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The inverse Gaussian regression (IGR) model is a very common model
when the shape of the response variable is positively skewed. The traditional
maximum likelihood estimator (MLE) is used to estimate the IGR model
parameters. However, when multicollinearity exists among the explanatory
variables, the MLE becomes not an efficient estimator as the mean squared
error (MSE) becomes inflated. In order to remedy this problem, the ridge
estimator (RE) is used. In this paper, we present an almost unbiased ridge
estimator for the IGR model in order to overcome multicollinearity problem.
We also investigate the performance of the almost unbiased ridge estimator
using a Monte Carlo simulation. The results of the almost unbiased ridge
estimator are compared with those of the MLE and of the RE in terms of the
MSE measure. In addition, a real example of dataset is used and the results
show that the performance of the suggested estimator is superior when the
multicollinearity is presented among the explanatory variables in the IGR
model.

keywords: Inverse Gaussian regression, multicollinearity, almost unbiased
ridge estimator, Monte Carlo simulation.

1 Introduction

It is common in regression model applications to see that the explanatory variables are
correlated. If the correlation among the explanatory variables is high, the maximum
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likelihood estimator (MLE) will not be efficient (Algamal, 2018; Månsson and Shukur,
2011).
The use of the inverse Gaussian regression (IGR) model is common in many science

and technology fields like marketing, life testing and industrial engineering (Malehi et al.,
2015; Akram et al., 2020; Lukman et al., 2021). The IGR model is specifically used when
y, the response variable, is positively skewed (Babu and Chaubey, 1996). In this case,
the IGR is preferable to the gamma regression model (De Jong and Heller, 2008).
The probability density function of the inverse Gaussian (IG) distribution is given by

f(y, µ, τ) =
1√

2πy3τ
exp

[
− 1

2y

(
y − µ

µ
√
τ

)2
]
, y > 0, (1)

where µ is the location parameter and τ is the scale parameter. The mean of the IG
distribution is E(y) = µ and the variance is V ar(y) = τµ3.
The IGR model is a family member of the generalized linear models (GLMs). Thus,

equation (1) can be rewritten as

f(y, µ, τ) =
1

τ

{
− y

2µ2
+

1

µ

}
+

{
−1

2
ln(2πy3)− 1

2
ln(τ)

}
, (2)

where C(y, τ) = −(1/2) ln(2πy3)− (1/2) ln(τ) and yθ−a(θ)
ϕ = 1

τ

{
− y

2µ2 + 1
µ

}
. Therefore,

the dispersion parameter is τ and the canonical link function is 1/µ2.
The mean of the response variable is connected by a link function with the linear

predictor ηi = xT
i β where β is a (p + 1) × 1 vector of unknown regression coefficient

parameters and xi is the ith row of the design matrix X. The mean of y is a function
of ηi and so it depends on β. Hence, we have E(yi) = µi = g−1(ηi) = g−1(xT

i β) where

µ = 1/
√

xT
i β is the inverse link function. The log link function is an alternative link

function for the IGR model, µ = exp(xT
i β).

The coefficient parameters of the IGR model are estimated using the maximum like-
lihood estimation method. For the inverse link function, the log-likelihood of the IGR
is given by

l(β) =
n∑

i=1

{
1

τ

[
−yix

T
i β

2
−
√
xT
i β

]
− 1

2τyi
− ln(τ)

2
− ln(2πy3i )

}
. (3)

Thus, the MLE is obtained by differentiating equation (3) with respect to β and equaling
it to zero

∂l(β)

∂β
=

n∑
i=1

1

2τ

yi − 1√
xT
i β

xi = 0. (4)

Equation (4) cannot be solved analytically as it is nonlinear in β. The coefficient param-
eters can be estimated using the MLE by the Fisher-scoring algorithm or the iteratively
weighted least squares (IWLS) algorithm.

β(r+1) = β(r) + I−1
(
β(r)

)
S
(
β(r)

)
, (5)
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where I−1 (β) =
(
−E

(
∂2l(β)
∂β∂βT

))−1
and S (β) = ∂l(β)

∂β that are evaluated at β(r). Thus,

the estimated values of β is given by

β̂ML = (XTŴX)−1XTŴû, (6)

where Ŵ = diag(µ3
1, . . . , µ

3
n), û is a vector with the ith element is ûi = (1/µ̂2

i ) +(
(yi − µ̂i)/µ̂

3
i

)
and µ̂i = 1/

√
xT
i β̂. The covariance matrix of β̂ML is given by

Cov(β̂ML) =

(
−E

(
∂2l(β)

∂β∂βT

))−1

= τ(XTŴX)−1, (7)

whereas the estimated mean squared error (MSE) is given by

MSE(β̂ML) = E(β̂ML − β̂)T (β̂ML − β̂)

= τtr
[
(XTŴX)−1

]
(8)

= τ

p∑
j=1

1

λj
,

where λj is the eigenvalue of the matrix XTŴX. The parameter τ is estimated by
(Uusipaikka, 2008)

τ̂ =
1

(n− p)

p∑
j=1

(yi − µ̂i)
2

µ̂3
i

. (9)

This work is organized as follows. In Section 2, we review the ridge estimator for the in-
verse Gaussian regression model. Section 3 presents the almost unbiased ridge estimator
for the inverse Gaussian regression model (AUIGRE) and methods for estimating the
almost unbiased ridge parameter. In addition, several properties for the AUIGRE are
given. In section 4, we investigate the performance of the AUIGRE using Monte Carlo
simulation. The proposed AUIGRE is applied to a real dataset in Section 5. Finally,
the conclusion is given in Section 6.

2 Inverse Gaussian ridge estimator

The MLE is not an efficient estimator when multicollinearity exists among the explana-
tory variables. When a high correlation exists among the explanatory variables, the
MSE is inflated as the eigenvalues of the highly correlated explanatory variables are
small (Mackinnon and Puterman, 1989; Segerstedt, 1992; Liu and Piantadosi, 2017). In
order to tackle this problem, the ridge estimator (RE), proposed by Hoerl and Kennard
(1970), is used by adding a positive amount to the diagonal of XTX.

Yahya Algamal (2018) used the ridge estimator for the inverse Gaussian regression
model. The inverse Gaussian ridge estimator (IGRE) is defined as

β̂IGRE = (XTŴX+ kI)−1XTŴβ̂ML

= (XTŴX+ kI)−1XTŴû, (10)
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where k ≥ 0. When k = 0 we have β̂IGRE = β̂ML and when k > 0 we have ∥β̂IGRE∥ <
∥β̂ML∥. The MSE of the IGRE is given by

MSE(β̂IGRE) = E(β̂IGRE − β̂)T (β̂IGRE − β̂)

= Q1 +Q2, (11)

where Q1 = τ̂
∑p

j=1
λj

(λj+k)2
, Q2 = k2

∑p
j=1

α2
j

(λj+k)2
, αj is the jth element of γβ̂ML and

γ is the eigenvector of the matrix XTŴX. We can notice from equation (11) that Q1

is the asymptotic variance and Q2 is the squared bias. The choice of αj can make the
decrease in Q1 greater than the increase in Q2.

3 The almost unbiased inverse Gaussian ridge estimator

The ridge estimator for overcoming multicollinearity problem has a large bias. In order
to solve this problem, the almost unbiased ridge estimator (AURE) was proposed by
Singh et al. (1986) for linear regression models. Therefore, in this work, we propose the
AURE for the inverse Gaussian regression model.
The almost unbiased ridge estimator for the inverse Gaussian regression (AUIGRE)

is able to tackle multicollinearity problem and decreases the bias of the IGRE. The
AUIGRE model is given by

β̂AUIGRE = (I− (XTŴX+ kI)−2k2)β̂ML. (12)

By having the expectation of equation (12), we obtain

E(β̂AUIGRE) = (I− (XTŴX+ kI)−2k2)E(β̂ML)

= (I− (XTŴX+ kI)−2k2)(XTŴX)−1XTŴE(y)

= (I− (XTŴX+ kI)−2k2)(XTŴX)−1XTŴXβ

= (I− (XTŴX+ kI)−2k2)β. (13)

The bias of the AUIGRE is obtained by

bias(β̂AUIGRE) = E(β̂AUIGRE)− β

= (I− (XTŴX+ kI)−2k2)β − β

= −k2(XTŴX+ kI)−2β

= −k2
p∑

j=1

αj

(λj + k)2
. (14)

The variance of the AUIGRE is obtained by

Var(β̂AUIGRE) = (I− (XTŴX+ kI)−2k2)Var(β̂)(I− (XTŴX+ kI)−2k2)T

= (I− (XTŴX+ kI)−2k2)(XTŴX)−1τ̂(I− (XTŴX+ kI)−2k2)T

=
τ̂

λj

p∑
j=1

(
1− k2

(λj + k)2

)
. (15)
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The estimated MSE of the AUIGRE can be obtained using equations (14) and (15)

MSE(β̂AUIGRE) = Var(β̂AUIGRE) +
(
bias(β̂AUIGRE)

)2
=

τ̂

λj

p∑
j=1

(
1− k2

(λj + k)2

)
+

−k2
p∑

j=1

α2

(λj + k)2


=

τ̂

λj

p∑
j=1

(λ2
j + 2λjk)

2

(λj + k)2
+ k4

p∑
j=1

α2

(λj + k)2
. (16)

3.1 Obtaining the value of the parameter k

The value of the parameter k can be obtained by first differentiating equation (16) with
respect to k and then equating it to zero

∂

∂k
(MSE(β̂AUIGRE))

−4τ̂λjk(λj + 2k)

(λj + k)5
+

4k3λjα
2
j

(λj + k)5
= 0

−4τ̂λjk(λj + 2k) + 4k3λjα
2
j

(λj + k)5
= 0

−4τ̂λjk(λj + 2k) + 4k3λjα
2
j = 0

k2α2
j − τ̂ k − τ̂λj = 0.

Hence, the value of k can be found by

k =

τ̂

(
1±

√(
1 +

λjα2
j

τ̂

))
α2
j

.

In this work, we propose values of k for the AUIGRE in the IGR model from the work
of Kibria (2003) and Khalaf and Shukur (2005)

k1 = mean(kj), k2 = diag(kj),

where

kj =

τ̂

(
1±

√(
1 +

λjα2
j

τ̂

))
α2
j

.

Theorem 1: In the IGR model, we have ∥bias(β̂AUIGRE)∥2 < ∥bias(β̂IGRE)∥2 for
k > 0.
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Proof: Let D1 = ∥bias(β̂AUIGRE)∥2 − ∥bias(β̂IGRE)∥2. Hence, we have

D1 =
k2α2

j

(λj + k)2
−

k4α2
j

(λj + k)4

=
λ2
jk

2α2
j + 2k3λjα

2
j

(λj + k)4

=
n∑

j=1

k2

{
λjα

2
j (λj + 2k)

(λj + k)4

}
.

Hence, for k > 0, the proof is completed.

Theorem 2: For the IGRmodel, if
(
k > 3τ̂ − λjα

2
j +

√
λ2
jα

4
j + 9τ̂4 + 10λjα2

j τ̂
)
/4α2,

for j = 1, . . . , p, then the AUIGRE is superior to the IGRE in terms of the MSE.
Proof: Let D2 = MSE(β̂IGRE)−MSE(β̂AUIGRE). Hence, we have

D2 =
τ̂λj

(λj + k)2
+

k2α2
j
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−

τ̂(λ2
j + 2λjk)

2

λj(λj + k)4
−

k4α2
j
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=
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{
(2α2

j )k
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2
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}
k
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The D2 is a positive definite for k > 0, if and only if
{
(2α2

j )k
2 + (λjα

2
j − 3τ̂)k − 2τ̂λj

}
>

0 . Thus, this function is quadratic of k and has the following root
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(
3τ̂ − λjα

2
j +

√
λ2
jα

4
j + 9τ̂4 + 10λjα2

j

)
4α2

j τ̂
.

Hence, the AUIGRE is superior to the IGRE in terms of the MSE for the IGR model,
the proof is completed.

Theorem 3: For the IGR model, the AUIGRE is superior to the ML estimator.
Proof: Let D3 = MSE(β̂ML)−MSE(β̂AUIGRE). Hence, we have

D3 =
τ̂

λj
−

τ̂λ2
j (λj + 2k)2

λj(λj + k)4
−

k4α2
j

(λj + k)4

=

n∑
j=1

k2

{
(τ̂ − λjα

2
j )k

2 + 4τ̂λjk + 2τ̂λ2
j

}
λj(λj + k)4

. (17)

From equation (17), it can be shown that D3 is a positive definite if and only if{
(τ̂ − λjα

2
j )k

2 + 4τ̂λjk + 2τ̂λ2
j

}
> 0. Hence, the AUIGRE is superior to the MLE in

terms of the MSE for the IGR model, the proof is completed.
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4 Monte Carlo Simulation study

In order to compare the estimated MSE of AUIGRE with the MLE and IGRE, a Monte
Carlo simulation experiment is conducted to investigate the performance of AUIGRE
with several different levels of multicollinearity for the inverse link function.

The MSE is considered a measure for our comparison which is given by

MSE(β̂AUIGRE) =

R∑
i=1

(β̂i − β̂)T (β̂i − β̂)

R
. (18)

where R = 1000 is the number of the Monte Carlo simulations and β̂i is the ith simulated
value of β̂.

4.1 Simulation design of experiment

The explanatory variables xT
i = (xi1, . . . , xin) were generated using the following equa-

tion

xij = (1− ρ2)1/2wij + ρwij , i = 1, . . . , n, j = 1, . . . , p. (19)

where ρ represents coefficient of correlation between the explanatory variables and wij ’s
are independent pseudo-random numbers. The wij were generated from the standard
uniform distribution. The number of the explanatory variables was set to be 3, 6 and
9, and three different values of ρ are considered, 0.85, 0.90 and 0.99. The dependent
variable, y, was generated from IG distribution with different number of sample sizes
n = 50, 100, 150 and 200 respectively. The values of the dispersion parameter were
chosen to be 0.25, 0.5 and 0.75.

The IGR model was then fitted using the inverse link function that is given by

µi =
1√
xiβ

, i = 1, . . . , n.

The sum of the coefficient regression parameters β was assumed to be 1 to ensure that
the values of xiβ are positive. This is because the results can be generalized to any
parameter Kibria (2003).

4.2 Simulation results

In this section, we present the Monte Carlo simulation results of the MSE, equation (18),
for different selection methods of k under different combinations of n, p, τ and ρ. The
results are shown in Tables 1-9.

4.2.1 The performance as a function of n

From Tables 1-9, the following points can be concluded

1. As the sample size, n, increases, the estimated MSE is decreased.
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2. When the number of explanatory variables, p, dispersion parameter, τ , and the
level of multicollinearity, ρ, are kept constant, then the estimated MSE of AUIGRE,
MLE and IGRE decrease with the increase in sample size.

3. The results show that the AUIGRE provides a smaller estimated MSE than those
of the MLE and the IGRE. Overall, the performance of AUIGRE is quite well as
opposed to both the MLE and IGRE.

4.2.2 The performance as a function of ρ

Based on different levels of multicollinearity, ρ, it can be shown from Tables 1-9 that

1. For a fixed number of n, p and τ , as the level of multicollinearity, ρ, increases, the
estimated MSE of the AUIGRE, IGRE, and MLE increases.

2. As a general trend, the estimated MSE of the AUIGRE is always smaller than
those of the MLE and the IGRE.

4.2.3 The performance as a function of p

Based on different set sizes of explanatory variables, the following points can be noticed
from Tables 1-9:

1. The simulated results indicated that the estimated MSE of the estimators increases
with the increase of explanatory variables.

2. The estimated MSE of AUIGRE is smaller as compared to those of the MLE and
the IGRE.

4.2.4 The performance as a function of τ

Based on different values of the dispersion parameter, the following points are seen in
Tables 1-9:

1. For fixed values of n, p and ρ, the estimated MSE values of the estimators decrease
as the value of the dispersion parameter increases.

2. Again, we can see that the estimated MSE of AUIGRE is always smaller as com-
pared to those of the MLE and the IGRE.

It can be concluded that the MSE of AUIGRE is generally smaller than those of
the MLE and the IGRE. Furthermore, in terms of MSE, the AUIGRE with the k2
improved the performance of the AUIGRE in comparison with the MLE and the IGRE
in most of the cases. All the selection methods of k are superior to the ML estimator
in terms of MSE. Furthermore, k2 is the best estimation method for k of the AUIGRE.
On the contrast, the MLE estimator provides poor MSE in comparison with the other
estimators.
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Table 1: Estimated MSE when τ=0.25 and p=3 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 89.04 1.521 1.628 1.327 1.347

0.90 126.2 1.485 1.633 1.298 1.348

0.99 1022 1.49 1.678 1.398 1.436

100 0.85 27.34 1.555 1.304 1.214 0.928

0.90 36.93 1.515 1.309 1.201 0.934

0.99 264 1.217 1.356 1.996 0.982

150 0.85 18.44 1.465 1.088 1.138 0.729

0.90 24.91 1.402 1.106 1.091 0.749

0.99 143.9 1.125 1.167 1.884 0.799

200 0.85 10.32 1.501 1.091 1.82 0.777

0.90 13.37 1.481 1.124 1.176 0.807

0.99 67.64 1.303 1.202 1.038 0.868

The best values are in bold font.

Table 2: Estimated MSE when τ=0.25 and p=6 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 658.2 3.603 3.807 3.163 3.099

0.90 926.8 3.553 3.833 3.105 3.124

0.99 7200 3.333 3.955 3.007 3.301

100 0.85 186 3.412 3.058 2.929 2.309

0.90 254.2 3.294 3.058 2.835 2.307

0.99 1697 2.933 3.213 2.611 2.474

150 0.85 124.8 3.157 2.477 2.722 1.744

0.90 170.2 3.105 2.534 2.689 1.795

0.99 1100 2.661 2.745 2.413 1.99

200 0.85 90.8 3.09 2.132 2.603 1.488

0.90 120.6 3.065 2.207 2.61 1.552

0.99 686.8 2.681 2.37 2.439 1.687

The best values are in bold font.
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Table 3: Estimated MSE when τ=0.25 and p=9 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 1621 6.142 6.425 5.494 5.423

0.90 2226 5.921 6.435 5.362 5.440

0.99 15970 5.521 6.621 5.074 5.676

100 0.85 666.3 5.024 4.781 4.547 3.601

0.90 924.5 4.867 4.791 4.403 3.613

0.99 6484 4.397 5.033 4.146 3.884

150 0.85 378.5 4.746 3.871 4.185 2.745

0.90 516.6 4.707 3.93 4.203 2.796

0.99 3319 3.998 4.238 3.936 3.071

200 0.85 285.7 4.683 3.313 4.185 2.351

0.90 385.7 4.608 3.398 4.208 2.413

0.99 2483 3.805 3.781 3.922 2.723

The best values are in bold font.

Table 4: Estimated MSE when τ=0.50 and p=3 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 38.32 0.976 0.890 0.976 0.658

0.90 53.73 0.941 0.898 0.932 0.659

0.99 397.7 0.852 0.949 0.785 0.692

100 0.85 13.11 0.982 0.586 0.883 0.437

0.90 17.28 0.956 0.597 0.867 0.434

0.99 105 0.717 0.65 0.727 0.439

150 0.85 8.573 0.96 0.423 0.850 0.335

0.90 11.38 0.902 0.44 0.837 0.339

0.99 62.65 0.722 0.541 0.715 0.382

200 0.85 4.985 1.015 0.459 0.881 0.397

0.90 6.252 0.999 0.48 0.878 0.406

0.99 29.23 0.811 0.552 0.785 0.433

The best values are in bold font.
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Table 5: Estimated MSE when τ=0.50 and p=6 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 276 2.556 2.073 2.632 1.505

0.90 383.4 2.503 2.091 2.636 1.505

0.99 2779 1.994 2.213 2.15 1.572

100 0.85 92.69 2.447 1.402 2.563 1.106

0.90 124.6 2.345 1.452 2.504 1.12

0.99 748 2.049 1.615 2.473 1.178

150 0.85 65.08 2.324 1.004 2.428 0.925

0.90 86.45 2.271 1.046 2.39 0.928

0.99 493.6 1.949 1.277 2.665 0.986

200 0.85 45.28 2.296 0.828 2.155 0.921

0.90 58.92 2.172 0.866 2.165 0.922

0.99 299.1 1.948 1.065 2.502 0.961

The best values are in bold font.

Table 6: Estimated MSE when τ=0.50 and p=9 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 675 4.455 3.717 4.729 2.795

0.90 905.7 4.29 3.758 4.695 2.806

0.99 6033 3.765 4.08 4.309 3.073

100 0.85 330.1 3.793 2.073 4.555 1.658

0.90 446.6 3.711 2.141 4.556 1.665

0.99 2791 3.322 2.466 5.011 1.759

150 0.85 198.9 3.463 1.459 3.978 1.43

0.90 266 3.415 1.514 4.199 1.409

0.99 1571 3.002 1.818 5.212 1.349

200 0.85 145.4 3.388 1.258 3.689 1.517

0.90 192.7 3.577 1.312 4.164 1.487

0.99 1123 3.416 1.602 5.955 1.393

The best values are in bold font.
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Table 7: Estimated MSE when τ=0.75 and p=3 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 25.25 0.796 0.552 1.011 0.465

0.90 34.35 0.759 0.562 0.951 0.465

0.99 231 0.609 0.599 0.669 0.4428

100 0.85 8.657 0.77 0.358 0.826 0.3894

0.90 11.28 0.762 0.363 0.842 0.377

0.99 63.08 0.551 0.409 0.787 0.338

150 0.85 5.476 0.804 0.257 0.802 0.328

0.90 7.045 0.765 0.271 0.806 0.320

0.99 35.63 0.576 0.324 0.711 0.309

200 0.85 3.329 0.865 0.285 0.815 0.370

0.90 4.182 0.813 0.294 0.789 0.366

0.99 17.58 0.684 0.333 0.778 0.358

The best values are in bold font.

Table 8: Estimated MSE when τ=0.75 and p=6 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 183 2.157 1.308 2.98 1.104

0.90 253.7 2.108 1.308 2.975 1.061

0.99 1764 1.665 1.406 2.505 0.999

100 0.85 63.28 2.049 0.826 2.649 1.079

0.90 83.43 2.042 0.848 2.656 1.041

0.99 467.5 1.872 0.984 3.087 0.927

150 0.85 46.16 1.975 0.622 2.298 1.03

0.90 60.24 1.985 0.64 2.452 0.998

0.99 320.3 1.867 0.75 2.299 0.8467

200 0.85 30.4 1.96 0.557 2.051 1.1

0.90 39.2 1.839 0.574 2.001 1.083

0.99 185.4 1.799 0.696 2.782 1.029

The best values are in bold font.
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Table 9: Estimated MSE when τ=0.75 and p=9 for the AUIGRE, IGRE and MLE.

n ρ

IGRE AUIGRE

MLE k1 k2 k1 k2

50 0.85 435.3 3.82 2.383 5.413 2.043

0.90 584.5 3.87 2.434 5.639 2.017

0.99 3612 3.543 2.716 6.023 2.004

100 0.85 224.7 3.432 1.242 4.732 1.658

0.90 300.6 3.364 1.261 4.855 1.567

0.99 1794 3.403 1.398 6.627 1.277

150 0.85 140.2 2.821 0.96 3.653 1.731

0.90 185.9 2.96 0.971 4.073 1.647

0.99 1048 3.432 1.058 7.095 1.21

200 0.85 100.7 3.024 0.868 3.801 1.895

0.90 133.5 2.865 0.874 3.958 1.804

0.99 731.7 3.292 0.966 6.738 1.406

The best values are in bold font.

5 Real data application

In this section, we apply the AUIGRE to real data. Derivatives of n = 65 imidazo[4,5-b]
pyridine as anticancer compounds are used as explanatory variables (Algamal, 2018).
The response variable is represented by the activity of the explanatory variables that
are expressed as biological activities (IC50). In this work, the explanatory variables
are 15 molecular descriptors (Algamal et al., 2015). In chemometrics, the quantita-
tive structure-activity relationship (QSAR) study is a very commonly used model. The
QSAR’s principle is to model many chemical activities in terms of their structural char-
acteristics over a set of chemical compounds (Algamal and Lee, 2017). Therefore, one
of the most significant approaches to constructing the QSAR model is using regression
models.

Algamal (2018) showed that the response variable y follows the IG distribution using
a χ2 test. Moreover, Algamal (2018) showed that the IGR model with log link function
fits very well using the residual deviance test. Therefore, we fitted the IGR model with
the log link function.

In order to see the correlation among the explanatory variables or not, we calculated
the correlation matrix among the explanatory variables as shown in Figure 1. It can
be shown that a high correlation exists among the variables SpMaxA D, ATS8v, and
MW(r = 0.96). Also, there is a high correlation between Mor21e and Mor21v (r = 0.93),
and a high correlation exist between ATS8v and SpMax3 Bh(s)(r = 0.92). Therefore,
multicollinearity exists among the explanatory variables.
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Figure 1: Correlation matrix among the explanatory variables of the real dataset.

Table 10 shows the estimated values of the IGR model coefficient parameters and the
estimated values of the MSE of the real dataset for different estimators. It can be shown
that the AUIGRE has the smallest MSE value in comparison with the IGRE and the
MLE. In addition, the k1 parameter has the best performance as compared to the k2
parameter.
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Table 10: The estimated coefficient parameters and the estimated MSE for the AUIGRE,
IGRE and MLE.

MLE
IGRE AUIGRE

IGRE.k1 IGRE.k2 AUIGRE.k1 AUIGRE.k2

MW 1.002 0.0023 0.0041 0.0012 0.0039

IC3 1.237 0.0554 0.0079 0.0843 0.0150

SpMaxA D -1.102 0.0164 0.0026 0.0239 0.0048

ATS8v -1.379 0.0218 0.0032 0.0328 0.0060

MATS7v -1.219 -0.0064 -0.0009 -0.0100 -0.0017

MATS2s -1.215 0.0022 0.0003 0.0031 0.0007

GATS4p -1.237 0.0156 0.0022 0.0238 0.0043

SpMax8 Bh 2.506 0.0298 0.0042 0.0457 0.0079

SpMax3 Bh 2.069 0.0650 0.0096 0.0962 0.0183

P VSA e 3 2.001 0.0012 0.0001 0.0017 0.0004

TDB08m -2.103 0.0034 0.0004 0.0052 0.0009

RDF100m 1.571 -0.0092 -0.0076 -0.0053 -0.0117

Mor21v -2.434 -0.0003 -0.0001 -0.0007 -0.0001

Mor21e -2.352 0.0013 0.0002 0.0015 0.0004

HATS6v 2.211 0.0012 0.0002 0.0019 0.0003

MLE 3.295 1.5087 3.8283 0.7373 3.5272

The best values are in bold font.

6 Conclusions

In this article, we proposed an almost unbiased ridge estimator based on the ridge
estimator for the inverse Gaussian regression model. In addition, an optimal value of
the ridge parameter was proposed for the AUIGRE. Furthermore, several theorems were
presented that demonstrate the superiority of the proposed estimator. The performance
of the proposed estimator was investigated using the Monte Carlo simulation experiment
and a real dataset. Based on our results, the performance of the AUIGRE is better than
the MLE and IGRE as it has a smaller MSE than the other estimators for the IGR
model when multicollinearity exists.
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