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We consider Bayesian prediction modeling to evaluate a satisfaction index
after a first phase of experiment in order to decide to stop or continue at
the second stage. We apply this method to Poisson and Gamma distributed
outcomes in many fields such as reliability or survival analysis for early ter-
mination due to either futility or efficacy. We look at two kinds of decisions
making: an hybrid Bayesian-frequentist or a full Bayesian approach.
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1 Introduction

Bayesian design of experiments can be considered as a natural combination of prediction
and decision-making, in that the investigators seek the best design to achieve a targeted
goals, based on prior or updated knowledge. They are currently interested because of
their potential to save time and resources, as well as to reduce the number of adverse
events (Spiegelhalter et al., 2004; Hand et al, 2016). Bayesian predictive procedure plays
a crucial role in different areas of applied statistics, epidemiology, reliability and survival
analysis in the aim of developing an adaptive design. More generally, these Bayesian pre-
dictive procedures about future observations give to the researcher an accurate method
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to evaluate the chances that the experiment will end up showing a conclusive result,
or on the contrary a non-conclusive result (Djeridi and Merabet, 2019). They are par-
ticularly adapted to sequential designs where interim analysis may provide grounds for
terminating the study-effectively by reducing costs moreover it may benefit the general
patient population by allowing early dissemination of its findings. Group sequential
methods provide a mean to balance the ethical and financial advantages of stopping a
study early against the risk of an incorrect conclusion (Chow et al, 2011). Decision-
theoretic approaches to design of trials take into account the finite number of future
patients for whom the trial results will be definitive (Shih and Lavori, 2013). In applied
work, Gamma distributions give useful representations of many physical situations. For
instance, they have been used to make realistic adjustments to exponential distributions
in representing life times (Blot and Meeter, 2016). Furthermore, Gamma outcomes have
an extensive implementation in various fields: in hydrology, finance medical science, psy-
chology and reliability. One can find other examples with Poisson and Gamma data in
(Bakhshi, 2011; Hamada et al, 2008; Lakshmi and Vaidyanathan, 2015; Anisimov, 2008;
Zaslavsky, 2010 ).

In our paper we exploit Bayesian predictive distribution for Poisson and Gamma
distribution in experimental clinical trials with count data as outcome. The Poisson dis-
tribution is a natural and commonly used model. For example, Hand et al (2016) employ
count data in single-arm studies as the primary endpoint to demonstrate the effective-
ness of commercial preparations of intravenous immunoglobulin (IGIV) for preventing
serious acute bacterial Infections in patients with primary immunodeficiency .

The main aim of this paper is to propose a procedure based on the concept of index
of satisfaction related to hypothesis testing which is a function of the p-value or the
probability of observing a result as extreme or more extreme than the perceived result
under the null hypothesis. Given the available data, we calculate a predicted satisfaction
index conditioning to the previous observations to achieve successful results at the end
of trial (Merabet, 2013). We consider the case of a two-stage procedure with Poisson
or Gamma distributed data that allows for early termination owing to either futility or
extreme efficacy.

This paper is organized as follows: In Section 2, we study background information
on statistical inference for two stage sequential designs; we discuss both frequentist and
bayesian indexes, we also provide prediction of satisfaction index and stopping rules.
We describe our two-stage designs for Poisson and Gamma outcomes in Section 3. A
simulation results is given in Section 4. In Section 5, we test the relevance of the Poisson
model on real count data. We make a conclusion in Section 6. In the Appendix, we
explain the effective sample size of a prior distribution for our Gamma-Poisson and
Gamma-Gamma models.
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2 Two-stage design

2.1 Statistical inference for two stage experimental design

In recent years, the concept of two-stage design has led to the development of group
sequential designs, where there is a set of available experiments which may be conducted.
After each stage, the decision is made to continue or not the experiment, and if it is
the case, to build a new design for the next stage. Since some experiments may be
more ”informative” than others, there is a potential saving in using decision rules which
choose experiments rather than using decision rules which typically take one experiment
of each type (Blot and Meeter, 2016).

In sequential experimental design, we sequentially choose an experiment to be per-
formed and new outcome are observed. We use here two successive experiments of results
and we denote by x € X and y € Y the results of each experiment, that are assumed to
be independent. The distributions of x and y depend on a common parameter 6 € ©.
We propose a satisfaction index based on both the first and the second phase of the
experiment (Merabet et al, 2017). This experiment is used to establish the final conclu-
sion on the study and determine the user’s satisfaction, denoted ¢(z). In our study, the
prediction is carried out in a Bayesian context; that is, based on the choice of a prior
probability on © .

Since atisfaction indexes are essential to the study of both frequentist and bayesian
test, we consider both a hybrid frequentist-bayesian approach and a fully bayesian ap-
proach. Those indexes are used as a stopping rule for designing phase II clinical trials.

2.1.1 Frequentist index

We define the frequentist satisfaction index in classical test as a measure of the degree
of satisfaction with a given result.

We want to test the null hypothesis Hy: 0 € ©g vs Hy : § € © \ ©¢ on the parameter
0. The rejection region R® of the usual frequentist test at level « is defined by:

R* ={z; p(z) < o}

where p(z) is the p-value of the test.
A basic satisfaction index is defined by:

¢o(z) = 1ga(2) (1)

where 14(z) =1 if z € A and 0 otherwise.

The index ¢p(z) has a form that express a satisfaction ”all or nothing”. However,
it is interesting to take into account the level at which the result appears significant.
It thus appears natural to consider satisfaction indexes that are null if a significant
effect is not detected, and in the opposite case as an increasing function of the classical
indicator of significance which is the p-value (Saville et al, 2014). For this purpose the
p-value is regarded as a measure of credibility to be attached to the null hypothesis that
practitioners often use to answer several criticisms and disadvantages of the Neyman
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Pearson approach. Therefore, we propose a satisfaction index, considered as improved
for its interest in the concept of predicting satisfaction and defined as a decreasing
function of the conclusive measure p after the processing of the data in the following
manner:

o(z) = { 0 if p(z) >« 2)

1 —p(z) otherwise

2.1.2 Bayesian index

In a Bayesian context, let II(6©|z) be the posterior probability given the observation z.
It is conventional in Bayesian statistics to treat the situation test of ©g against ©1 by
providing II(01|z). We denote R* the rejection region of the Bayesian test at level «
defined by:

R* = {z1(61]z) > 1 - a}
Similarly to the frequentist approach, we consider the two satisfaction indexes:
Po(2) = 15.(2) (3)

and

.. _]o if » ¢ R
Plz) = { (61]2) if 2 € R )

2.2 Prevision of satisfaction index and stopping rules

The claim of efficacy rules or treatment benefit can be based either on Bayesian posterior
distributions (fully Bayesian) or frequentist criteria such as p-values (hybrid Bayesian-
frequentist), see Saville et al (2014). The main matters to focus on are the eligible
reasons either to stop or to carry on a study. Reasons for stopping may include (Todd
et al, 2011 ):

e The experimental treatment is evidently worse than the control

e The experimental treatment is already evidently better

e The chances of showing that the experimental treatment is better are little.
The continuing may include the following reasons:

e A moderate advantage of the experimental treatment is likely and it is desired to
assess the magnitude carefully

e The event rate is low and more patients are needed to reach a given power.
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Numerous authors have been strong and consistent in advocating the use of predictive
probabilities to make decisions based on accumulating experimental trial data. In the
logic of the introduction of the satisfaction index, it is natural to characterize the value
of the test procedure instead of the power function, a prediction index, that is the
mathematical anticipation with respect to the predictive probability on the complete
data conditioned by the result of the first stage (Merabet, 2013), where a two-step
experiment must be conducted:

e A first result z, determines whether or not we continue the experiment,

e If the experimenter is highly satisfied and we effectively continue the experiment,
then the final test is based on the result of both stages rather than the result of
the single second stage.

Let p(z|x) be the predictive probability of z = (x,y) after the firs stage, i.e. condi-
tionally on x. The predicted value of the index ¢ is defined by:

n(z) = B(p(2))z) = / () (2| dz (5)

The predicted index n(x) generalizes the power of the test in the dialectic of the index
of satisfaction. The practitioner decides a predicted index above which the experiment
is carried on. In a purely Bayesian viewpoint, the predicted index is:

() = B(3(2))z) = / B (el de (6)

3 Two-stage Design for Poisson and Gamma outcomes

3.1 A Bayesian two-stage strategy for Poisson outcome

In experimental clinical trials using count data of rare events, the Poisson distribution is
a natural and commonly-used model. One of the essential goals of most Phase II clinical
studies is to decide whether to continue with a large-scale randomized Phase III trial
or to reconsider or abandon the therapy because of an absence of efficacy or evaluate
toxicity (Stallard, 1998 ). If a treatment may yield inferior results than expected, some
Phase II studies use a two-stage design to allow for early termination. We consider the
case of a Phase II trial whose primary endpoint is the number of events observed over
a fixed period of time, where this count has a Poisson distribution (Hand et al, 2016).
We also presume that the events considered here show a negative outcome for patients,
and, thus, a huge number of events indicate an absence of efficacy. Hence, the two-stage
design for Poisson data is as follows.

Let n; and ns be the number of subjects included in the first and second stage and
n = n1 + ng. Let z;, resp. y;, be the number of occurrences of the events of interest
for the jth subject at the first, resp. the second, stage during a period of time ¢;;, resp.
t2;. We assume that z; and y; are independent and Poisson distributed with parameter
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0 x t1j and 0 X to;. Let z =371, j and y = 372, y; be the total number of observed
events over the first and second stage and t; = Y ;| t;;, i = 1,2. We define here z = z+y
as the number of events over the two stages and ¢t = t1 +t2. Let s and s; be pre-specified
thresholds such that

1. If x > s1, then the trial is stopped for lack of efficacy;

2. otherwise, the phase II trial continues to the second stage,

If the trial continue to the second stage, no patients are enrolled and
1. then the trial is stopped for lack of efficacy;
2. fhurthermore, the Phase II trial continues to a Phase III trial,

In another meaning, on the basis of the accumulated data at stage 1, one can stop the
trial because of lack of convincing efficiency. This occurs when the predicted satisfaction
index is less than a specified threshold. Otherwise the experiment goes on. More rarely,
a trial may be stop for strong evidence of efficacy, that is when the predicted satisfaction
index is larger than a given threshold. Early stopping means ensures that resources are
not wasted and, in case of evidence of efficacy, allow a faster development.

In Bayesian modeling, the choice of a prior distribution is crucial because it has poten-
tially a large influence on the posterior density, especially when the collected observed
counts of interest are small. Researchers attempt to find a prior distribution that summa-
rizes available information and accurately reflects uncertainty. In the posterior analysis,
we usually desire that the likelihood dominates and, therefore, encourage the use of a
relatively non-informative prior. Here, we use a conjugate gamma family of prior for ¢
with parameter (a,b) (Hand et al, 2016).

Let 2 ~ Poisson(t16) with probability function

f(z]t1,0) = (tlf')m exp[—t1 0], x=0,1,2,.. (7)

The posterior distribution 7(0|z,¢;) is a gamma (z + a, t; +b) distribution . If z < sq,
we continue to the second stage where y counts are observed during person-time ts.
Thus y ~ Poisson(ta0) with probability function

(t20)Y
yl

f(y|t27 9) = eXp[_tQG]a Yy = 07 17 27 (8)

Consider the one sided test Hy : 0 > 6y vs Hy : 0 < 6y where 6 is the desired efficiency
threshold. Then, we determine t and s, given that the first stage has been completed
and z have been observed with z < s7.

The usual test on the results z of the first and second phase defined by:

RY ={z;2 < qa}

with g, = sup{c; Pr(z < c|fp) < a}
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In the Bayesian approach B
R z;2 < Gu}
with go = sup{z;II(6 < Op|z) > 1 — o}
We have those formulas for sequential designs:
©0(2) = 1Ra(2),
Po(2) = 1§a(z)>
p(2) = (1 = 04, (2)) Lacqa,
B(2) = Payapia(60) Locq,
where @50 (z) the left-continuous cumulative distribution function of a Poisson distribu-

tion, and (5(a1,b1) is the cumulative distribution function of a Gamma(ay, b1) distribution.
The predictive distribution of y given z is a Gamma-Poisson distribution given by:

t (b + 1)@ ) a +  + 9
(b+ty + t2)@tetU[a + z]y!

flylz) =

Then, our predictive satisfaction indexes for the frequentist approach are:

Ga—z=1 (y) (a+zx)
ty” (b+t1) )T [a + x + y]
== E o = 2 10
no() (@oe (2)]2) 3:0: (b+t1 + to) @t t9)T[a + x]y! (10)
qa—z—1 (v) (a+z)
ty (b+ 1) ") T[a + 2 + y]
n(2) = E(p(e)(2)]) gﬁ =@+ ) G @ e p oyt (Y
For the bayesian approach, we have
da—z—1 (y) (a+x)
_ . ty" (b+ 1)) a + = + y]
- E N — 2 12
o(z) = E(Gge (2)]2) yzo (b4 1y + ta)@ T 0 a £ aly! (12)
Ga—a—1 (¥) (atz)
NS B ~ ts (b+1t1) Ila + z + y]
77(53) = E(‘p(a)(z)‘x) = yz% (I)a+:r:+y;b+t1+t2 (00) (b+ t + tg)(“+x+y)1“[a, + iL']y! (13)

3.2 A Bayesian two-stage strategy for Gamma outcomes

We consider here the case of Gamma-Gamma conjugate families. The Gamma distribu-
tion is a flexible family of distributions for continuous non-negative random variables.
Gamma distributions are used in many fields such as finance, medical science, wait time
modeling, reliability, service time modeling.

At the first stage, n; and no subjects are included whose individual responses are x;
and y;. Let @ = Y " a5, y = Y 1%, yi, N1 = nip and Ny = ngp, with p known. The
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distribution for z is a gamma distribution with parameters (nip, 8) and with probability
function
f( g) = 7 pmp- 0 =0,1,2 14
x,nip,0) = I’(nlp)x exp[—fzx], x=0,1,2,... (14)
We assume the prior distribution § ~ gamma(a,b). The posterior distribution on
0 after the first stage is a gamma (a + nip,b + z) distribution. Although there is a
vast literature available on the estimation of the gamma parameters using the frequen-
tist approach, not many work has been done on the Bayesian inference of the gamma
parameter.
The second-stage sampling is also a gamma distribution y ~ gamma (nap, ).
Define z = x + y which is a sufficient statistics, Gamma distributed with parameters
(np,0), and n = n; + ny is the total number of subject to be treated or events until
failure depending on the field of application.

o

We consider the one sided test Hy : 0 < 6y vs Hy : 0 > 6y, where 0y is the desired
efficacy threshold.
The usual test on the results z of the first and second phase defined by:

z(np)_lexp[_(ez)], xTr = 071,2’... (15)

RY ={z;2 < qa}

with go = sup{c; Pr(z > c|6p) > 1 — a}
In the Bayesian approach B
R ={z;2 < qu}
with go = sup{z;I1(©1]z) > 1 — a}
We have those formulas for sequential designs:
©0(2) = 1Ra(z)
Po(2) = 1§a(z)
p(2) =1 = ©f (2)1.<4,
P(2) =1 = Catmps=(00)1.,
Where @g} (z) the cumulative distribution function of a Gamma distribution, and

D (49,55) is the cumulative distribution function of a Gamma(az, be) distribution.
The predictive distribution of y given z is an Inverse Beta distribution:

y(n2p71)(b + x)(a+n1p)
B(nep,a+nip)(b+ = + y)(a+mp+n2p)

flylx) = ~ InBe(y,a + nip,b+ x) (16)

Then, our predictive satisfaction indexes in frequentist approach are:
y(n2p_1) (b —+ (L-)(a‘i'nlp)
nap,a+ nip) (b + z + y)@tmptnep)

() = Bl (2)|) = /0 T @ (7
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n(x)

= B (2)]z)
y(”2P*1)(b+ :L.)(a+n1p)

I _ oG (4
77(90)—/0 1§ ( )B(

For the bayesian approach, we have

d
nap,a + nip)(b+ x + y)(a+n1p+n2p) Yy

y(m2p=1) (b  )(atmp)

o(@) = By (2)|) = /0 -

n(z)

nap, a + n1p)(b + x4+ y)(a+n1p+n2p)

= E(3(2)|)
y(m2p=1) (b 4 g)(a+mp)

zlva—:c N

B(nap, a+nip)(b+ x + y)latnptnap)

dy

dy

(19)
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4 Simulation Results

We show in this section the results of our simulation, which present a comparison study
of the predicted satisfaction index associated to frequentist and Bayesian tests for several
values of the hyper-parameter. We also display the effective sample size (ESS) associated
to the prior [see appendix].

4.1 Results for Poisson outcomes

Figure 1: Predicted indexes 7n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy: 0 > 6y = 0.5 with a = 0.05,a =1,b = 2,¢; = 15,
ty =5, g0 = 15, G = 17, (ESS = 2)

Figure 2: Predicted indexes n(x) and 7(z) in sequential design for frequentist and
bayesian test Hy : 0 > 6y = 0.5 with a = 0.05,a =1,b = 2,¢; = 15,
ty = 20, g = 25, Ga = 26, (ESS = 2)

Figure 3: Predicted indexes 7n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy : 0 > 6y = 0.5 with o = 0.05,a = 6,b = 4,t; = 15,
to = 5,00 = 15, go = 13, (ESS =4)

In Figure 1 with a time-person value to small and a prior centered on the threshold
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0o, we can observe that the predicted satisfaction index graphs corresponding to the
frequentist and Bayesian tests may be different.

In Figure 2, we observe that when the value t5 of time-person is large both the fre-
quentist and Bayesian predicted indexes are very close.

Figure 3 shows, as expected, that when the prior favors the efficacy of the treatment,
the predicted satisfaction index based on the Bayesian test is higher than that based on
the frequentist test.

Figure 4 and Figure 5 shows the effect of prior parameter on the predictive distribution.

Figure 4: Predicted indexes 7n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy : 8 > 6y = 0.5 with a = 0.05,a = 0.2,b = 0.3,t; = 15,
to = 5,90 = 15, go = 16, (ESS = 2)

Figure 5: Predicted indexes n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy : 6 > 6y = 0.5 with a = 0.05,a = 7,b = 5,t; = 15,
ty =5, g0 = 15, G = 13, (ESS = 2)
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4.2 Results for Gamma outcomes

Figure 6: Predicted indexes n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy : 0 < 6y = 0.5 with a = 0.05,a =1,b = 2,n; = 10,
ne = 5,p=1,qa = 18.4927, §o = 18.0719, (ESS = 1)

— )

-}

Figure 7: Predicted indexes n(x) and 7(z) in sequential design for frequentist and
bayesian test Hg : 8 < 6y = 0.5 with a = 0.05,a = 3,b = 6,n; = 10,
ng =5,p=1,q, = 18.4927, g, = 17.2686, (ESS = 3)

—nlx)

L

Figure 8: Predicted indexes n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy : 8 < 6y = 0.5 with @« = 0.05,a = 3,b=2,n; =5,
Ny = 15, go = 26.5093, o = 29.4390, (ESS = 3)
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Figure 6 corresponds to a weak informative prior with ESS = 1 centered on the
threshold value 6y whereas Fig.7 corresponds to a more informative prior centered on
the same value.

Figure 8 corresponds to a prior that favor the efficacy of the treatment.

5 Real data analysis

The Poisson-Gamma model has an application for both the clinical trials and the reli-
ability. For example, test the performance of a new heart valve, modeling failure time
data ”time to death” used in survival analysis and ”time to interrupt” used in reliability.

We test the relevance of the previously seen of poisson model on real count data.
We consider a data presented in Hamada et al (2008), which consists of modeling the
monthly number of failures of the Los Alamos National Laboratory Blue Mountain su-
percomputer components (shared memory processors or SMPs) by a Poisson distribution
with an unknown average number of failures, §. The supercomputer consists of 47 iden-
tical SMPs and the following table presents their monthly number of failures for the first
month of operation.

Table 1: Monthly number of failures for 47 supercomputer components

W W N
N = W Ot
[ e N R
W N N
Tt Ot N
N~ Ot W
[ B N L
= =N W
—= = Ot O
T = W
NN N
[\

For modeling these data, the monthly number of failures is assumed to follow a Poisson
distribution. To represent this, the prior information for the parameter assumed to be
a conjugate gamma prior distribution with a mean of 5, that is § ~ Gamma(5,1)

We choose 0p=1.2 and after the calcul we obtain ¢,=69, g,=66.

Predicted indexes in sequential design for frequentist and bayesian test are given in
the following figure and table:
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Figure 9: Predicted indexes 7n(z) and 7(z) in sequential design for frequentist and
bayesian test Hy : 8 > 0y = 1.2 with a = 0.05,a = 5,b = 1,t; = 17,t5 =
30, go = 69, Go = 66, (ESS = 1)

This real data analysis leads to the conclusion that the results obtained from the
Predicted indexes in sequential design for Bayesian test and frequentist test are close to
each other but purely Bayesian approach is better than frequentist approach.

Moreover, we observe by looking at the table in full Bayesian approach, a good satis-
faction compared to frequentist approach that lead to provides accurate inferences for a
parameter of interest and makes the practitioner very satisfied.



282 Bourezaz, Merabet, Druilhet

Table 2: Predicted indexes n(x) and 7(z) in sequential design for frequentist and bayesian
test Hy : 0 > 0y = 1.2 with o = 0.05,a = 5,b = 1,t; = 17,19 = 30, ¢, = 69,
Ga = 66,(ESS =1)

n(x) 1(x)

1 1
0.999992  0.999979
0.999969  0.999920
0.999894  0.999739
0.999675 0.999250
0.999114 0.998076
0.997817 0.995541
0.99510  0.990563
0.989891 0.981602
0.980688 0.966713
0.965612 0.943742
0.94260  0.910663
0.909716  0.866007
0.865554 0.865554
0.809618 0.741181
0.742586  0.663776
0.666373  0.580180
0.583949 0.494194
0.498964 0.409772
0.415244 0.330489
0.336296 0.259134
0.264905 0.197484
0.202896 0.146266
0.151084 0.105292
0.109380 0.073684
0.077001 0.050141
0.052723  0.033190
0.035121 0.021379
0.022771  0.013407
0.014374 0.008189
0.008838 0.004874
0.005296 0.002828
0.003094 0.00160
0.001763 0.000883
0.000980 0.000476
0.000532  0.000250

8

© 00 J O Ut = W NN = O

LW W W W W W N NN DN NN DNDNDNDDN = = = = = s e e e
U i W N B O©O © 0 N O U i WO N = O © 00 N O T i W NN = O
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6 Conclusion

The Bayesian predictive approach is a useful tool in group sequential design to evalu-
ate the strength of the treatment efficacy, which is based on both available and future
observations. It can be used for Bayesian or frequentist assessment of the efficiency of
a treatment and allows to stop early an experiment either for lack of or at contrary
sufficient predicted. One main advantage of the Bayesian predictive method is that it
automatically takes into account the level of information available and the predicted in-
formation bring by future observations. Another advantage is that it can be used either
in hybrid Bayesian-frequentist procedures or full Bayesian procedure. We have shown
in this paper how to use this procedure in Gamma-Poisson and Gamma-Gamma models.
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Appendices

Appendix A. determining the effective sample size

We determine here the effective sample size of a prior distribution for our Gamma-
Poisson and Gamma-Gamma model as proposed by (Morita et al.,2008). The idea is to
match a given prior p(f) with the posterior g,,(0|x) arising from an earlier prior go(0)
that is chosen to be vague in a suitable sense and that is updated by a sample z of size
m. The value of m that minimize the distance between p(6) and ¢,,(0|X) will be the
effective sampling (E'SS) associated to the prior p(0).

The distance between ¢, (0| X;,), and p(#) is defined in terms of the curvature (second
derivatives) of log(p(6)) and log(gm (0| Xm)).

Given the likelihood f;,(X|6) and prior p(6]6), we denote the posterior by am (010, 2 x

p(010) fn(xm|0), let 8 = E,(0) denote the prior mean under p(6|6).

We denote D,(0) = %@;(9@)) and Dy(0) = — [ az(log(q%ég\ﬁ,xm)))me (T )dxpy, is
the marginal distribution of X, for the prior ¢o(6).

Define §(m, 0, p, q) = |Dp(§) — Dgy(m, @)} as be the distance between p(6]6) and g, (6|6, z.m)
for sample size m. The ESS is obtained by computing the implied sample sizes in stan-
dard models (Table 1) for which commonly reported prior-equivalent sample sizes.
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In the case of Gamma-Poisson model

% + 2 Tfm(Xm) — 1
- a—1 X=0 1 -
(. .p,q) = | " — _ ~|@-mm)|
0 0 0
In the case of Gamma-Gamma model
_ a-1 Z+mp-—1 1 _
6(m7 97]7, Q) - 52 - 52 = ?(a - mp)‘ (22)

Table 3: Prior, likelihood, and corresponding posterior ¢, with respect to the informa-
tion prior, and traditionally reported prior effective sample size, E.SS, for some
models, where the hyper-parameter c, is very large constants chosen to inflate
the variances of the elements of € under the qq.

p(010)  f(Xml0)  am(6]0, Xn) ESS
Ga(@,b) Pois(6)  Ga(%+X,t+m) b
Ga(a@,b) Ga(mp,0) Ga(Z+mp,? + X) g

The methods proposed for computing the effective sample size are useful in Bayesian
analysis, particularly in settings with elicited priors or where the data consist of a rela-
tively small number of observations.

By computing ESSs, one may avoid the use of an overly informative prior in the sense
that the inference is dominated by the prior rather than the data. When eliciting a
prior from an area expert, ESS values may be provided as a readily interpretable form
of feedback. The area expert may use this as a basis to modify his/her judgments, if
desired, and this process may be iterated. The ESS can be used to confirm that the
chosen prior carries little information, as desired.

When interpreting or formally reviewing a Bayesian data analysis, the ESS of the
analyst’s prior provides a tool for evaluating the reasonableness of the analysis. In
particular, if it is claimed that a vague or uninformative prior was used, the ESS provides
an objective index to evaluate this claim. If appropriate, one may alert the analyst if
a prior appears to be overly informative. Similarly, if an informative prior based on
historical data is used in the analysis, reporting the ESS enables the reviewer to verify
that the prior data are given appropriate weight.

When interpreting or formally reviewing a Bayesian design, such as that given in a
clinical trial protocol, the ESS of the prior provides a tool for determining the extent to
which the prior may influence the design’s decisions.
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In designing outcome-adaptive experiments, when formulating a prior as part of a
Bayesian model to be used in a sequentially outcome-adaptive experiment, the ESS may
be used to calibrate the prior to ensure that the data, rather than the prior, will dominate
early decisions during the trial.

Other uses of ESS values include interpreting or reviewing others’ Bayesian analyses
or designs, using the ESS values themselves to perform sensitivity analyses in the prior’s
informativeness, and calibrating the parameters of outcome-adaptive Bayesian designs
(Morita et al, 2008).
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