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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 14, Issue 01, May 2021, 13-27
DOI: 10.1285/i20705948v14n1p13

On the number of independent
components: an adjusted coefficient of

determination based approach

Saima Afzal*a, Muhammad Mutahir Iqbala, and Ayesha Afzalb

aDepartment of Statistics, Bahauddin Zakariya University, Multan, Pakistan
bDepartment of Computer Science, Air University, Multan, Pakistan

Published: 20 May 2021

Independent Component Analysis (ICA) is a comparatively new statistical
and computational technique to find hidden components from multivariate
statistical data. The technique is also employed as a tool for dimension
reduction for efficient data analysis. Reduction in dimensions can be done by
assigning ranks to the independent components in some appropriate way and
then restricting the data analysis to certain high ranking components only.
The problem of determining the number of high ranked ICs that should be
retained is the main objective of this paper. A method based upon adjusted
coefficient of determination is proposed for the purpose. The performance of
the proposed method is demonstrated through experimental evaluation on
real-world financial time series data.
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1 Introduction

Researchers working in diverse domains including neurophysiology, biomedical image
processing, financial time series analysis, analytical chemistry and signal processing,
often have to deal with massive data sets with enormous observations and high dimen-
sionality. In the current era of big data, conventional statistical methods are often
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considered inefficient and impractical mainly due to the high computational complexity
both in terms of computer memory requirement for data storage as well as computation
time for performing analytics. The reason these approaches do not work is not just
the high data volume in terms of number of observations involved, but it is the large
number of variables involved. This is because statistical analysis approaches often incur
exponential time complexity in terms of number of variables involved. It is, therefore,
the number of variables which should be taken into account for performing analytics on
massive data sets, not simply the number of observations. One important observation
to address this high dimensionality problem is that not all the information contained in
a data set is usually important, at least for a given situation or type of analysis. Some
of the pieces may be set aside without doing any harm to the data. Thus, for multivari-
ate data analysis, the challenge lies in selection of the relevant bits to be retained and
isolating the unimportant ones (Vigneau, 2016, Reddy et al., 2020).
Independent Component Analysis (ICA) can be utilized to factorize the data into a

linear combination of independent components so that the problem of high dimensions
can be tackled. ICA is a computationally efficient technique belonging to the group
of Blind Source Separation (BSS) methods for separating data into underlying hidden
components. Use of the term ‘blind’ is justified as we either have no or least knowledge
about source variables which we are interested to extract.
Apparently ICA is related to Principal Components Analysis (PCA). ICA is a con-

siderably powerful technique as compared to PCA, though, capable of discovering the
underlying factors or sources when PCA does not work.
The main objective of PCA is to seek an orthogonal linear transformation that max-

imizes the variance of the variables and to produce variables that are mutually uncor-
related, the aim of ICA is to seek for linear transformation which makes the variables
statistically independent and non-Gaussian. In ICA, the variables are not ranked. The
ICA can be seen as a generalization of PCA. ICs are estimated by rotating the PCs to
make them as independent as possible. Hence, PCA is used as a preprocessing step in
ICA.
The principle working behind the extraction of Principal Components (PCs) is to

maximize the variability accounted for by these components. The PCs are not only
constructed through this mechanism but are also put in descending order according
to their role in explaining the variation. Thus the PCs have their in-built ordering
mechanism. The PCs are easier to handle but the situation of ICs is not that simple
because the criteria working for ICs i.e., maximization of non-Gaussianity or information
theory measures etc. only produces the components that are independent. Independence
cannot be measured hence, the produced components are not put into any logical order.
ICA is employed as a dimension reduction technique. By reducing the dimensions

several leading or main components are obtained and these main components disclose
the major lot of information about the underlying details of the data set. If we are
not interested in retaining all ICs and we need to limit their number for one reason or
other then the intuitive question arises regarding number of ICs to be retained. It is
a tricky question which has to be answered intelligently. In this paper, we propose a
new method to determine the optimal number of independent components that should
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be retained for analysis of data sets with high dimensionality. Our proposed method
is based on adjusted coefficient of determination. We evaluate the effectiveness of the
proposed method through experimental evaluation of financial time series data.
The rest of the paper is organized as follows. Section 2 provides a brief review of

the literature concerning the techniques to determine the number of ICs to be retained
in a model. Section 3 provides detailed description of our proposed method. Section
4 discusses experimental evaluation results of the proposed method in the context of
financial time series data. Section 5 concludes the article and discusses future work
directions.

2 Literature Review

The literature is not silent on the issue of number of ICs to retain for dimensionality
reduction. Rather, several tests and information criteria have been proposed to obtain
an answer. In contrast with the principal components, extraction of independent com-
ponents lack any natural ordering – less informative independent components may get
extracted before a more informative component or vice versa. Therefore, the techniques
used for determining the number of significant principal components can not be employed
for ICA except for the use of permutation testing (Vitale et al., 2017).
In the literature about dynamic factor models, several tests and information criteria

have been proposed to determine the number of ICs to be retained.
Karhunen et al. (1997) established that two famous information-theoretic criteria,

Akaike Information Criteria (AIC) and Minimum Description Length (MDL) produces
good estimates of the number of sources for noisy mixtures under certain conditions.
Roberts (1998) also proposed a method based on Bayesian criteria.
In a later work, Lee (2003) introduced the Simulated Ordered Negentropy of ICs

(SONIC) method to determine the optimal number of ICs. SONIC method is based
on the Gap statistic proposed by Tibshirani et al. (2001) to estimate the number of
clusters in a multivariate data set. The expected value of negentropy is compared with
its value of estimated ICs in the method. The Gaussian variable and measured variable
both having the same mean and standard deviation provide a way to find negentropy
by using their difference. Thus, this will be essentially a non-negative quantity.
As ICA models can be based upon any number of ICs. Thus their comparison may be

required to assess the quality of a particular model. One such method for comparing ICA
models is given by Westad and Kermit (2003) who proposed an uncertainty parameter
given below.

s2(sa) = [
M∑

m=1

(sa − sa(−m))
2][

M − 1

m
] (1)

Here s2(sa) is the estimated uncertainty variance of the ath ICA loading, M is the
number of cross-validation segments, sa is the ath loading vector of the ICA model built
with all objects, while sa(−m) corresponds to the ath loading vector from the model built
after removal of cross-validation segment m.



16 Afzal, Iqbal, Afzal

In another related work Wang et al. (2006) builds ICA models in an incremental
manner; first model takes only one IC, the next takes two ICs and the last takes all
ICs (A)). These consecutive ICA models built iteratively are then used to reconstruct
the X matrix with each of them, yielding Xa when ICA model is built with “a” ICs
where 1 ≤ a ≤ A, to compute a Residual Sum of Squares (RSS). RSS is essentially
the difference between the original and the reconstructed X for each model. The model
corresponding to a minimum RSS is considered optimal in this method.

Several other approaches have been proposed in literature for the determination of
the optimal number of ICs each having its particular area of suitability. For example,
the SONIC method is applicable only when expected value of negentropy is already
known. This requirement limits SONIC’s application to very few situations and makes
it irrelevant in most of the practical situations.

Bouveresse et al. (2012) proposed two generalized methods for finding the optimal
number of ICs that only on the data set characteristics and the extracted vectors. The
first method is based on an intelligent division of the data matrix into blocks of ap-
proximately equal size with intent to make the block as representative of the data as
possible. If n is the expected number of ICs to be ultimately retained and m is the block
size and if the maximum number of ICs derived from each block is p, i.e. p ≤ m then
p ≥ n. Thus each block would have p models with 1, 2, . . . , p ICs involved in. Models
corresponding to 1, 2, . . . , p ICs for every block would have different IC loadings. The
models with same number of ICs in, coming from different blocks, attempt to represent
the true data. The correlation among the specific ICs from each of the blocks with same
number of ICs involved may be checked. The number of ICs in models with higher such
correlation would suggest the optimum number of overall ICs to be retained. In their
second method, Bouveresse, et al. makes use of Durbin Watson (DW) statistic to gauge
the noise ratio in signals. Here, DW statistic is defined as follows:

DW =
∑n

t=2(st−st−1)2∑n
t=2 s

2
t

, where st and st−1 represent ICs at time t and t−1 respectively.

As in the case of no noise, the (sum of the) differences in the numerator st − st−1

and consequently DW will approach 0 and will depart from 0 otherwise. If p is the
maximum number of ICs possible, then p number of IC models are constructed based
upon 1, 2, . . . , p ICs and DW statistic is computed for each of the model. The count
one less than the number of ICs used in the model producing the smallest value of DW
statistic would be considered as the optimum number of ICs to be retained.

Kairov et al. (2017) ranked ICs on the basis of their stability in several runs of com-
puting ICs and then selected an optimal number of components which is consistent with
the point of the qualitative change of the stability profile.

In a recent work, Kassouf et al. (2018) proposed three novel techniques to deter-
mine the number of ICs to be retained. The first technique namely Random-ICA, is
a generalized form of the ICA-by-blocks approach. It splits the original data matrix
into two blocks, and then repeat this process numerous times. The second method i.e.
KMO-ICA-Residuals was proposed on the basis of Kaiser-Meyer-Olkin (KMO) index of
the transpose of residual matrices computed from estimated ICs. ICA-corr-y, the third
method selects the optimum number of ICs by the correlations among computed pro-
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portions and known information about physio-chemical properties of samples, or among
a source signal in the mixture and the signals computed by ICA.

The adjusted coefficient of determination R̄2 is obtained by making some changes to
common statistical measure R2 which summarizes how close the original data points
are to the fitted regression line. It is also known as the coefficient of determination, or
the coefficient of multiple determination for multiple regression. R2 is defined as the
percentage of the variation of response variable that is explained by a linear model, or

R2 =
ESS

TSS
=

TSS −RSS

TSS
= 1− RSS

TSS
(2)

where,

ESS = Explained Sum of Squares or sum of squares due to regression (a quantity
used to describe how well a model represents the data being fitted).

TSS = Total Sum of Squares (measures how much variation there is in the observed
data).

RSS = Residual Sum of Squares (measures the variation in the error between the
observed data and fitted values).

Therefore, we can safely say that RSS and R2 depict the same thing. The main
problems with R2 include the following:

i. Every time when a predictor is added to a model, the R2 increases, even if it is due
to the chance alone. It never decreases. Consequently, a model with more terms
may come out to have a better fit simply because it has more terms.

ii. In a model with too many predictors and higher order polynomials, R2 starts
modeling the random noise in the data. This is the condition of overfitting the
model and it provides the misleadingly high R2 values and less ability to make
predictions.

The adjusted coefficient of determination i.e., R̄2 compares the explanatory power of
regression models that contains different numbers of predictors. The adjusted coefficient
of determination is defined as,

R̄2 = 1− (1−R2)

[
n− 1

n− (p+ 1)

]
(3)

where,
n = number of observations
p = number of variables

It is a modified version of R2 that has been adjusted for the number of predictors in
the model. R̄2 increases only if the new term improves the model more than it would
be expected by chance. It decreases when a predictor improves the model by less than
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expected by chance. In a sense R̄2 induces a toxic effect for too many (undue) terms by
getting itself decreased as soon as the number of terms crosses a threshold so it provides
a sort of protection against over fitting. In a related recent work, Mahmood et al.
(2020) also proposed several adjusted coefficients of determination for beta regression
models. We have also employed adjusted coefficients of determination for deciding upon
the number of ICs to be retained in the model.

3 Proposed Approach to Determine the Number of ICs

After comparing RSS, R2 and R̄2, we propose a new approach to decide upon the
number of ICs to retain in the final model. Our approach relies on adjusted coefficient
of determination (R̄2). Below we discuss our proposed approach in detail.
In our proposed approach, the original series is used as original data points, recon-

structed series as fitted points, and their difference as error. We need to summarize how
close the original and reconstructed series are. R̄2 is used for the purpose where different
reconstructions are compared using this summary. The step-by-step procedural details
are presented below:

� Compute the ICs for the n series (variables) with some suitable algorithm like
JADE (Cardoso and Souloumiac, 1993), SOBI (Belouchrani et al., 1997), FastICA
(Hyvärinen and Oja, 1997; Hyvarinen, 1999) etc. The algorithms for computing
ICs are briefly discussed in Section 3.1.

� Arrange the ICs in an appropriate order using any of available ordering method
e.g., L∞ norm used by Back and Weigend (1997), and regression-based ordering
method proposed by Afzal and Iqbal (2016) etc.

� Reconstruct the series using the procedure proposed by Back and Weigend (1997).
In the absence of any final method to determine the number of ICs, do the recon-
struction of each of the series at different arbitrary threshold levels (say p).

� Use the original series as original data points and reconstructed series as fitted
points and their difference as error (We need to summarize how close the origi-
nal and reconstructed series are.) Compare each of the reconstructed series with
original series and compute adjusted coefficient of determination (R̄2).

� For each of the given series, p values of R̄2s are available. Plot these values against
number of ICs used for the reconstruction.

� Gauge the cost effectiveness of additional ICs to be included in reconstruction
process by checking corresponding marginal improvement in the respective value
of R̄2. If inclusion of further ICs is not contributing enough in the improvement
of the value of R̄2 then stop further inclusion.

� After obtaining a suitable value for the number of ICs to be retained for each series,
obtain an average as a cut-off point as number of ICs to retained.
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3.1 Computing ICs

As discussed above, ICs can be computed by using any of the standard ICA algorithms
as discussed below.
Joint Approximation Diagonalization of Eigen-matrices (JADE) algorithm
JADE algorithm (Cardoso and Souloumiac, 1993) is a higher order statistic based algo-
rithm which employs the blind source separation technique. The principle working be-
hind this algorithm relates to the diagonalization fourth-order tensor i.e., the cumulant
tensor. The main advantage of JADE is its computational efficiency for low-dimensional
data sets. It does not consider the temporal structure of data.
FastICA Algorithm
FastICA is also a higher order statistic based algorithm (Hyvärinen and Oja, 1997; Hy-
varinen, 1999). It looks for an orthogonal rotation of whitened data using a fixed-point
iteration scheme, which maximizes a non-Gaussianity measure of the rotated compo-
nents. Such algorithms are made robust to additive Gaussian noise using this approach.
It also does not consider the temporal structure of data.
Second Order Blind Identification (SOBI) Algorithm
SOBI is a second-order statistic based algorithm (Belouchrani et al., 1997). The decom-
position in such algorithms achieves the decomposition through information of time-
frequency. In this algorithm, the Blind Source Separation (BSS) is performed through
the joint diagonalization of time delayed covariance matrices.

4 Evaluation using Financial Data

4.1 Dataset Description

The data of daily closing rates of 161 companies listed in Karachi Stock Exchange of
Pakistan over the period of June 11, 2004 to February 15, 2012 has been used for the
analysis performed in this research. Appendix A provides the list of selected companies.
A matrix of 161 columns denoting the companies and 2004 rows denoting their respective
closing rates has been constructed for the analysis. First, the non-stationary stock prices
xit (i = 1, 2, . . . , 161 and t = 0, 1, . . . , 2003) are transformed to stock returns defined
ahead.
The rates of change of a price series are called returns. The price series do not typically

fluctuate around a constant level but the returns series often looks stationary. Thus, in
many applications the returns series are used instead of price series.
Let X = xit denote the matrix of closing rates of 161 companies at 2004 time points.

xi, a row vector of order 2004 denote the closing rates for ith company at 2004 time
points. Let yit be the ith transformed series where i = 1, 2, . . . , 161 and t = 1, . . . 200.
Then,

yit = ln[xit]− ln[xi(t−1)] (4)

This is the first difference of the log price series, and is sometimes also called the log
return. The matrix of transformed series (returns) is given by Y .
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4.2 Construction of ICs and Weighted ICs

Before the computation of ICs, the kurtoses of the 161 series are computed to test the
normality of each individual series. The results show that the data is far away from
normality. Since the dataset is non-Gaussian distributed, it is reasonable to apply ICA
to extract the interesting features from the data.
There are numerous approaches to estimate ICs and unmixing matrix such as maxi-

mization of non-Gaussianity, information theoretic measures, maximum likelihood esti-
mation method and tensor based methods. Various algorithms have been introduced in
the literature to construct ICs based upon any one or a blend of several of the above-
mentioned approaches. We selected three of the existing algorithms namely JADE (Car-
doso and Souloumiac, 1993), SOBI (Belouchrani et al., 1997), and FastICA (Hyvärinen
and Oja, 1997 and Hyvarinen, 1999) to compute ICs in the current research. The choice
is in line with the existing applications available in the literature as employed by Back
and Weigend, 1997, Prieto, 2011, Jianwei et al., 2019, and Miao et al., 2020.
The matrix of estimated ICs is,

S = sit (5)

and the estimated mixing matrix is given as,

A = aik (6)

The matrix of the estimated ICs with rows ordered according to “Regression Based
Ordering of ICs” proposed by Afzal and Iqbal (2016) is given below:

S
′
= s

′
it (7)

The mixing matrix with ordered rows is given as,

A
′
= a

′
ik (8)

The calculation of weighted ICs is in line with the procedure proposed by Back and
Weigend (1997). The elements of the ith row of ordered mixing matrix are used as
weights to compute weighted ICs for ith company. The matrix of weighted ICs for ith

company is thus,

Wi = a
′
iks

′
kt (9)

4.3 Reconstruction of the Series

The original series can be reconstructed without loss if all ICs are used in the process.
However, this practice is useless as it does not add any value to the analysis. Number
of ICs used in the reconstruction should necessarily be lower than the total (161 in this
case). In the absence of any final method of deciding number of ICs to be retained and
used in the reconstruction, it is done at nine arbitrary cut-off points as 10(10)90 percent
that is 16(16)144. For possible generalization, if the number of retained ICs is denoted
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by ‘l’ then possible values of l at nine retention levels will be 16, 32, . . . , 144. At 10%
retention level i.e., at l = 16, the first 16 elements of the tth column of weighted ICs are
cumulated to form Cumulative IC at time t for company i. Thus for the ith company,
at retention level l, and at time t, the ith cumulative IC is computed as:

Ŷit =
∑
k=1

la
′
iks

′
kt (10)

Let X̂ be the matrix of reconstructed series of closing rates of 161 companies of
KSE each having 2004 observations then for a given retention level and at time t, the
reconstructed series of closing rates is given by:

X̂it = x̂i(t−1)antilog(ŷit) (11)

x̂i0 is required to proceed any further and is borrowed as the starting point from the
original series. For example, when we talk about the company, ABOT (i = 1) it is
140.35.

4.4 Deciding the Number of ICs to be Retained

The reconstruction of original series is done in nine different ways i.e., using 10, 20, 30,
40, 50, 60, 70, 80 and 90 percent of ICs for the purpose. Each of the reconstructed series
is then compared with the original series and R̄2 is calculated. Thus, nine values of R̄2

for every company are obtained. For a given company, say ABOT, nine values of R̄2s are
available. These values are plotted against number of ICs used for the reconstruction.
The procedure is replicated for each of construction algorithm namely JADE, FastICA,
and SOBI. We analyzed 161×3×9 = 4347 R̄2s in 161×3 = 483 layouts. One such layout
is presented in Figure 1 where reconstruction through JADE algorithm is discussed. Two
more layouts are shown in Figures 2 and 3 presenting similar results for FastICA and
SOBI algorithms.

As discussed earlier, the cost effectiveness of additional ICs to be included in re-
construction process is gauged by checking corresponding marginal improvement in the
respective value of R̄2. If inclusion of further ICs is not contributing enough in the
improvement in the value of R̄2 then further inclusion may be stopped. Figures 1 to 3
can be observed to visualize the impact at a glance.

Figure 1 shows that for company ABOT the cut-off point falls near 50%. The cut-off
points obtained in this manner are summarized as Table 1.

Table 1 gives an average for JADE algorithm close to 55%, for FastICA approximately
54%, and for SOBI it is about 60%. Overall average of three algorithms for six companies
portrayed above is 56%. The overall average for all 161 companies for three algorithms
gives a percentage close to 50. So a cut-off point is chosen at this percentage namely use
80 ICs for reconstruction purposes gives satisfactory reconstruction. Figure 4 illustrates
the performance of the reconstructed series (red) in comparison with the original series
(black), for ABOT Compancy with fifty percent reduction in the number of ICs using
the proposed method. It can be seen that the reconstructed series in case of JADE and



22 Afzal, Iqbal, Afzal

Figure 1: R̄2 as a function of Retention Level (Case of JADE)

Figure 2: R̄2 as a function of Retention Level (Case of FastICA)

FastICA algorithms are very close to the original series. However, the performance of
SOBI algorithm is not so well.
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Figure 3: R̄2 as a function of Retention Level (Case of SOBI)

Figure 4: Original (Black) and Reconstructed (Red) Series for Abbot Laboratories with
Fifty Percent Reduction in Number of ICs.
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Table 1: Retention Levels for Six Randomly Selected Companies Using JADE, FastICA
and SOBI Algorithm.

Company
Retention Levels

JADE FastICA SOBI

ABOT 50% 70% 70%

AGTL 70% 60% 70%

BWHL 30% 40% 70%

DFML 60% 60% 50%

EFUG 60% 40% 30%

DGKC 40% 60% 70%

5 Conclusion

In this work, a new method based upon R̄2 is proposed to determine the optimal number
of ICs to be retained in a final model for performing data analytics. To validate the effec-
tiveness of the proposed method, we evaluated its performance through experimentation
on financial time series data set. We performed a decomposition of 161 stock returns
into statistically independent components. Our proposed approach significantly reduced
the computational complexity of the data set by allowing fifty percent reduction in the
number of ICs to retain for analysis. Though the results are very encouraging, a room
for further investigation still remains there.

In our future work, we intend to investigate further into this problem by introducing
a statistical test procedure to check the significance, suitability, and adequacy of the
retained ICs.
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