
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v13n1p96

Describing software developers affectiveness
through Markov chain models
By Ortu et al.

Published: 02 May 2020

This work is copyrighted by Università del Salento, and is licensed un-
der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/

Electronic Journal of Applied Statistical Analysis
Vol. 13, Issue 01, May 2020, 96-127
DOI: 10.1285/i20705948v13n1p96

Describing software developers
affectiveness through Markov chain

models

Marco Ortu∗a, Claudio Conversanob, Michele Marchesic, Roberto
Tonellic, Steve Counselld, and Giuseppe Destefanisd

aUniversity of Cagliari, Department of Electronic and Electrical Engineering
bUniversity of Cagliari, Department of Business and Economics

cUniversity of Cagliari, Department of Computer Science and Mathematics
dBrunel University, Department Computer Science

Published: 02 May 2020

In this paper, we present an analysis of more than 500K comments from
open-source repositories of software systems. Our aim is to empirically de-
termine how developers interact with each other under certain psychological
conditions generated by politeness, sentiment and emotion expressed within
developers’ comments. Developers involved in an open-source projects do not
usually know each other; they mainly communicate through mailing lists,
chat rooms, and tools such as issue tracking systems. The way in which
they communicate affects the development process and the productivity of
the people involved in the project. We evaluated politeness, sentiment and
emotions of comments posted by developers and studied the communication
flow to understand how they interacted in the presence of impolite and neg-
ative comments (and vice versa). Our analysis shows that when in presence
of impolite or negative comments, the probability of the next comment be-
ing impolite or negative is 14% and 25%, respectively; anger however, has a
probability of 40% of being followed by a further anger comment. The result
could help managers take control the development phases of a system, since
social aspects can seriously affect a developer’s productivity. In a distributed
environment this may have a particular resonance.

∗Corresponding author: marco.ortu@diee.unica.it

c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index

Electronic Journal of Applied Statistical Analysis 97

keywords: data mining Markov chains human aspects in software engi-
neering

1 Introduction

The study of emotions and psychological status of developers and people involved in the
software-building system is gaining the attention of both practitioners and researchers
(Ke and Zhang, 2010). Feldt et al. (2008) focused on personality as one important
psychometric factor and presented initial results from an empirical study investigating
the correlation between personality and attitudes to software engineering processes and
tools.

Software is a complex artefact which requires sharing of knowledge, team building
and exchange of opinion between people. While it has been possible to standardise
classical industrial processes (e.g., car production), it is still difficult to standardise
software production. Immateriality plays a major role in the complexity of software and
despite attempts to standardise the software production process, software engineering is
still a challenging and open field. There are too many constraints to take into account.
Developers build an artefact that will be executed on a machine; software metrics, design
patterns, micro patterns and good practices help to increase the quality of a software
(Concas et al., 2013; Destefanis et al., 2012a,b), but developers are humans and prone
to human sensitivities. Coordinating and structuring developer teams is a vital activity
for software companies (Ortu et al., 2015c) and dynamics within a team have a direct
influence on group success; on the other hand, social aspects are intangible elements
which, if monitored, can help the team in reaching its goals. Researchers are increasingly
focusing their effort on understanding how the human aspects of a technical discipline
can affect the final results (Brief and Weiss, 2002; Erez and Isen, 2002; Graziotin et al.,
2015; Kaluzniacky, 2004).

Open-source development usually involves developers that voluntarily participate in
a project by contributing with code. The management of such developers could even be
more complex than the management of a team within a company, since developers are not
in the same place at the same time and coordination becomes more difficult. The absence
of face-to-face communication mandates the use of mailing lists, electronic boards, or
specific tools such as issue tracking systems. Being rude when writing a comment or
replying to a contributor can affect the cohesion of the group and the successfulness of
a project; equally a respectful environment is an incentive for new contributors joining
the project (Rigby and Hassan, 2007; Tourani et al., 2014a).

In this paper, we empirically analyze more than 500K comments from Ortu (Ortu
et al., 2015d, 2016b) to understand how agile developers behave when dealing with
polite/impolite or positive/negative (sentiment) issue comments. We empirically built
three Markov chain models with states for politeness (polite, neutral, impolite), sen-
timent (positive, neutral, negative), and emotions (joy, anger, love, sadness) for each
projects in our corpus and three general Markov chain which generalize our findings.
We are specifically interested in describing the current probability transitions of emo-

98 Ortu et al.

tions expressed in comments according to the actual state of the software project. We
aim to answer the following questions:

RQ1: Do developers change behaviour in the context of impolite/negative comments?

Developers tended to answer to impolite comments with a polite comment with higher
probability than impolite comments. Similar result applies for sentiment, developers
tended to answer to negative comments (negative in term of sentiment) with a positive
comment with higher probability than negative.

RQ2: What is the probability of shifting from comments holding positive emotions
to comments holding negative emotion?

Negative emotions such as sadness and anger tend to be followed by negative emotions
more than positive emotion are followed by positive emotions.
This paper is an extended version of our previous paper (Ortu et al., 2016a) accepted for
presentation at the 17th International Conference on Agile Software Development (XP
2016) in Edinburgh, Scotland, May 24-27, 2016. Compared with our XP 2016 paper,
this version extends the study for every single project present in the considered dataset.
We built 45 transition matrices (three for each system in the corpus) and explained how
we have obtained the three final general Markov chains for Politeness, Sentiment and
Emotion. The remainder of this paper is structured as follows: in the next section, we
provide a summary of related work. Section 3 describes the dataset used for this study
and our approach/rationale to evaluate affectiveness of comments posted by developers.
In section 4, we present the methodology used for building the Markov chains. In Section
5, we present the results and elaborate on the research questions we address in Section 6.
Section 7 discusses the threats to validity. We summarize the study findings in Section
8 and present detailed results about the 45 Markov chains in the appendix section.

2 Related Work

Several recent studies have demonstrated the importance and relationship of produc-
tivity and quality to human aspects associated with the software development process.
Destefanis et al. (2016); Ortu et al. (2015b) studied the effect of politeness and emotions
Ortu et al. (2015a) on the time required to fix any given issue. The authors demonstrated
that emotions did have an effect on the issue fixing time. Namely, results showed that
issue fixing time for polite issues was shorter than issue fixing time for impolite and
mixed-issues (polite and impolite issues). If someone is asked to accomplish a task in a
polite way, there is higher possibility for a relaxed collaboration and faster results. On
the other hand, impolite requests can easily generate discomfort, stress and burnout,
often negatively impacting the actual time taken to complete a given task. The study
also showed that a positive correlation existed between the percentage of polite com-
ments and Magnetism and Stickiness of a project (higher attractiveness) and that the

Electronic Journal of Applied Statistical Analysis 99

percentage of polite comments over time was (for the majority of the projects in our
corpus) seasonal and not random. Research has focused on understanding how the hu-
man aspects of a technical discipline can affect final results ((Brief and Weiss, 2002;
Erez and Isen, 2002; Kaluzniacky, 2004; Rousinopoulos et al., 2014)), and the effect of
politeness ((Novielli et al., 2014; Tan and Howard-Jones, 2014; Tsay et al., 2014)). The
Manifesto for Agile Development indicates that people and communications are more
essential than procedures and tools (Fowler et al., 2001). Several recent studies have
demonstrated the importance and relationship of productivity and quality to human
aspects associated with the software development process. Ortu et al. (2015b) studied
the effect of politeness and emotions (Ortu et al., 2015a) on the time required to fix
any given issue. The authors demonstrated that emotions did have an effect on the is-
sue fixing time. (Steinmacher et al., 2015) analyzed social barriers that obstructed first
contributions of newcomers (new developers joining an open-source project). The study
indicated how impolite answers were considered as a barrier by newcomers. These barri-
ers were identified through a systematic literature review, responses collected from open
source project contributors and students contributing to open source projects. Rigby
and Hassan (2007) analyzed, using a psychometrically-based linguistic analysis tool, the
five big personality traits of software developers in the Apache httpd server mailing list.
The authors found that the two developers that were responsible for the major Apache
releases had similar personalities and their personalities were different from other de-
velopers. Tourani et al. (2014b) evaluated the usage of automatic sentiment analysis
to identify distress or happiness in a development team. The authors mined sentiment
values from the mailing lists of two mature projects of the Apache software foundation
considering both users and developers. The results showed that sentiment analysis tools
obtained low precision on emails written by developers due to ambiguities in technical
terms and difficulties in distinguishing positive or negative sentences from neutral.
Mäntylä et al. (2016) explored the Valence - Arousal - Domincance (VAD) metrics and
their properties on 700,000 Jira issue reports containing over 2,000,000 comments. Using
a general-purpose lexicon of 14,000 English words with known VAD scores, the results
showed that issue reports of different type (e.g., Feature Request vs. Bug) had a fair
variation of Valence, while increase in issue priority (e.g., from Minor to Critical) typ-
ically increased Arousal. Furthermore, the results showed that as an issues resolution
time increased, so did the arousal of the individual the issue was assigned to. Finally,
the resolution of an issue increased valence, especially for the issue Reporter and for
quickly addressed issues.
Bazelli et al. (2013) analyzed questions and answers on stackoverflow.com to determine
the developer personality traits, using the Linguistic Inquiry and Word Count (Pen-
nebaker et al., 2001). The authors found that the top reputed authors were more extro-
verted and expressed less negative emotions than authors of down voted posts. Jurado
and Rodriguez (2015) gathered the issues of nine high profile software projects hosted on
GitHub. Through an analysis of the occurrence of Ekman (1992) basic emotions among
the projects and issues, the authors discovered that in open source projects, sentiments
expressed in the form of joy are % pervading and are present at almost one magnitude of
order more common than the other basic emotions. Still, more than 80% of the content

100 Ortu et al.

was not classified as exhibiting a high amount of sentiment. Several other studies have
been conducted using sentiment analysis and emotion mining for analyzing app reviews,
in order to gain insights such as ideas for improvements, user requirements and to an-
alyze customer satisfaction (e.g.,Guzman and Maalej, 2014; Maalej and Nabil, 2015).
Guzman et al. (2014) performed sentiment analysis of Githubs commit comments to in-
vestigate how emotions were related to a projects programming language, the commits
day of the week and time, and the approval of the projects. The analysis was performed
over 29 top-starred Github repositories implemented in 14 different programming lan-
guages. The results showed Java to be the programming language most associated with
negative affect. No correlation was found between the number of Github stars and the
affect of the commit messages. Garcia et al. (2013) analyzed the relation between the
emotions and the activity of contributors in the Open Source Software project Gentoo.
The case study built on extensive data sets from the projects bug tracking platform
Bugzilla, to quantify the activity of contributors, and its mail archives, to quantify the
emotions of contributors by means of sentiment analysis. The Gentoo project is known
for a period of centralization within its bug triaging community. This was followed by
considerable changes in community organization and performance after the sudden re-
tirement of the central contributor. The authors analyzed how this event correlated with
the negative emotions, both in bilateral email discussions with the central contributor,
and at the level of the whole community of contributors. The authors also extended
the study to consider the activity patterns of Gentoo contributors in general. They
found that contributors were more likely to become inactive when they expressed strong
positive or negative emotions in the bug tracker, or when they deviated from the ex-
pected value of emotions in the mailing list. The authors used these insights to develop
a Bayesian classifier which detected the risk of contributors leaving the project. Pletea
et al. (2014) studied security-related discussions on GitHub, as mined from discussions
around commits and pull requests. The authors found that security-related discussions
account for approximately 10% of all discussions on GitHub and that more negative
emotions were expressed in security-related discussions than in other discussions. These
findings confirmed the importance of properly training developers to address security
concerns in their applications as well as the need to test applications thoroughly for
security vulnerabilities in order to reduce frustration and improve overall project at-
mosphere. Panichella et al. (2015) presented a taxonomy to classify app reviews into
categories relevant to software maintenance and evolution, as well as an approach that
merges three techniques (Natural Language Processing, Text Analysis, Sentiment Anal-
ysis) to automatically classify app reviews into the proposed categories. The authors
showed that the combined use of these techniques achieves better results (a precision
of 75% and a recall of 74%) than results obtained using each technique individually
(precision of 70% and a recall of 67%). Gómez et al. (2012) performed an experiment
to evaluate whether the level of extraversion in a team influenced the final quality of
the software products obtained and the satisfaction perceived while this work was be-
ing carried out. Results indicated that when forming work teams, project managers
should carry out a personality test in order to balance the amount of extroverted team
members with those who are not extraverted. This would permit the team members to

Electronic Journal of Applied Statistical Analysis 101

feel satisfied with the work carried out by the team without reducing the quality of the
software products developed. Hidden Markov Models (HMMs) have been largely used
in application for speech recognition, handwriting recognition, bioinformatic, textures
and patterns detection. Markov Chains belong to the category of Observable Markov
models and this means that the states are directly visibile by an external observer and
that it it possible to relate a physical event to each state. HMMs extends these models
for cases in which the observation is a probabilistic function of a state. It is not possible
to see the physical event responsible for generating an observation, but it is possible to
observe only the result of the event. The model is not an observable stochastic process,
and it is possible to model it through a set of stochastic processes which produce the
observations sequence. Novielli (2010) used Hidden Markov Models as a formalism to
represent differences in the dialogue model among different categories of users or en-
gagement. The author proposed a corpus-based approach to train HMMs from natural
dialogues. The models were validated through a leave-one-out testing procedure and
real-time use of these models were implemented using a stepwise approach. The study
investigated whether and how it was possible to recognise the users level of engagement
by modeling the impact of the users attitude on the overall dialogue pattern. The paper
proposed an application of the described approach in the advice-giving domain. Results
presented HMMs as a promising and powerful formalism for representing differences in
the structure of the interaction with subjects experiencing different levels of engagement.
The main differences were observed during the persuasion phase, in which users clearly
differentiate their behavior according to their engagement in the advice-giving task. Wu
et al. (1998), proposed a corpus-based HMMs to model the intention of a sentence and
evaluated it investigating a spoken dialogue model for air travel information service.
Each intention was represented by a sequence of word segment categories determined
by a task-specific lexicon and a corpus. Five intention HMMs were defined during the
training procedure. In the intention identification process, the phrase sequence was fed
to each HMMs intention. Given a speech utterance, the Viterbi algorithm was used to
find the most likely intention sequences. The intention HMM considered the phrase fre-
quency and the syntactic and semantic structure in a phrase sequence. The experiments
were carried out using a test database from 25 speakers (15 male and 10 female), with
120 dialogues containing 725 sentences in the test database. The experimental results
showed that the correct response rate can achieve about 80.3% using intention HMMs.
Compared to the existing literature, the goal of this paper is to build Markov chain
models which describe how developers interact in a distributed environment evaluating
politeness, sentiment and emotions. Such models provide a mathematical view of the
behavioural aspects among developers.

3 Materials and Methods

3.1 Dataset

We built our dataset from fifteen open-source, publicly available projects from a dataset
proposed by Ortu et al. (2015d, 2016b) extracted from the Jira ITS of four popular open

102 Ortu et al.

source ecosystems (as well as the tools and infrastructure used for extraction), i.e., the
Apache Software Foundation, Spring, JBoss and CodeHaus communities.

The dataset hosts more than 1K projects, containing more than 700K issue reports
and more than 2 million issue comments. With such a wide dataset, the authors found
that comments posted by developers contain not only technical information, but also
valuable information about sentiments and emotions. Issue tracking systems store valu-
able data for testing hypotheses concerning maintenance, building statistical pre- diction
models and the social interactions of developers when interacting with peers. In par-
ticular, the Jira Issue Tracking System (ITS) is a proprietary tracking system that has
gained a tremendous popularity in the last years and offers unique features like a project
management system and the Jira agile kanban board.

The dataset by Ortu et al. (2015d) contains the following tables:

• ISSUES REPORT. It stores the information extracted from the issue reports.
Issues are associated with comments and attachments and history changes.

• ISSUES COMMENTS. It represents all the comments posted by users in a Jira
issue report. This table is associated with the ISSUES REPORT table.

• ISSUE BOT COMMENT. It represents automatically generated comments from
tools such as Jenkins or Jira itself.

• ISSUES FIXED VERSION. It records the software version of fixed issues.

• ISSUES AFFECTED VERSION. It records the software version affected by
issues.

• ISSUE ATTACHMENT. It represents all files attached to an issue report.

• ISSUE CHANGELOG ITEM. It represents all operations made on an issue
such as editing, updating, status changing, etc.

We selected the fifteen projects with the highest number of comments (from December
2002 to December 2013), from those projects which had a significant amount of activities
in their agile kanban-boards. The projects were developed following agile practices
(mainly continuous delivery and use of kanban-boards). Table 1 shows summary project
statistics.

3.2 Affective Metrics

Henceforward, we consider the term “affective metric” as a definition indicating all those
measures linked to human aspects and obtained from text written by developers (i.e.,
comments posted on issue tracking systems). This study is based on the affective metrics
sentiment, politeness and emotions used by Ortu et al. (2015a), which have been shown
being not correlated.

Electronic Journal of Applied Statistical Analysis 103

Project # of comments # of developers

HBase 91016 951

Hadoop Common 61958 1243

Derby 52668 675

Lucene Core 50152 1107

Hadoop HDFS 42208 757

Cassandra 41966 1177

Solr 41695 1590

Hive 39002 850

Hadoop Map/Reduce 34793 875

Harmony 28619 316

OFBiz 25694 578

Infrastructure 25439 1362

Camel 24109 908

Wicket 17449 1243

ZooKeeper 16672 495

Table 1: Selected Project Statistics

3.2.1 Sentiment.

We measured sentiment using the SentiStrength1 tool, which is able to estimate the
degree of positive and negative sentiment in short texts, even for informal language.
SentiStrength, by default, detects two sentiment polarizations:

• Negative: -1 (slightly negative) to -5 (extremely negative)

• Positive: 1 (slightly positive) to 5 (extremely positive)

The tool uses a lexicon approach based on a list of words to detect sentiment; Sen-
tiStrength was originally developed for the English language and was optimized for short
social web texts. We used the tool to measure the sentiment of developers in issue com-
ments.

3.2.2 Politeness.

To evaluate the level of politeness of comments related to a given issue, we used the
tool developed by Danescu-Niculescu-Mizil et al. (2013); the tool uses a machine learn-
ing approach and calculates the politeness of sentences providing, as a result, one of
two possible labels: polite or impolite. The tool provides a level of confidence related

1http://sentistrength.wlv.ac.uk

104 Ortu et al.

to the probability of a politeness class being assigned. To prepare the training set for
the machine learning approach, over 10,000 utterances were labeled using Amazon Me-
chanical Turk. They decided to restrict the residence of the annotators to the U.S.
and conducted a linguistic background questionnaire. However, the annotators analysed
comments written by authors from around the world and not only from the U.S. There-
fore, the possible bias introduced by annotators with a similar cultural background is
reduced and the different cultures of the developers involved in the analysis are con-
sidered. The use of the tool would have been problematic, if annotators were from the
U.S. and they had analysed only comments written by authors from the U.S. Danescu-
Niculescu-Mizil et al. (2013) evaluated the classifiers both in an in-domain setting, with a
standard leave-one-out cross validation procedure, and in a cross-domain setting, where
they trained on one domain and tested on the other.
They have compared two classifiers, a bag of words classifier (BOW) and a linguistic
informed classifier (Ling.) and used a human labellers as a reference point. Table 2
(from Danescu-Niculescu-Mizil et al., 2013) shows the accuracies of the two classifiers
for Wikipedia and Stack Exchange, for in-domain and cross-domain settings. Human
performance is included as a reference point.

In-domain Cross-domain

Train Wiki SE Wiki SE

Test Wiki SE SE Wiki

BOW 79.84% 74.47% 64.23% 72.17%

Ling. 83.79% 78.19% 67.53% 75.43%

Human 86.72% 80.89% 80.89% 86.72%

Table 2: Accuracies of the two classifiers for Wikipedia and Stack Exchange

We considered comments whose level of confidence was less than 0.5 as neutral (the
text did not convey either politeness or impoliteness). For each comment we assigned a
value according to the following rules:

• Value of +1 for comments marked as polite;

• Value of 0 for comments marked as neutral (confidence level<0.5);

• Value of -1 for comments marked as impolite.

For each issue in our dataset, we built a temporal series of comments, and using
the two tools we assigned a value of politeness and sentiment for each comment in the
series. Next, for each issue, we calculated, starting from the first comment posted, the
probability of having a polite/impolite/neutral following comment (for politeness), and a
positive/neutral/negative comment (for sentiment). We thus calculated the probability
of shifting from “polite” to “neutral” and vice versa; from “polite” to “impolite” and
vice versa; finally, from “neutral” to “impolite” and vice versa.

Electronic Journal of Applied Statistical Analysis 105

3.2.3 Emotion.

The presence of emotion in software engineering artifacts have been analysed by Deste-
fanis et al. (2016) and Ortu et al. (2015b).

Ortu et al. (2015a) provided a machine learning based approach for emotion detection
in developers’ comments based on Parrotts emotional framework, which consists of six
basic emotions: joy, sadness, love, anger, sadness, and fear. For each of the four emotions,
the authors built a dedicated Support Vector Machine classifier and used a manually
annotated corpus of comments and their emotion for training the machine learning
Classifiers, one for each emotion. The training set consisted of 4000 sentences (1000
for each emotion), manually annotated by three raters having a strong background in
computer science. Elfenbein and Ambady (2002) provided evidence that for members
of the same cultural and social group it is easier to recognise emotions than for people
belonging to different groups.

We used the emotion detection tool provided by Ortu et al. (2015a) to detect the
presence of sadness, anger, joy, love and neutral.

Table 3 shows several examples of emotions detected from comments in our dataset.

Comments Emotion

1. Thanks for your input! You’re, like, awesome

2. Thanks very much! I appreciate your efforts Love

3. I would love to try out a patch for [...]

1. I’m happy with the approach and the code looks good

2. great work you guys! Joy

3. Hope this will help in identifying more usecases

1. I will come over to your work and slap you

2. WT*, a package refactoring and class renaming in a
patch?

Anger

3. This is an - ugly - workaround

1. Sorry for the delay Stephen.

2. Sorry of course printStackTrace() wont work

3. wish i had pay more attention in my english class Sadness

now its pay back time :-(

4. Apache Harmony is no longer releasing. No need to fix
this, as sad as it is.

Table 3: Examples of comments expressing emotions.

Craggs and Wood (2004) argued that it is necessary to select a correct number of
unit types into which a dialogue can be segmented and to which annotation can be
applied, often the choice of unit is obvious, but this is not the case for emotion, since
“emotional episodes exist over an indistinct period of time, fading in and out and subtly

106 Ortu et al.

changing throughout a dialogue.” and proposed to distinguish between the intensity of
the emotion and its polarity using a two dimensional annotation scheme for emotion in
dialogue. The author claim that the scheme is equally applicable to dialogues conducted
in different domains and languages, but there is no evidence which supports this claim
in the software engineering context. In contrast to Craggs and Wood (2004), Murgia
et al. (2014) found that providing human raters with more context about an issue seems
to cause doubt (i.e., nuances) instead of more confidence in the identified emotions.

4 Affective Markov Chains

Markov Chains (MC) have been used to model behavioural aspects in social sciences (Jor-
dan, 1998; Snijders, 2001). Markov Chains provide a unique representation where the
transitions between the different states of Sentiment, Politeness and Emotion, extracted
from developers comments, can be modelled; it implicitly assumes “memorylessness”
(through the Markov property) and this simplifies our analysis. Furthermore the mod-
els allow a straightforward determination of probability transitions between emotional
states; this is crucial in determining how developer behaviour is influenced by other
developer moods

A Markov chain consists of X states and is a discrete-time stochastic process, a process
that occurs in a series of time-steps in each of which a random choice is made. A Markov
chain can be represented with graphs and/or matrices. The states can be represented
with circles (nodes or vertices) and directed edges (links) connecting node i and node j
if pij > 0.

From each node (or vertice) there is at least an out-coming edge: some nodes have
links connecting to themselves, some nodes cannot be connected with each other, while
some can be connected through bidirectional links. A probability pij is associated to
each connection i → j, defined as the transition probability from state i to j. The
following properties need to be satisfied for pij values:

pij ∈ [0, 1],
∑
j

pij = 1 ∀i

A (square) transition matrix P contains only positive elements, with sum equal to 1
for each row.

p11 indicates the probability of staying in the state 1, p12 indicates the probability of
moving from state 1 to state 2 and p1n indicates the probability of moving from state 1
to state n.

We built a MC for each affective metric: sentiment, politeness and emotion for each
project in the corpus. Then, as a second step, we built a comprehensive and general MC
for each affective metric considering all the issue reports from the fifteen projects as if
they were related to only one project. Figure 1 shows the steps in building the politeness
MC as an example for an issue report in which three developers posted five comments.

As a first step, we used the politeness tool (Danescu-Niculescu-Mizil et al., 2013) to
label each comment as polite, impolite or neutral. Next we collected the politeness labels

Electronic Journal of Applied Statistical Analysis 107

Figure 1: Politeness’ Markov’s chain Schema

of the issue report, considering the set of labels as a politeness sequences of K -1 pair-wise
politeness-transitions ([P,N,I,I,P] in the example), where K is the number of comments
in the issue report.

In this example, the issue report has 4 transitions: polite-neutral, neutral-impolite,
impolite-impolite and impolite-polite. Let us also consider other two transition sequences
obtained from other two issues reports, [I,I] and [P,P]. Finally, we counted the frequency
of each politeness-transition obtaining the corresponding MC. In our example, if we
consider the polite state, we have two transition, P-N and P-P; hence, the transition
from polite to impolite state will have a probability of 0 and the transitions to polite and
neutral state probability 0.5.

The MC for sentiment is built in a similar way to the politeness MC. The MC which
models emotion transitions is slightly different; however, a comment can be polite, impo-
lite or neutral when considering politeness, but it might contain more than one emotion.
We used the emotion classifier proposed by Ortu et al. (2015a) to analyze each comment
and to attribute to it: Anger, Sadness, Joy and/or Love. For example, if a comment is
labeled as containing anger and sadness and the next labeled as containing no emotion
(neutral), then we consider two transitions anger -neutral and sadness-neutral.

In the appendix section, we present the MCs obtained for every single project of the
corpus using the transition matrix explained at the beginning of this section. P is the
transition matrix for Politeness, S for Sentiment and E for Emotions. The states for P,

108 Ortu et al.

S and E are the following:

P =
[
polite neutral impolite

]
S =

[
positive neutral negative

]
E =

[
sadness anger joy love neutral

]
5 Results

Existing research has already explored links between productivity (as measured by issue
fixing time) and discrete emotions, sentiment and politeness (Destefanis et al., 2016;
Ortu et al., 2015a). The dynamic of an issue resolution involves complex interactions
between different stakeholders such as users, developer and managers. A model able to
describe such interactions could inform in the decision making process. The underlying
assumption is that a model of social interaction can be used to understand the impact
of a certain comment on the whole issue resolution discussion.
As presented in Sec. 4, we built three MCs for every project in the corpus and three
general MCs for politeness, sentiment and emotions to understand how developers re-
acted to impolite/negative comments when they discuss an issue resolution.

RQ1: Do developers change behaviour in the context of impolite/negative
comments?

5.1 Politeness

Figure 2 shows the general Politeness’ MC describing the probability of changing from a
state to another. Figures 3, 4, 5, show the boxplots and beanplots (Kampstra et al., 2008)
obtained considering all the projects in the corpus. Each single boxplot and beanplot
shows the statistics for an array of 15 probabilities (one probability for project).

Table 4: Transition Matrix for Politeness MC, with absolute transitions

POLITE NEUTRAL IMPOLITE

POLITE 46049 88398 8917

NEUTRAL 23623 89969 9636

IMPOLITE 17510 71436 14349

It is interesting to see that the transition probability values of the general MC (built
considering all the issue reports of our corpus together) are quite close to the values of
the medians (Figures 3,4,5) obtained considering every single project of the corpus.

Electronic Journal of Applied Statistical Analysis 109

NEUTRAL

IMPOLITE

POLITE

0.32

0.73

0.14

0.62

0.06

0.69

0.08

0.19

0.17

POLITENESS

Figure 2: Politeness MC for all Projects

The “neutral” state is quite stable. If a comment is classified as “neutral”, communi-
cation flow among the developers involved tends to stay neutral, with a 73% probability.
There is an 8% probability of a state-shift from “neutral” to “impolite” and a 19% prob-
ability of a state-shift from “neutral” to “polite”. Starting from a “polite” state, the
probability of shifting to the “impolite” state is quite low, 6%. There is a high probabil-
ity of moving to the “neutral” state (62%). The probability of staying in the same state
is 32%.

Starting from an “impolite” state, the probability of moving to a “polite” state is 17%.
This is higher than the probability of moving from a “polite” state to “impolite”. It is
interesting to see that the probability of staying in an “impolite” state is only 14% (far
lower than the probabilities of staying in both “neutral” and “polite states), and that
there is a 70% of probability of a shift from “impolite” to “neutral”.

Figures 3, 4, 5, show the presence of outliers. The projects Wicket and Cassandra
are outliers for the transition neutral-neutral, 0.3454 and 0.8567 respectively, while the
median for this transition is slightly above 0.7. Wicket is an outlier for all the polite
transitions:

PWicket =

 0.34 0.3269 0.3331

0.3089 0.3454 0.3457

0.2889 0.3478 0.3633


All the probability values look very similar, and transitions from a state to another have
quite the same probability.

Cassandra is also outlier for the transitions polite-polite and impolite-neutral. There

110 Ortu et al.

Figure 3: Transitions from other states to Neutral state: Beanplot

Figure 4: Transitions from other states to Polite state: Beanplot

Electronic Journal of Applied Statistical Analysis 111

Figure 5: Transitions from other states to Impolite state: Beanplot

is only 11.13% of probability to stay in the Polite state after a Polite comment.

PCassandra =

 0.1113 0.8205 0.0682

0.0667 0.8567 0.0766

0.0697 0.8345 0.0958


For Cassandra, the Neutral state is the one with the highest probabilities.

5.2 Sentiment

Figures 7, 8, 9, show the boxplots and beanplots obtained considering all the projects
in the corpus. Each single boxplot and beanplot shows the statistics for an array of 15
probabilities (one probability for project). Figure 6 shows the general Sentiment MC
which describes the probability of changing from one state to another.

Table 5: Transition Matrix for Sentiment MC, with absolute transitions

POSITIVE NEUTRAL NEGATIVE

POSITIVE 27050 49221 12784

NEUTRAL 66688 164318 44151

NEGATIVE 11178 28498 13331

Also in this case, it is interesting to see that the transition probability values of the
general MC (built considering all the issue reports of our corpus together) are quite close

112 Ortu et al.

Figure 6: Sentiment MC for all Projects

to the values of the medians (Figures 7, 8, 9) obtained considering every single project
of the corpus.

The “neutral” state in this case is also quite stable. If a comment is classified as
“neutral”, communication flow among developers tends to stay neutral, with a 60%
probability. There is a 16% probability of a state-shift from “neutral” to “negative” and
a 24% probability of a state-shift from “neutral” to “positive”.

Starting from a “positive” state, the probability of a shift to the “negative” state is
14%. The probability of a move to the “neutral” state is 55%. The probability of staying
in the same state is 31%.

From a “negative” state, the probability of moving to a “positive” state is 21%. In
this case, the value is higher than the probability of moving from a “positive” state to a
“negative” one. The probability of staying in a “negative” state is 25% (also lower than
the probabilities of staying in both “neutral” and “positive” states), and that there is a
54% probability to shift from “negative” to “neutral”.

The outliers occur for the transition negative-negative and are the following systems:
Derby, OFBiz, Infrastructure and Camel.

We removed the outliers and we found no significant changes on the results.

For Derby, the probability of staying in the negative state (after a negative) is higher
than 30%, while for OFBiz, Infrastructure and Camel is lower than 20%, as shown in
the following transition matrices.

Electronic Journal of Applied Statistical Analysis 113

Figure 7: Transitions from other states to Neutral state: Beanplot

Figure 8: Transitions from other states to Positive state: Beanplot

114 Ortu et al.

Figure 9: Transitions from other states to Negative state: Beanplot

SDerby =

 0.3252 0.5128 0.1619

0.2392 0.5617 0.1991

0.1892 0.4866 0.3242

SOFBiz =

 0.3396 0.5577 0.1027

0.2699 0.6287 0.1014

0.272 0.5615 0.1665



SCamel =

 0.3151 0.5905 0.0944

0.287 0.611 0.102

0.2244 0.5977 0.1779


RQ2: What is the probability of shifting from comments holding positive

emotions to comments holding negative emotion?

The first research question showed how developers tended to respond more positively
than negatively when considering politeness and sentiment. It is interesting to analyze
if the same behaviours occur for emotions.
We built the MCs for emotions as presented in Sec. 4 to analyze the probabilities of
shifting from an emotion to another when developers communicate.

Negative emotions such as sadness and anger tend to be followed by negative emotions
more than positive emotion are followed by positive emotions. Table 6 shows the general
emotion transition matrix (a single emotion transition matrix E, for each project in the
corpus, is presented in the Appendix section). As for previous MCs, the numbers repre-
sent the probability of a comment containing emotion X being followed by a comment

Electronic Journal of Applied Statistical Analysis 115

Table 6: Transition Matrix for Emotion MC

SADNESS ANGER JOY LOVE NEUTRAL

SADNESS 26.11% 4.49% 7.88% 6.45% 55.08%

ANGER 13.79% 40.11% 5.61% 4.10% 36.39%

JOY 17.46% 4.43% 11.89% 12.22% 54.00%

LOVE 15.84% 3.84% 8.29% 15.59% 56.44%

NEUTRAL 16.42% 4.29% 7.64% 7.80% 63.85%

Table 7: Transition Matrix for Emotion MC, with absolute transitions

SADNESS ANGER JOY LOVE NEUTRAL

SADNESS 19148 3293 5779 4731 40396

ANGER 16390 47674 6664 4873 43257

JOY 6385 1620 4347 4470 19748

LOVE 3490 845 1826 3436 12433

NEUTRAL 41142 10749 19147 19547 160018

ANGERJOY SADNESS

NEUTRAL

LOVE

0.04

0.4

0.05

0.36

0.14

0.04

0.04 0.04

0.04

Figure 10: Anger Markov chain. For simplicity only edges from/to anger are diplayed

116 Ortu et al.

containing emotion Y (e.g., a comment expressing sadness has a probability of 26.11%
of being followed by another sadness comment).

As confirmed by other studies (Murgia et al., 2014), most of the comments expressing
emotion are likely to be followed by neutral comments, with the exception of anger.
Figure 10 is a graphical representation of the portion of Table 6 for the anger emo-
tion showing it has probability of 40% of being followed by an anger comment against
probability of 36% to be followed by a neutral comment.

6 Discussion

In this paper, we presented MC models describing how developers interacted with each
other, analyzing comments posted on an issue tracking system. We selected the 15 most
commented projects from the Jira issue report dataset of Ortu et al. (2015d, 2016b),
which contained 700,000 issues from 1000 open source projects and two million issue
comments. Building software (either for a company or volunteering for an open source
project) is, nowadays, a collaborative activity. Activities in which there are groups of
people working together to reach a given goal, need structure and coordination. Tools
such as issue tracking systems provide enormous help in managing activities and people
and such tools are becoming valuable sources of information for both managers and
researchers. Furthermore, the study of “behavioural software engineering” (Lenberg
et al., 2015) is gaining increasing importance as a key factor for improving (in every sense
and direction) the software development process. Conflicts affect developer productivity
and managers are certainly interested in knowing how to prevent, avoid, or, in the
worst case, manage conflicts which might occur. We knew from previous studies that
information mined from software repositories, like issue repositories, contained emotions
(Murgia et al., 2014) and could offer a way to investigate productivity during the software
development process (Destefanis et al., 2016; Ortu et al., 2015a,b).

The premise for this study was that productivity had been shown to be higher when
developers were motivated, polite and work in a good “frame of mind” (Destefanis et al.,
2016; Graziotin et al., 2014; Ortu et al., 2015a). Therefore, we wanted to build a baseline
model of “what is going on” in a generic development environment. The 15 projects in
our study were selected looking only at the number of comments posted by developers on
the issue tracking system, and without any other specific reason related to affectiveness
management. We had no pre-conceived notions of what kind of results we would obtain
and wanted to understand if a self adjustment toward higher productivity was in the
nature of developer interaction. More generally, we wanted to understand the starting
point for affectiveness in a software development environment, considering that politeness
and good manners can be related to higher productivity.

Considering politeness, we found that the probability of moving to a polite state from
an impolite state was higher than vice versa (17% against 6%). Also, for sentiment,
we found that the probability of moving to a positive state from a negative state was
higher than the probability of moving from a positive state to a negative (21% against
14%). From a managerial point of view, both polite and positive states should be

Electronic Journal of Applied Statistical Analysis 117

preferred (because they are related to higher productivity) and actions should be taken
to encourage and help all people involved in the development process to stay in those two
states. An example of those actions could be related to (but not limited to) an optimized
communication environment aiming at conflict minimization, a balanced workload for
each developer, updated workstations and an appealing working environment.

We also found several outliers for both politeness and sentiment. As highlighted in
Section 5.1, Wicket and Cassandra were outliers for the transition: neutral-neutral;
Wicket was also an outlier for all polite transitions and Cassandra for the transitions:
polite-polite and impolite-neutral. Derby, OFBiz, Infrastructure and Camel were outliers
for the transition: negative-negative (see Section 5.2). We manually investigated the
issue tracking system of the outlier projects and several factors could be held responsible.
One factor could be the different distributions of JIRA maintenance types and issue
priorities. Destefanis et al. (2016) showed that different issue priorities and maintenance
types were related to different levels of politeness. Bug issue typologies were those with
lower politeness. When something is broken and needs to be fixed, the situation is
less conducive to politeness and could consequently generate impolite reactions. On
the other hand, New Feature issue typologies were those with higher politeness; Trivial
issue typologies were those characterised by lower politeness (these might be related
to minor programming mistakes and/or poor knowledge of programming practices). A
further factor could be related to the number of developers involved in the projects and
the workload distributed among those developers. Ortu et al. (2015c) highlighted the
presence of Paretos law in projects developed using Jira (20% of developers undertaking
80% of the issue resolution) and showed that there were only a few communities taking
care of the majority of issues. OFbiz, Infrastructure, Camel and Wicket also have a
similar (lower) number of comments and this could have affected our analysis.

Considering emotions, we found that the probability of moving from the anger state
to positive states like joy and love, was quite low (5% and 4% respectively), while there
was a very high probability of staying in the anger state (40%) and moving to the neutral
state (36%). The probability of moving from anger to sadness was 14% and this result
shows that, in our corpus, it is more difficult to drift away from negative emotions. The
highly cited paper of Baumeister et. al Baumeister et al. (2001), does not find a counter-
example to the results we obtained considering emotions. Several studies have showed
how emotional states can be transferred to others; the spread of emotions was studied
using data from a large social network collected over a 20 year period, suggesting that
longer-lasting moods such as happiness and depression can be transferred over networks
(Fowler and Christakis, 2008).

Fan et al. (2016) analyzed millions of tweets in Weibo, a Twitter-like service in China,
finding that anger was more contagious than joy. Kramer et al. (2014) performed an
experiment with people on Facebook (the way in which developers interact on Jira has
similarities with Facebook) and tested whether emotional contagion occurred outside of
in-person interaction between individuals by reducing the amount of emotional content
in a News Feed. When positive expressions were reduced, people produced fewer positive
posts and more negative posts; when negative expressions were reduced, the opposite
trend occurred. The results also suggested that in-person interaction and non-verbal

118 Ortu et al.

cues were not strictly necessary for emotional contagion. Ferrara and Yang (2015) used
Twitter as a case study and found that negative messages spread faster than positive
ones, but positive ones reached larger audiences, suggesting that people are more inclined
to share positive contents, the so-called positive bias.

Predicting a shift toward impolite or negative states can help managers in taking
actions aimed at keeping the general mood high and relaxed, lowering and preventing
conflicts and obtaining higher productivity as a result. The results presented in this study
can be also used as a baseline for comparing the “as-is” state of other projects/companies.
Models such as MCs presented in this study could also be helpful when defining teams
of developers. Knowing the profile (from a politeness point of view) of developers might
provide hints for creating more team balance.

7 Threats to validity

Several threats to validity need to be considered. Threats to external validity are related
to generalisation of our conclusions. With regard to the system studied in this work, we
considered only open-source systems and this could affect the generality of the study; our
results are not meant to be representative of all environments or programming languages.
Commercial software is typically developed using different platforms and technologies,
with strict deadlines and cost limitations and by developers with different experience.
Politeness, sentiment and emotions measures are approximations given the challenges of
natural language and subtle phenomena like sarcasm. To deal with these threats, we
used SentiStrength form measuring sentiment, politeness tool (Danescu-Niculescu-Mizil
et al., 2013) and Ortu et al. (2015a) for measuring politeness. While thepoliteness tool
(Danescu-Niculescu-Mizil et al., 2013) has been trained using Stack Overflow, hence
is reliable in the software engineering domain, SentiStreght has not been trained on
software engineering data and its application in the software engineering context can be
problematic (Jongeling et al., 2015; Novielli et al., 2015).

Threats to internal validity concern confounding factors that could influence the ob-
tained results. Since the comments used in this study were collected over an extended
period from developers unaware of being subject to analysis, we are confident that the
emotions we mined are genuine. Confounds could have affected validity of the results
for our research questions, since the number of developers involved in discussing issues
might differ, as well as severity and complexity of an issue under analysis. This study
is focused on text written by agile developers for developers. To correctly depict the
affectiveness embedded in such comments, it is necessary to understand the developers’
dictionary and slang.

The use of Markov’s chains greatly simplifies the model, in particular the memory less
property assumes that a particular transaction is only affected by the current state. In a
context where a transaction models the emotion of next comment given the emotion of
the current comment, this might seem to simplistic, the emotions expressed in a comment
might carry the emotional state influenced by previous comments. This assumption is
supported by Murgia et al. (2014) for measuring emotions. In this study we performed

Electronic Journal of Applied Statistical Analysis 119

an empirical analysis to quantify how emotions are expressed in online discussions by
developer. In this preliminary study we evaluated to which extent human beings are able
to recognize emotion in written text. We performed a rating experiment and evaluated
the overall raters agreement using Cohens K coefficient. The experiment consisted of two
phases: 1) the rater had to rate a single comment, marking which emotions he was able to
detect, 2) the rater had to rate a single comment, but he was provided with context (all
previous comments). From this experiment we found that the agreement on the rating
was much higher in phase 1, without context. Since our emotion detection tool was
trained using the golden set of our previous study, we assumed that the classification in
not affected by context justifying the use of memory less models such as Markovs chains.
The (implicit) assumption of time-homogeneity of transaction is another simplification
of our model, different stages of the project such as approaching deadlines or post-release
stages might lead to comments polarized toward positive or negative emotions.

8 Conclusions and future work

This paper presented an analysis of more than 500K comments from open-source issue
tracking system repositories. We empirically determined how developers interacted with
each other under certain psychological conditions generated by politeness, sentiment and
emotions of a comment posted on a issue tracking system. Results showed that when
in the presence of impolite or negative comments, there is higher probability for the
next comment to be neutral or polite (neutral or positive in case of sentiment) than
impolite or negative. This fact demonstrates that developers, in the dataset considered
for this study, tended to resolve conflicts instead of increasing negativity within the
communication flow. This is not true when we consider emotions; negative emotions are
more likely to be followed by negative emotions than positive.
Markov models provide a mathematical description of developer behavioural aspects
and the result could help managers take control the development phases of a system
(expecially in a distributed environment), since social aspects can seriously affect a
developer’s productivity. As future works we plan to investigate possible links existing
between software metrics and emotions, to better understand the impact of affectiveness
on software quality.

9 Acknowledgement

The research presented in this paper was partly funded by the Engineering and Physical
Sciences Research Council (EPSRC) of the UK under grant ref: EP/M024083/1.

10 Appendix

In this section we present all the matrices for all the fifteen systems in our corpus. P
is the transition matrix for Politeness, S for Sentiment and E for Emotions. The states
for P, S and E are the following:

120 Ortu et al.

P =
[
polite neutral impolite

]
S =

[
positive neutral negative

]
E =

[
sadness anger joy love neutral

]
The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for HBase.

PHBase =

 0.3594 0.5832 0.0574

0.218 0.7077 0.0743

0.1926 0.7036 0.1038

SHBase =

 0.2576 0.5863 0.1561

0.2016 0.6435 0.1549

0.1783 0.5717 0.25



EHBase =


0.203 0.2063 0.0686 0.0486 0.4736

0.127 0.4388 0.0508 0.0326 0.3508

0.1414 0.179 0.1578 0.0562 0.4656

0.1396 0.1787 0.0856 0.1243 0.4719

0.1349 0.1999 0.0691 0.0507 0.5454


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Hadoop Common.

PHCommon =

 0.293 0.6363 0.0707

0.189 0.7275 0.0834

0.1725 0.7163 0.1112

SHCommon =

 0.2953 0.5421 0.1626

0.2519 0.5704 0.1778

0.2197 0.5145 0.2658



EHCommon =


0.2716 0.0127 0.0875 0.0695 0.5587

0.2568 0.0309 0.0927 0.0888 0.5309

0.1593 0.0095 0.0989 0.1542 0.5781

0.1608 0.0081 0.0801 0.1283 0.6227

0.1638 0.008 0.0858 0.1042 0.6382


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Derby.

PDerby =

 0.3544 0.6024 0.0432

0.2468 0.6925 0.0607

0.2138 0.6848 0.1014

SDerby =

 0.3252 0.5128 0.1619

0.2392 0.5617 0.1991

0.1892 0.4866 0.3242



Electronic Journal of Applied Statistical Analysis 121

EDerby =


0.288 0.0097 0.0723 0.0931 0.5369

0.2396 0.0685 0.0954 0.0954 0.5012

0.2206 0.0126 0.0974 0.1705 0.4989

0.218 0.0064 0.0807 0.1554 0.5395

0.2152 0.0067 0.07 0.0824 0.6257


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Lucene Core.

PLCore =

 0.3558 0.5839 0.0603

0.2439 0.6706 0.0854

0.2011 0.6398 0.1591

SLCore =

 0.2908 0.5636 0.1456

0.2148 0.6255 0.1596

0.1979 0.5587 0.2434



ELCore =


0.3157 0.0378 0.1009 0.0479 0.4977

0.2578 0.1858 0.1202 0.0389 0.3972

0.2131 0.0331 0.1566 0.0765 0.5206

0.1969 0.0263 0.1057 0.1139 0.5572

0.1975 0.0287 0.1065 0.0541 0.6132


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Hadoop HDFS.

PH−HDFS =

 0.2944 0.6446 0.061

0.18 0.7504 0.0697

0.1737 0.6816 0.1447

SH−HDFS =

 0.3431 0.4903 0.1666

0.2665 0.5403 0.1932

0.229 0.4853 0.2857



EH−HDFS =


0.2611 0.011 0.1126 0.063 0.5523

0.2654 0.0192 0.1 0.0654 0.55

0.1579 0.0073 0.1206 0.1699 0.5443

0.149 0.0033 0.1227 0.1301 0.5949

0.1628 0.0061 0.1171 0.0793 0.6347


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Cassandra.

PCassandra =

 0.1113 0.8205 0.0682

0.0667 0.8567 0.0766

0.0697 0.8345 0.0958

SCassandra =

 0.2231 0.5766 0.2003

0.1962 0.5989 0.2049

0.164 0.5615 0.2746



122 Ortu et al.

ECassandra =


0.2838 0.0126 0.0583 0.0245 0.6208

0.2308 0.0398 0.0584 0.0292 0.6419

0.2073 0.0072 0.0945 0.0287 0.6623

0.223 0.0068 0.0689 0.0568 0.6446

0.1923 0.0093 0.0605 0.0274 0.7104


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Solr.

PSolr =

 0.3226 0.6036 0.0738

0.2197 0.6791 0.1012

0.1684 0.6651 0.1665

SSolr =

 0.2562 0.5936 0.1502

0.195 0.6545 0.1505

0.1868 0.5664 0.2468



ESolr =


0.296 0.0131 0.0792 0.0453 0.5665

0.2884 0.0344 0.0794 0.0476 0.5503

0.216 0.0137 0.1284 0.0612 0.5806

0.1622 0.0056 0.0783 0.085 0.6689

0.1792 0.0089 0.0682 0.0533 0.6904


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Hive.

PHive =

 0.3344 0.593 0.0726

0.1755 0.7404 0.0841

0.1591 0.6896 0.1513

SHive =

 0.3445 0.5201 0.1354

0.2458 0.6195 0.1347

0.1862 0.5451 0.2687



EHive =


0.2165 0.0793 0.0778 0.0724 0.5541

0.0856 0.4896 0.0446 0.0572 0.323

0.1294 0.06 0.0902 0.2301 0.4904

0.1117 0.1141 0.0759 0.1558 0.5425

0.1169 0.0842 0.0801 0.1091 0.6096


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Hadoop Map/Reduce.

PH−M/R =

 0.327 0.615 0.058

0.212 0.716 0.072

0.208 0.691 0.101

SH−M/R =

 0.3156 0.5191 0.1653

0.2537 0.5631 0.1832

0.2385 0.4837 0.2778



Electronic Journal of Applied Statistical Analysis 123

EH−M/R =


0.2632 0.0134 0.0852 0.0783 0.5599

0.2477 0.052 0.0734 0.0917 0.5352

0.1568 0.0095 0.1093 0.1901 0.5344

0.1604 0.0092 0.0776 0.1682 0.5846

0.161 0.0093 0.0929 0.1052 0.6317


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Harmony.

PHarmony =

 0.2437 0.6905 0.0658

0.1396 0.7865 0.0739

0.121 0.7739 0.1051

SHarmony =

 0.3552 0.5462 0.0987

0.2567 0.5818 0.1615

0.1983 0.5234 0.2783



EHarmony =


0.1961 0.0145 0.0477 0.1176 0.6241

0.1289 0.2607 0.0344 0.0831 0.4928

0.1265 0.0123 0.0835 0.1265 0.6511

0.0977 0.0051 0.0615 0.297 0.5386

0.1435 0.0117 0.0548 0.1357 0.6544


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for OFBiz.

POFBiz =

 0.3437 0.5833 0.0729

0.1787 0.7478 0.0734

0.1506 0.5399 0.3096

SOFBiz =

 0.3396 0.5577 0.1027

0.2699 0.6287 0.1014

0.272 0.5615 0.1665



EOFBiz =


0.275 0.0091 0.0793 0.1085 0.5282

0.262 0.0374 0.0963 0.1283 0.4759

0.2286 0.0062 0.0885 0.1592 0.5175

0.1754 0.0086 0.0809 0.2263 0.5088

0.1916 0.0094 0.0668 0.1533 0.5789


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Infrastracture.

PInf =

 0.2479 0.6768 0.0753

0.1661 0.747 0.087

0.1499 0.7127 0.1374

SInf =

 0.2922 0.5972 0.1106

0.2649 0.6109 0.1242

0.2401 0.5636 0.1962



EInf =


0.2388 0.0069 0.0659 0.0862 0.6022

0.2407 0.0093 0.037 0.1111 0.6019

0.1776 0.0088 0.1151 0.1346 0.5639

0.1499 0.0035 0.0826 0.1194 0.6447

0.181 0.0061 0.0645 0.1166 0.6319



124 Ortu et al.

The following matrices are the transition matrices for Politeness, Sentiment and Emotion
for Camel.

PCamel =

 0.2949 0.6359 0.0692

0.2174 0.6857 0.0969

0.1607 0.6693 0.17

SCamel =

 0.3151 0.5905 0.0944

0.287 0.611 0.102

0.2244 0.5977 0.1779



ECamel =


0.1651 0.078 0.0746 0.0698 0.6125

0.0902 0.5499 0.0438 0.0396 0.2765

0.1213 0.0936 0.0893 0.0841 0.6118

0.1297 0.0692 0.0701 0.1076 0.6234

0.1175 0.0586 0.0634 0.0707 0.6898


The following matrices are the transition matrices for Politeness, Sentiment and Emotion
for ZooKeeper.

PZooK =

 0.323 0.6278 0.0493

0.2459 0.6916 0.0625

0.2357 0.6798 0.0845

SZooK =

 0.2989 0.5417 0.1593

0.2499 0.5507 0.1994

0.2279 0.507 0.2651



EZooK =


0.158 0.0008 0.0145 0.0015 0.8252

0.1333 0.0667 0 0 0.8

0.1588 0.0059 0.0471 0.0059 0.7824

0.0714 0 0 0.0714 0.8571

0.0987 0.0008 0.0134 0.0011 0.886


The following matrices are the transition matrices for Politeness, Sentiment and Emo-

tion for Wicket.

PWicket =

 0.34 0.3269 0.3331

0.3089 0.3454 0.3457

0.2889 0.3478 0.3633

SWicket =

 0.2638 0.5569 0.1793

0.2208 0.5795 0.1997

0.1984 0.5393 0.2623



EWicket =


0.2683 0.0113 0.0416 0.0664 0.6123

0.1885 0.0246 0.0656 0.0574 0.6639

0.2299 0.0125 0.0588 0.0481 0.6506

0.2096 0.0092 0.0607 0.1103 0.6103

0.1994 0.0096 0.0523 0.0664 0.6722


References

Baumeister, R. F., Bratslavsky, E., Finkenauer, C., and Vohs, K. D. (2001). Bad is
stronger than good. Review of general psychology, 5(4):323.

Electronic Journal of Applied Statistical Analysis 125

Bazelli, B., Hindle, A., and Stroulia, E. (2013). On the personality traits of stackoverflow
users. In Software Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 460–463. IEEE.

Brief, A. P. and Weiss, H. M. (2002). Organizational behavior: Affect in the workplace.
Annual review of psychology, 53(1):279–307.

Concas, G., Destefanis, G., Marchesi, M., Ortu, M., and Tonelli, R. (2013). Micro
patterns in agile software. In Agile Processes in Software Engineering and Extreme
Programming: 14th International Conference, XP 2013, Vienna, Austria, June 3-7,
2013, Proceedings, volume 149, page 210. Springer.

Craggs, R. and Wood, M. (2004). A two dimensional annotation scheme for emotion in
dialogue. In Proceedings of AAAI spring symposium: exploring attitude and affect in
text, volume 102.

Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., and Potts, C.
(2013). A computational approach to politeness with application to social factors.
In Proceedings of ACL.

Destefanis, G., Ortu, M., Counsell, S., Swift, S., Marchesi, M., and Tonelli, R. (2016).
Software development: do good manners matter? PeerJ Computer Science, 2:e73
https://doi.org/10.7717/peerj-cs.73.

Destefanis, G., Tonelli, R., Concas, G., and Marchesi, M. (2012a). An analysis of anti-
micro-patterns effects on fault-proneness in large java systems. In Proceedings of the
27th Annual ACM Symposium on Applied Computing, pages 1251–1253. ACM.

Destefanis, G., Tonelli, R., Tempero, E., Concas, G., and Marchesi, M. (2012b). Micro
pattern fault-proneness. In Software Engineering and Advanced Applications (SEAA),
2012 38th EUROMICRO Conference on, pages 302–306. IEEE.

Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3):169–200.

Elfenbein, H. A. and Ambady, N. (2002). On the universality and cultural specificity of
emotion recognition: a meta-analysis. Psychological bulletin, 128(2):203.

Erez, A. and Isen, A. M. (2002). The influence of positive affect on the components of
expectancy motivation. Journal of Applied Psychology, 87(6):1055.

Fan, R., Xu, K., and Zhao, J. (2016). Easier contagion and weaker ties make anger
spread faster than joy in social media. arXiv preprint arXiv:1608.03656.

Feldt, R., Torkar, R., Angelis, L., and Samuelsson, M. (2008). Towards individualized
software engineering: empirical studies should collect psychometrics. In Proceedings
of the 2008 international workshop on Cooperative and human aspects of software
engineering, pages 49–52. ACM.

Ferrara, E. and Yang, Z. (2015). Quantifying the effect of sentiment on information
diffusion in social media. PeerJ Computer Science, 1:e26.

Fowler, J. H. and Christakis, N. A. (2008). Dynamic spread of happiness in a large
social network: longitudinal analysis over 20 years in the framingham heart study.
Bmj, 337:a2338.

Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software Development,

126 Ortu et al.

9(8):28–35.

Garcia, D., Zanetti, M. S., and Schweitzer, F. (2013). The role of emotions in contributors
activity: A case study on the gentoo community. In Cloud and Green Computing
(CGC), 2013 Third International Conference on, pages 410–417. IEEE.

Gómez, M. N., Acuña, S. T., Genero, M., and Cruz-Lemus, J. A. (2012). How does
the extraversion of software development teams influence team satisfaction and soft-
ware quality?: A controlled experiment. International Journal of Human Capital and
Information Technology Professionals (IJHCITP), 3(4):11–24.

Graziotin, D., Wang, X., and Abrahamsson, P. (2014). Happy software developers solve
problems better: psychological measurements in empirical software engineering. PeerJ,
2:e289.

Graziotin, D., Wang, X., and Abrahamsson, P. (2015). Understanding the affect of devel-
opers: theoretical background and guidelines for psychoempirical software engineer-
ing. In Proceedings of the 7th International Workshop on Social Software Engineering,
pages 25–32. ACM.

Guzman, E., Azócar, D., and Li, Y. (2014). Sentiment analysis of commit comments in
github: an empirical study. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 352–355. ACM.

Guzman, E. and Maalej, W. (2014). How do users like this feature? a fine grained
sentiment analysis of app reviews. In 22nd International Requirements Engineering
Conference (RE), pages 153–162. IEEE.

Jongeling, R., Datta, S., and Serebrenik, A. (2015). Choosing your weapons: On senti-
ment analysis tools for software engineering research. In Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, pages 531–535. IEEE.

Jordan, M. I. (1998). Learning in Graphical Models:[proceedings of the NATO Advanced
Study Institute: Ettore Mairona Center, Erice, Italy, September 27-October 7, 1996],
volume 89. Springer Science & Business Media.

Jurado, F. and Rodriguez, P. (2015). Sentiment Analysis in monitoring software devel-
opment processes: An exploratory case study on GitHub’s project issues. Journal of
Systems and Software, 104:82–89.

Kaluzniacky, E. (2004). Managing psychological factors in information systems work:
An orientation to emotional intelligence. IGI Global.

Kampstra, P. et al. (2008). Beanplot: A boxplot alternative for visual comparison of
distributions. Journal of statistical software, 28(1):1–9.

Ke, W. and Zhang, P. (2010). The effects of extrinsic motivations and satisfaction
in open source software development. Journal of the Association for Information
Systems, 11(12):784–808.

Kramer, A. D., Guillory, J. E., and Hancock, J. T. (2014). Experimental evidence of
massive-scale emotional contagion through social networks. Proceedings of the Na-
tional Academy of Sciences, 111(24):8788–8790.

Lenberg, P., Feldt, R., and Wallgren, L. G. (2015). Behavioral software engineering: A

Electronic Journal of Applied Statistical Analysis 127

definition and systematic literature review. Journal of Systems and Software, 107:15–
37.

Maalej, W. and Nabil, H. (2015). Bug report, feature request, or simply praise? on
automatically classifying app reviews. In 23rd International Requirements Engineering
Conference (RE), pages 116–125. IEEE.

Mäntylä, M., Adams, B., Destefanis, G., Graziotin, D., and Ortu, M. (2016). Mining
Valence, Arousal, and Dominance Possibilities for Detecting Burnout and Productiv-
ity? In Proceedings of the 13th Working Conference on Mining Software Repositories,
MSR 2016.

Murgia, A., Tourani, P., Adams, B., and Ortu, M. (2014). Do developers feel emotions?
An exploratory analysis of emotions in software artifacts. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pages 262–271, New
York, NY, USA. ACM.

Novielli, N. (2010). Hmm modeling of user engagement in advice-giving dialogues. Jour-
nal on Multimodal User Interfaces, 3(1-2):131–140.

Novielli, N., Calefato, F., and Lanubile, F. (2014). Towards discovering the role of
emotions in stack overflow. In Proceedings of the 6th International Workshop on
Social Software Engineering, pages 33–36. ACM.

Novielli, N., Calefato, F., and Lanubile, F. (2015). The challenges of sentiment detection
in the social programmer ecosystem. In Proceedings of the 7th International Workshop
on Social Software Engineering, pages 33–40. ACM.

Ortu, M., Adams, B., Destefanis, G., Tourani, P., Marchesi, M., and Tonelli, R. (2015a).
Are bullies more productive? Empirical study of affectiveness vs. issue fixing time. In
Proceedings of the 12th Working Conference on Mining Software Repositories, MSR
2015.

Ortu, M., Destefanis, G., Counsell, S., Swift, S., Tonelli, R., and Marchesi, M. (2016a).
Arsonists or firefighters? Affectiveness in agile software development. In International
Conference on Agile Software Development, pages 144–155. Springer.

Ortu, M., Destefanis, G., Kassab, M., Counsell, S., Marchesi, M., and Tonelli, R.
(2015b). Would you mind fixing this issue? an empirical analysis of politeness and at-
tractiveness in software developed using agile boards. In Agile Processes, in Software
Engineering, and Extreme Programming, pages 129–140. Springer.

Ortu, M., Destefanis, G., Kassab, M., and Marchesi, M. (2015c). Measuring and under-
standing the effectiveness of Jira developers communities. In Proceedings of the 6th
International Workshop on Emerging Trends in Software Metrics, WETSoM 2015.

Ortu, M., Destefanis, G., Murgia, A., Marchesi, M., Tonelli, R., and Adams, B. (2015d).
The Jira repository dataset: Understanding social aspects of software development.
In Proceedings of the 11th International Conference on Predictive Models and Data
Analytics in Software Engineering, page 1. ACM.

Ortu, M., Murgia, A., Destefanis, G., Tourani, P., Tonelli, R., Marchesi, M., and Adams,
B. (2016b). The Emotional Side of Software Developers in Jira. In Proceedings of the
13th Working Conference on Mining Software Repository, MSR 2016, page to appear.

128 Ortu et al.

ACM.

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A., Canfora, G., and Gall,
H. C. (2015). How can i improve my app? classifying user reviews for software
maintenance and evolution. In Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, pages 281–290. IEEE.

Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001). Linguistic inquiry and word
count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71:2001.

Pletea, D., Vasilescu, B., and Serebrenik, A. (2014). Security and emotion: sentiment
analysis of security discussions on github. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pages 348–351. ACM.

Rigby, P. C. and Hassan, A. E. (2007). What can oss mailing lists tell us? a preliminary
psychometric text analysis of the apache developer mailing list. In Proceedings of
the Fourth International Workshop on Mining Software Repositories, page 23. IEEE
Computer Society.

Rousinopoulos, A.-I., Robles, G., and González-Barahona, J. M. (2014). Sentiment
analysis of free/open source developers: preliminary findings from a case study. Revista
Eletrônica de Sistemas de Informação ISSN 1677-3071 doi: 10.5329/RESI, 13(2).

Snijders, T. A. (2001). The statistical evaluation of social network dynamics. Sociological
methodology, 31(1):361–395.

Steinmacher, I., Conte, T. U., Gerosa, M., and Redmiles, D. (2015). Social barriers
faced by newcomers placing their first contribution in open source software projects.
In Proceedings of the 18th ACM conference on Computer supported cooperative work
& social computing, pages 1–13.

Tan, S. and Howard-Jones, P. (2014). Rude or polite: do personality and emotion in an
artificial pedagogical agent affect task performance? In 2014 Global Conference on
teaching and learning with technology (CTLT 2014) conference proceedings, page 41.

Tourani, P., Jiang, Y., and Adams, B. (2014a). Monitoring sentiment in open source
mailing lists – exploratory study on the apache ecosystem. In Proceedings of the 2014
Conference of the Center for Advanced Studies on Collaborative Research (CASCON),
Toronto, ON, Canada.

Tourani, P., Jiang, Y., and Adams, B. (2014b). Monitoring sentiment in open source
mailing lists: exploratory study on the apache ecosystem. In CASCON ’14 Pro-
ceedings of 24th Annual International Conference on Computer Science and Software
Engineering, pages 34–44. IBM Corp.

Tsay, J., Dabbish, L., and Herbsleb, J. (2014). Lets talk about it: Evaluating contribu-
tions through discussion in github. FSE. ACM.

Wu, C.-H., Yan, G.-L., and Lin, C.-L. (1998). Spoken dialogue system using corpus-based
hidden markov model. In ICSLP.

