; Heinzl and Mit-
tlböck, 2002; Lemeshko et al., 2010; Malehi et al., 2015). Specifically, IGR model is used
when the response variable under the study is positively skewed (Babu and Chaubey,
1996; Chaubey, 2002; Wu and Li, 2011). When the response variable is extremely skew-
ness, the IGR is preferable than gamma regression model (De Jong and Heller, 2008).

The purpose of this paper is to drive the two-parameter estimator for the inverse
Gaussian regression model when the multicollinearity issue exists. Furthermore, several
methods of estimating the shrinkage parameter are explored and investigated. This
paper is organized as follows. The model specification is given in Section 2. Section
3 contains the theoretical aspects of the proposed estimator. In Sections 4 and 5, the
simulation and the real application results are presented. Finally, Section 6 covers the
conclusion of this paper.

2 Model Specification

The inverse Gaussian distribution is a continuous distribution with two positive parame-
ters: location parameter,µ, and scale parameter, τ , denoted as IG(µ, τ). Its probability
density function is defined as

f(y, µ, τ) =
1√

2πy3τ
exp

[
− 1

2y

(
y − µ
µ
√
τ

)2
]
, y > 0. (1)

The mean and variance of this distribution are, respectively, E(y) = µ and var(y) =
τ µ3.

Inverse Gaussian regression model is considered a member of the generalized linear
models (GLM) family, extending the ideas of linear regression to the situation where
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the response variable is following the inverse Gaussian distribution. Following the GLM
methodology, Eq. (1) can re-write in terms of exponential family function as

f(y, µ, τ) =
1

τ

{
− y

2µ2
+

1

µ

}
+

{
−1

2
ln(2πy3)− 1

2
ln(τ)

}
, (2)

Here, τ represents the dispersion parameter and 1/µ2 represents the canonical link func-
tion.

In GLM, a monotonic and differentiable link function connects the mean of the re-
sponse variable with the linear predictor ηi = xTi β, where xi is the ith row of X and β
is a p × 1 vector of unknown regression coefficients. Because ηidepends on β and the
mean of the response variable is a function of ηi, then E(yi) = µi = g−1(ηi) = g−1(xTi β).

Related to the IGR, the µ = 1/
√
xTi β. Another possible link function for the IGR is log

link function, µ = exp(xTi β).

The model estimation of the IGR is based on the maximum likelihood method (ML).
The log likelihood function of the IGR under the canonical link function is defined as

`(β) =
n∑
i=1

{
1

τ

[
yix

T
i β

2
−
√
xTi β

]
− 1

2τyi
− ln τ

2
− ln(2πy3i )

}
. (3)

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and
setting it equal to zero, as

∂`(β)

∂β
=

n∑
i=1

1

2τ

yi − 1√
xTi β

 xi = 0. (4)

Unfortunately, the first derivative cannot be solved analytically because Eq.(4) is non-
linear in β. The iteratively weighted least squares (IWLS) algorithm or Fisher-scoring
algorithm can be used to obtain the ML estimators of the IGR parameters. In each
iteration, the parameters are updated by

β(r+1) = β(r) + I−1(β(r))S(β(r)), (5)

where S(β(r)) and I−1(β(r)) are S(β) = ∂`(β)/∂β and I−1(β) =
(
−E

(
∂2`(β)/∂β∂βT

))−1
evaluated

at βr, respectively. The final step of the estimated coefficients is defined as

β̂IGR = B−1XT Ŵ m̂, (6)

where B = (XT ŴX), Ŵ = diag(µ̂3i ), m̂ is a vector where ith element equals to m̂i =

(1/µ̂2i ) + ((yi − µ̂i)/µ̂3i ), and µ̂ = 1/
√
xTi β̂. The covariance matrix of β̂IGR equals

cov(β̂IGR) =

[
−E

(
∂2`(β)

∂β∂βT

)]−1
= τ B−1, (7)
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and the MSE equals

MSE (β̂IGR) = E(β̂IGR − β̂)T (β̂IGR − β̂)

= τ tr[B−1]

= τ
∑p

j=1
1
λj
,

(8)

where λj is the eigenvalue of the B matrix and the dispersion parameter, τ , is
estimated by Uusipaikka (2009)

τ̂ =
1

(n− p)

n∑
i=1

(yi − µ̂i)2

µ̂3i
. (9)

3 The proposed estimator

The ridge estimator ( RE) for the inverse Gaussian regression model can be defined as
follows (Algamal, 2018):

β̂RE = (S + kIP )−1 Sβ̂IGR, k > 0 (10)

where S = XT ŴXand Ipis the p× pidentity matrix. The Liu estimator can be defined
for the IGR model as

β̂LE = (S + Ip)
−1 (S + dIp) β̂IGR, (11)

where 0 < d < 1 .

Inspired by the work of Asar and Genç (2018); Kandemir Çetinkaya and Kaçıranlar
(2019); Özkale and Kaciranlar (2007); Yang and Chang (2010), the proposed two-
parameter estimator of the inverse Gaussian regression model (TPE) is defined as:

β̂TPE = (S + kIp)
−1 (S + kdIp) β̂IGR (12)

The MMSE and the MSE being the trace of MMSE of the proposed estimators are
derived so that MSE(βTPE) < MSE(βMLE). The MMSE and MSE of an estimator β̃
are, respectively, define by

MMSE
(
β̃
)

= E

[(
β̃ − β

)(
β̃ − β

)T]
= var

(
β̃
)

+ bias
(
β̃
)
bias

(
β̃
)T

,

(13)

MSE
(
β̃
)

= tr
(
MMSE

(
β̃
))

= E

[(
β̃ − β

)T (
β̃ − β

)]
(14)

where tr is the trace operator, var
(
β̃
)

is the variance covariance matrix of the estimator,

and bias
(
β̃
)

is the bias of the estimator β̃ such that bias
(
β̃
)

= E
(
β̃
)
− β. If β̃1 and
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β̃2 are two estimators of the coefficient vector, then β̃2 is superior to β̃1 if and only if

MMSE
(
β̃1

)
−MMSE

(
β̃2

)
≥ 0.

In order to obtain the MMSE and MSE of the estimators, we use the spectral decom-
position of the matrix S such that S = ϕ∧ϕ′, where ϕ is the matrix whose columns are
the eigenvectors of S and ∧ is a diagonal matrix containing the eigenvalues of S such that
∧ = diag(λ1, λ2, ..., λp+1). To obtain the MMSE and MSE of TPE, we firstly compute
the variance and bias of the estimator, respectively, as follows:

var(β̂TPE) = τ
[
ϕ ∧−1k ∧kd ∧

−1 ∧kd ∧−1k ϕT
]

(15)

bias(β̂TPE) = k(d− 1)ϕ ∧−1k α (16)

where α = ϕTβ, ∧k = diag(λ1 + k, λ2 + k, ..., λp+1 + k), and
∧kd = diag(λ1 + kd, λ2 + kd, ..., λp+1 + kd). Thus, the MMSE and MSE of TPE are
computed by

MMSE(β̂TPE) = τ
[
ϕ ∧−1k ∧kd ∧

−1 ∧kd ∧−1k ϕT
]

+ bbT (17)

MSE(β̂TPE) =

p+1∑
j=1

(
τ

(λj + kd)2

λj(λj + k)2
+
k2(d− 1)2α2

j

(λj + k)2

)
(18)

where αj is the jth element of α.

Theorem 1

Let k > 0,0 < d < 1 and b = bias(
∧
β

TPE
)Then MMSE(β̂IGR)−MMSE(β̂TPE) > 0 if

b′
[
Λ−1 − Λ−1k ΛkdΛ

−1
k

]−1
b < 1

Proof

The difference between MMSE function of MLE and TPE is obtained by

MMSE(β̂IGR)−MMSE(β̂TPE) = τQ(Λ−1 − Λ−1k ΛkdΛ
−1
k ΛkdΛ

−1
k )Q

′ − bb′

= τQdiag
{

1
λj
− (λj+kd)

2

λj(λj+k)2

}p+1

j+1
− bb

(19)

The matrix Λ−1k ΛkdΛ
−1
k ΛkdΛ

−1
k is p.d. if (λj + k)2− (λj + kd)>0 which is equivalent

to[(λj + k)− (λj + kd)] [(λj + k) + (λj + kd)] > 0 simplifying the last inequality, one
gets k(??)(2λj − k(1 + d)) > 0. Thus if 0 < d < 1, then the proof is done by Theorem
1.

There is no definite rule of estimating the shrinkage parameter k which is a positive
constant and d which is between zero and one. To estimate the parameters, we start by
taking derivative of Eq. (18) with respect tokand equating the resulting function to zero
and solving for the parameter k, we obtain the following individual parameter

kj =
τλj

λj
∧

α2
j (1− d)− d

(20)
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Since each individual parameter should be positive, we obtain the following upper bound
for the parameter d so that kj > 0:

d < min

 τλj
∧
α
j

2

1 + λj
∧
α
j

2


p+1

j=1

(21)

Therefore, we propose to estimate the parameter d by

d+
1

2
min

 τλj
∧
α
j

2

1 + λj
∧
α
j

2


p+1

j=1

(22)

As in Kibria (2003), the following method was proposed to estimate the k value as

k = median

 τλj

λj
∧
α
j

2(1− d)− d


p+1

j=1

(23)

4 Simulation study

In this section, a Monte Carlo simulation experiment is used to examine the perfor-
mance of TPE in the IGR model with different degrees of multicollinearity for both the
canonical link function and the log link function. The response variable is drawn from
inverse Gaussian distribution yi ∼ IG(µi, τ)with sample sizes n = 100 and 150, respec-
tively, where τ ∈ {0.5, 3.5}. The explanatory variables xTi = (xi1, xi2, ..., xin) have been
generated from the following formula

xij = (1− ρ2)1l2wij + ρwip, i = 1, 2, ..., n, j = 1, 2, ..., p, (24)

where ρ represents the correlation between the explanatory variables and wij ’s are in-
dependent pseudo-random numbers. Three values of the number of the explanatory
variables: 3 and 10, and three different values of ρ corresponding to 0.90, 0.95, and 0.99
are considered. Depending on the three type of the link function, µi, the canonical and
log link functions are investigated. The canonical link function is defined as

µi =
1√
xTi β

, i = 1, 2, ..., n, (25)

To grantee that xTi β values are positive, the regression parameters are assumed to be
equal to 1 because the results can be generalized to any value for the parameters (Hef-
nawy and Farag 2013). Additionally, the wij in Eq. (24) are generated from uniform
distribution. In addition, the log link function is defined as

µi = exp(xTi β), i = 1, 2, ..., n. (26)
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Here, the vector β is chosen as the normalized eigenvector corresponding to the largest
eigenvalue of the XTWX matrix subject to βTβ = 1 (Kibria, 2003). In addition, the
wij in Eq. (24) are generated from normal distribution [0, 1].

The estimated average MSE is calculated as

MSE(β̂) =
1

R

R∑
i=1

(β̂ − β)T (β̂ − β), (27)

where R equals 1000 corresponding to the number of replicates used in our simulation.
All the calculations are computed by R program. The average estimated MSE of Eq. (27)
and bias for all the combination of n, τ, p, and ρ, are respectively summarized in Tables
1 and 2. The best value of the averaged bias and MSE is highlighted in bold. As Table
1 shows, the proposed method, TPE, gives low bias comparing with RE. This finding
indicates that the proposed estimator is significantly decreasing the bias. Meanwhile,
TPE estimator performs well not only in terms of bias, but also in terms of MSE (Table
2). It is noted from Table 2 that TPE ranks first with respect to MSE. In the second
rank, RE estimator performs better than IGR estimator. Additionally, IGR estimator
has the worst performance among RE and TPE which is significantly impacted by the
multicollinearity.

Furthermore, with respect to ρ, there is increasing in the bias and MSE values when
the correlation degree increases regardless the value of n, τ and p. Regarding the number
of explanatory variables, it is easily seen that there is a negative impact on both bias
and MSE, where there are increasing in their values when the p increasing from three
variables to ten variables. In Addition, in terms of the sample size n, the bias and the
MSE values decrease when n increases, regardless the value of ρ, τand p. Clearly, in
terms of the dispersion parameter τ , both bias and MSE values are decreasing when τ
increasing.
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Table 1: Averaged bias values for RE and TPE estimators

τ = 0.5 τ =
3.5

n p ρ RE TPE RE TPE

100 3 0.90 0.9652 0.8512 0.8449 0.7309

0.95 0.9956 0.8816 0.8753 0.7613

0.99 1.0072 0.8932 0.8869 0.7729

10 0.90 1.0853 0.9713 0.9651 0.8522

0.95 1.1157 1.0017 0.9954 0.8814

0.99 1.1273 1.0133 1.0071 0.8934

150 3 0.90 0.7234 0.6094 0.6031 0.4891

0.95 0.7538 0.6398 0.6335 0.5195

0.99 0.7654 0.6514 0.6451 0.5311

10 0.90 0.8435 0.7295 0.7232 0.6092

0.95 0.8739 0.7599 0.7536 0.6396

0.99 0.8855 0.7715 0.7652 0.6512
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Table 2: Averaged MSE values for IGR, RE, and TPE estimators

τ =
0.5

τ = 3.5

n p ρ IGR RE TPE IGR RE TPE

100 3 0.90 4.894 4.653 4.2 4.785 4.55 4.097

0.95 4.938 4.703 4.25 4.834 4.599 4.146

0.99 5.204 4.969 4.516 5.101 4.866 4.413

10 0.90 5.008 4.773 4.32 4.905 4.67 4.217

0.95 5.058 4.823 4.37 4.954 4.719 4.265

0.99 5.324 5.089 4.636 5.221 4.986 4.533

150 3 0.90 4.646 4.411 3.958 4.543 4.308 3.855

0.95 4.696 4.461 4.008 4.593 4.357 3.904

0.99 4.962 4.727 4.274 4.859 4.624 4.171

10 0.90 4.772 4.531 4.078 4.663 4.428 3.975

0.95 4.816 4.581 4.128 4.713 4.478 4.025

0.99 5.082 4.847 4.394 4.979 4.744 4.291

5 Real Data Application

To demonstrate the usefulness of the TPE in real application, we present here a chem-
istry dataset with (n, p) = (65, 15), where n represents the number of imidazo[4,5-
b]pyridine derivatives, which are used as anticancer compounds. While p denotes the
number of molecular descriptors, which are treated as explanatory variables (Algamal
et al., 2015). The response of interest is the biological activities (IC50). Quantitative
structure-activity relationship (QSAR) study has become a great deal of importance in
chemometrics. The principle of QSAR is to model several biological activities over a
collection of chemical compounds in terms of their structural properties (Algamal and
Lee, 2017). Consequently, using of regression model is one of the most important tools
for constructing the QSAR model.

To check whether the response variable belongs to the inverse Gaussian distribution,
Chi-square test is used. The result of the test equals to 11.0965 with p-value equals to
0.7752. It is indicated form this result that the inverse Gaussian distribution fits very
well to this response variable. The estimated dispersion parameter is 0.0412.

Further, to test the existence of multicollinearity after fitting the inverse Gaussian
regression model using log link function, the eigenvalues of the matrix XT ŴX are
obtained as 2.45×109,2.91×106, 2.53×105, 1.33×104, 2.13×103, 1.22×103,8.65×102,
5.62× 102, 1.67× 102, 5.88× 101, 3.47× 101, 2.63× 101, 1.86× 101, 9.71, and 2.57. The
determined condition number CN =

√
λmax/λmin of the data is 30875.676 indicating
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that the severe multicollinearity issue is exist.
The estimated inverse Gaussian regression coefficients and MSE values for the RE and

TPE estimators are listed in Table 3. According to Table 3, it is clearly seen that the
TPE shrinkages the value of the estimated coefficients efficiently. Additionally, in terms
of the MSE, there is an important reduction in favor of the TPE. Specifically, it can be
seen that the MSE of the TPE estimator was about 36.45% and 15.82% lower than that
of IGR and RE estimators, respectively.

Table 3: The estimated coefficients and MSE values for the three used estimators

Estimators

IGR RE TPE

β̂1 2.2514 1.9144 1.4021

β̂2 1.1202 0.9981 0.7421

β̂3 1.3366 1.1141 0.9841

β̂4 0.1056 0.1088 0.1024

β̂5 -3.9241 -3.4651 -2.3077

β̂6 0.5156 0.5251 0.3054

β̂7 -1.3581 -1.2584 -1.1661

β̂
8

5.1056 2.1056 1.1156

β̂
9

-1.1057 -1.7071 -1.0121

β̂
10

6.1056 5.1956 3.0256

β̂
11

-8.1171 -7.7183 -5.5172

β̂
12

6.3056 5.1006 4.2156

β̂
13

-3.1821 -2.7493 -1.0716

β̂
14

1.1156 1.1356 1.1006

β̂
15

3.6211 1.4475 1.1184

MSE 4.2247 3.5189 1.8875

6 Conclusions

In this paper, a new two-parameter estimator is proposed to overcome the multicollinear-
ity problem in the inverse Gaussian regression model. According to Monte Carlo simu-
lation studies, the proposed estimator has better performance than maximum likelihood
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estimator and ridge estimator, in terms of bias and MSE. Additionally, a real data appli-
cation is also considered to illustrate benefits of using the new estimator in the context
of inverse Gaussian regression model. The superiority of the new estimator based on
the resulting MSE was observed and it was shown that the results are consistent with
Monte Carlo simulation results.
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