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Beta regression model has received much attention in several science fields
in modeling proportions or rates data. Selecting a small subset of relevant
variables from a large number of variables is an important task for building
a predictive regression model. This paper proposes employing the particle
swarm optimization algorithm as a variable selection method in the beta re-
gression model with varying dispersion. The performance of the proposed
method is evaluated through simulation and real data application. Results
demonstrate the superiority of the proposed method compared to other com-
petitor methods including corrected Akaike information criterion, corrected
Schwarz information criterion, and corrected Hannan and Quinn criterion.
Thus, the proposed method can efficiently helpful as a variable selection tool
in the beta regression model with varying dispersion.

keywords: Variable selection; beta regression model; varying dispersion;
particle swarm optimization algorithm.

1 Introduction

In regression modeling, the response variable can be a continuous variable in form of
proportions or rates, such as the fraction of income contributed to a retirement fund
and the percentage of ammonia escaping unconverted from an oxidation plant (Ospina
and Ferrari, 2012), where the values are limited to the interval (0, 1) (Branscum et al.,
2007). The classical linear regression which is based on the ordinary least square method
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is inappropriate for such situations (Ospina and Ferrari, 2012). Consequently, Ferrari
and Cribari-Neto (2004) introduced beta regression model in which the response variable
is distributed from the beta distribution.

The increasing trend of measuring and collecting a large number of variables becomes
popular in many real applications. However, these datasets are often containing a large
number of redundant and irrelevant variables that may significantly degrade the model
prediction accuracy. In the regression modeling, the existence of large numbers of vari-
ables can degrade the regression model. As a result, selecting a small subset of relevant
variables from a large number of variables is an important task for building predictive
regression models.

Searching for the best subset of variables is known to be an NP-hard problem where
it requires a long time for computing associated with high cost. The traditional vari-
able selection methods, such as stepwise selection, information criteria, and backward
elimination computationally become more expensive. In recent years, the meta-heuristics
algorithms, such as genetic algorithm, ant colony optimization algorithm, particle swarm
optimization algorithm, and crow search algorithm, are widely applied as variable selec-
tion methods. This is because that the variable selection is considered as an optimization
problem in which it minimizes the number of selected variables while maintaining the
maximum accuracy of prediction (Qasim et al., 2018; Algamal et al., 2017; Alanaza and
Algamal, 2018; Algamal, 2017).

The main target in this paper is to propose the particle swarm optimization algo-
rithm, which is a swarm intelligence approach, as a variable selection method in the
beta regression model. The proposed algorithm would efficiently help in finding the
most important variables in the beta regression model with a high prediction. The ad-
vantage of the proposed algorithm is proved through simulation study and a real data
application. The remainder of our paper is organized as follows. Sections 2 and 3 cover
the description of the beta regression model and the variable selection methods. The
details of the particle swarm optimization algorithm are illustrated in Section 4. The
expression of the proposed method is explained in Section 5. Section 6 is devoted to
simulation and real data application results. The conclusion is covered in Section 7.

2 Beta regression model

In beta regression model (BRM), the response variable, y, is assumed to follow beta
distribution. The probability density function of beta distribution is given by

f (y; θ1, θ2) =
Γ(θ2)

Γ(θ1θ2)Γ((1− θ1)θ2)
(y)θ1θ2−1(1− y)((1−θ1)θ2)−1, 0 < y < 1, (1)

where 0 < θ1 < 1 and θ2 > 0. The mean and variance of Eq. (1) are given by,
respectively, E(y) = θ1 and V (y) = θ1(1−θ1)/(1+θ2) where θ2 is a dispersion parameter.
For a fixed value of θ1, the V (y) value decrease when the value of θ2 increases.

Consider that we have a data set {(yi,xi)}ni=1 where yi ∈ R is a response variable
belongs to Eq. (1), xi = (xi1, xi2, ..., xip) ∈ Rp is a p × 1 known explanatory variable
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vector, then in BRM, the mean is related to the explanatory variables as

g(θ1i) = xi
Tβ = ηi, (2)

where β = (β0, β1, ..., βp) is a (p+1)×1 vector of unknown regression coefficients. Logit,
probit, cloglog, and loglog are the used link functions of Eq. (2).

Ferrari and Cribari-Neto (2004) extended the BRM to allow θ2 to vary across obser-
vations. The BRM with varying dispersion (BRMVD) is defined as

g(θ1i) = xi
Tβ = ηi

h(θ2i) = si
Tα = ϑi,

(3)

where α = (α1, ..., αk) is a k × 1. vector of unknown regression coefficients and si =
(si1, si2, ..., sik) ∈ Rk is a k × 1 known explanatory variable vector in addition to xi =
(xi1, xi2, ..., xip)which are not exclusive, p+ k < n.

The log-likelihood function of Eq. (3) is given by

`(β, α) =
n∑
i=1

`i(θ1i, θ2i)

= ln Γ(θ2i)− lnΓ((1− θ1i) θ2i) + (θ1i θ2i − 1)lnyi

+{((1− θ1i) θ2i)− 1} ln (1− yi) ,

(4)

where θ1i = g−1(ηi) and θ2i = h−1(ϑi). Differentiation of Eq. (4) with respect to the β
and α , respectively, is defined as

Uβ(β, α) =
∂`(β, α)

∂β
=

n∑
i=1

θ2i(ỹi − θ̃1i)
dθ1i
dηi

∂ηi
∂βp

, (5)

Uα(β, α) =
∂`(β, α)

∂α
=

n∑
i=1

{
θ1i(ỹi − θ̃1i) + ψ(θ2i) − ψ(1− θ1i) θ2i
+ ln(1− yi)

}
dθ2i
dϑi

∂ϑi
∂αk

, (6)

where ỹi = ln(yi/(1−yi)), θ̃1i = ψ(θ1iθ2i) −ψ((1−θ1i) θ2i), ψ(.) represents the digamma
function, dθ1i/dηi = 1/g′(θ1i), and dθ2i/dϑi = 1/h′(θ2i). Then the maximum likelihood
estimator of β and α are obtained from the solution of the nonlinear system U(ξ) = 0,
where ξ = (βT , αT )T (Simas et al., 2010).

3 Variable selection for the BRM

Variable selection procedure has been widely used in many applications. Usually, some
variables may be redundant and others may be irrelevant. As a result, these extra vari-
ables can increase computational time and can have a negative impact on the prediction
accuracy. Therefore, selecting the most relevant variables out of the whole variables
leads to increase the prediction accuracy and to simplify the model interpretation.
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In the literature, Zhao et al. (2014); Qasim (2019) introduced variable selection in
BRMVD by proposing the penalized method, which includes the least absolute shrinkage
and selection operator (LASSO), the smoothly clipped absolute deviation (SCAD), and
the minimax concave penalty (MCP). The estimation of ξ depending on the penalized
likelihood function is given by

ξ̂penalized = arg max
ξ

`(β, α)− n
p∑
j=1

Pλ1(|βj |)− n
k∑
l=1

Pλ2(|αj |)

 . (7)

Further, Bayer and Cribari-Neto (2015a) introduced several model selection criteria
in BRMVD. Besides, they proposed a fast two-step model selection scheme. On the
other hand, Bayer and Cribari-Neto (2015b) proposed a bootstrap-based model selection
criteria in BRMVD. They introduced two new selection criteria. The first one is the
bootstrapped likelihood quasi-cross validation (CV), while the second one is its 632QCV
variant.

4 Particle swarm optimization algorithm

In recent years, population-based swarm intelligence algorithms, which are a class of
natural-inspired algorithms, are widely used for solving complex optimization problems
(Lin et al., 2008; Algamal, 2019). Particle swarm optimization (PSO) is one of the
most powerful algorithms because of its easiness in implementation with few parameters
(Xia et al., 2017). The PSO algorithm is originally introduced by Eberhart and Kennedy
(1995) inspiring from the social behavior associated with fish schooling and bird flocking.

In PSO, the swarm contains a number of particles, where each particle is considered
as an individual. In addition, the solution space of the optimization problem is stated
as a search space in which each particle is considered as a solution to the problem. All
particles move according to their velocities through a d-dimension search space. At each
iteration of the algorithm, the movement of each particle is calculated as follows:

zi(t+ 1) = zi(t) + vi(t+ 1), (8)

vi(t+ 1) = w × vi(t) + a1 × b1 × (Pbesti(t)− zi(t)) + a2 × b2 × (Gbesti(t)− zi(t)) , (9)

where vi(t) and zi(t), respectively, is the velocity and the position of particle i at iteration
t, Pbesti(t) is the best position that is found by particle i, and Gbesti(t) is the best
position that is found by swarm as a whole. Further, wis the inertia weight, a 1 and
a2 are the acceleration coefficients. While, b1 and b2 are random values selected from a
uniform distribution within the range of 0 and 1. For a swarm consists of m particles
and the objective function, f , is used to calculate the fitness of the particles with a
maximization or minimization task, the personal best values, and the global best value
are updated at iteration t, respectively, as follows:

Pbesti(t+ 1) =

{
Pbesti(t) if f(Pbest(t)) ≤ f(zi(t+ 1))

zi(t+ 1) if f(Pbest(t)) > f(zi(t+ 1)),
(10)
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Gbesti(t+ 1) = min (max) { f(h), f(Gbesti(t))} , (11)

where h ∈ {Pbest1(t), ..., P bestm(t)}.

5 The proposed method

Originally, PSO is proposed to solve the continuous optimization problems. However, for
performing the variable selection, the optimization problem is not continuous. A binary
PSO (BPSO) is adapted to perform variable selection. In contrast to PSO, the position
in BPSO is binary in which the value 1 represents that the variable is important and
0 otherwise. In other words, if the ith variable is included in the model, then xi = 1,
otherwise, xi = 0. In variable selection, the dimension of each particle is the number
of the original variables in the model. In BPSO, the velocity of each particle is needed
to transfer into a probability vector because the position is binary. A common transfer
function is a sigmoid function (sigm) which is defined as

sigmi =
1

1 + exp [− vi(t)]
. (12)

Consequently, the position in Eq. (8) is updated as follows:

zi(t+ 1) =

{
1 if b3 < sigmi

0 otherwise,
(13)

where b3 is a random number generated from the uniform distribution between 0 and 1.
Accordingly, our proposed algorithm setting for performing variable selection in BR-

MVD is as follows:

1. The number of particles, m, is set to 50 and the maximum number of iterations is
tmax= 100. The acceleration coefficients a1 and a2 are set within the range [1.5,
4]. The a1 and a2 are updating during the iteration as following:

a1 = a1,min +
t

tmax
(a1,max − a1,min), (14)

a2 = a2,min +
t

tmax
(a2,max − a2,min). (15)

Besides, the wis set with minimum and maximum values as: wmin = 0.1 and
wmax = 0.99 , and it is updating as:

w = wmax −
t

tmax
(wmax − wmin). (16)

2. The positions of each particle are randomly specified from the uniform distribution
with 0 and 1. Here, the positions are represented by the explanatory variables of
each si = (si1, si2, ..., sik) and xi = (xi1, xi2, ..., xip). The representation of the
positions of a particle is explained in Figure 1.
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3. The initial velocity of each particle is generated from a uniform distribution within
the range [0, 6].

4. The fitness function, f , is defined as

f = min

[
1

n

n∑
i=1

(yi − ŷi)2
]
, (17)

where each particle has a fitness value, and, therefore, the personal best values and
the global best value are calculated.

5. The velocities and the positions of the particles are updated using Eq. (9) and Eq.
(13), respectively.

6. Steps 4 and 5 are repeated until a tmax is reached.

1x   2x   .......... 
1px    px   1s   2s   .......... 

1ks    ks  

1  0  ..........  1  0  1  1  ..........  0  1 

 

Figure 1: The representation of the particle position.

6 Computational results

In this section, the performance of our proposed method, PSO- BRMVD is tested.
Further, the performance of PSO- BRMVD is compared with other variable selection
methods that were used in Bayer and Cribari-Neto (2015a). They are:

1. The corrected Akaike information criterion (CAIC)

CAIC = −2`(β̂, α̂) +
2n (p+ k)

n− (p+ k)− 1
. (18)

2. The corrected Schwarz information criterion (CSIC)

CSIC = −2`(β̂, α̂) +
n (p+ k)ln(n)

n− (p+ k)− 1
. (19)

3. The corrected Hannan and Quinn criterion (CHQ)

CHQ = −2`(β̂, α̂) +
2n (p+ k)ln(ln(n))

n− (p+ k)− 1
. (20)
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6.1 Monte Carlo simulation study results

In this section, the performance of PSO- BRMVD is evaluated. The sample size is
considered with n ∈ {30, 50, 100, 200} and the response variable is generated from the
following distribution

yi ∼ beta(θ1i θ2i, (1− θ1i) θ2i), (21)

where θ1i and θ2i are generated according to the logit link function as

θ1i = exp(xi
T β)

1+exp(xi
T β)

,

θ2i = exp(si
Tα)

1+exp(siTα)
,

(22)

where the variables xi and si are generated from the uniform distribution with 0 and 1.
The true parameter vector

β

and α are set as β = (1, 1,−0.5, 1.5, 0, ..., 0︸ ︷︷ ︸
p−4

)T and α = (1, 1,−1.5, 0.5, 0, ..., 0︸ ︷︷ ︸
k−4

)T with

β0 = α0 = 0. In each sub-model, there are 4 important variables and the rest is
irrelevant variables. In this situation, two cases are considered:

Case 1: In this case p = k = 8.

Case 2: In this case p = k = 15.

The performance of the PSO-BRMVD is assessed by the following four criteria: (1) the

mean squared error (MSE) as
n∑
i=1

(yi − ŷi)2/n; the number of the true zero coefficients

correctly identified as zeros (TZ); the number of the truly nonzero coefficients incorrectly
identified as zeros (INZ); the percentage of correctly estimated BRMVD (PC). The
higher the values of PC and TZ, and the lower the values of MSE and INZ, the better
the variable selection performance is. All the computations of our paper were conducted
using R. Depending on 500 times of generated the data, the averaged MSE, TZ, INZ, and
PC with their associated standard deviations (the number in parentheses) are reported
in Tables 1 and 2, respectively, for case 1 and case 2. From these tables, some general
remarks are made. First, it is seen that the PSO- BRMVD is able to achieve lower MSE
than the CAIC, CHQ, and the CSIC for all cases. Meanwhile, CAIC presents a large
MSE among all methods. For instance, in Table 2 when n = 30, the MSE reduction by
PSO- BRMVD was about 43.87%, 35.30%, and 31.76% comparing with CAIC, CHQ,
and CSIC, respectively. Further, the PSO- BRMVD is always showing the smallest MSE
among the competitor methods regardless of the value of . In general, the performance
of CAIC, CHQ, and the CSIC, in terms of MSE, tends to improve with an increasing
sample size. Second, in terms of TZ criterion, the variable selection results obtained
by the PSO- BRMVD are obviously closed to the true nonzero coefficients for both the
mean sub-model and dispersion sub-model. On other words, PSO- BRMVD selected, on
average, more than 7 important variables out of 8 true variables in case 1, while, in case
2, PSO- BRMVD selected, on average, more than 20 important variables out of 22 true
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variables. This indicating that the PSO- BRMVD is the best comparing with CAIC,
CHQ, and the CSIC. For example, in Table 2 when , PSO- BRMVD truly selects, on
average, nearly about 21 relevant variables out of 22 important variables. While CAIC,
CHQ, and CSIC select no more than 18 relevant variables. Third, in terms of INZ
criterion, there is an obvious trend that PSO- BRMVD selects a very few unimportant
variables of the mean sub-model and dispersion sub-model comparing with CAIC, CHQ,
and CBIC, for both cases, where the number of the true nonzero coefficients, on average,
which are correctly set to zero is low compared with others. In conclusion, it is obvious
that the simulation results for the BRMVD demonstrated the superior using of PSO-
BRMVD in variable selection. Besides, it is concluded from the simulation results that
the PSO- BRMVD performance in variable selection is not changed by changing the
number of true zero coefficients and the sample size.

Table 1: Case 1 results, on average, for BRMVD

Methods MSE TZ INZ PC

n = 30

PSO- BRMVD 3.221 (0.011) 7.547 (0.012) 0.414 (0.010) 0.911 (0.005)

CAIC 7.061 (0.030) 4.132 (0.017) 3.241 (0.018) 0.678 (0.010)

CHQ 6.455 (0.022) 5.022 (0.018) 2.872 (0.018) 0.779 (0.008)

CSIC 5.811 (0.019) 5.971 (0.018) 2.066 (0.012) 0.836 (0.008)

n = 50

PSO- BRMVD 3.102 (0.011) 7.577 (0.013) 0.220 (0.010) 0.934 (0.006)

CAIC 7.574 (0.031) 4.426 (0.022) 3.197 (0.025) 0.671 (0.009)

CHQ 6.285 (0.019) 5.135 (0.019) 2.928 (0.022) 0.785 (0.007)

CSIC 5.551 (0.019) 5.691 (0.019) 2.132 (0.012) 0.854 (0.006)

n = 100

PSO- BRMVD 3.065 (0.013) 7.631 (0.013) 0.295 (0.012) 0.938 (0.005)

CAIC 7.425 (0.033) 4.493 (0.019) 3.172 (0.023) 0.680 (0.008)

CHQ 6.246 (0.021) 5.232 (0.019) 3.503 (0.021) 0.791 (0.006)

CSIC 5.705 (0.023) 6.035 (0.016) 1.712 (0.017) 0.862 (0.005)

n = 200

PSO- BRMVD 2.115 (0.013) 7.648 (0.013) 0.215 (0.012) 0.947 (0.004)

CAIC 7.134 (0.033) 4.423 (0.019) 3.172 (0.023) 0.685 (0.008)

CHQ 6.107 (0.021) 5.232 (0.019) 2.513 (0.021) 0.798 (0.006)

CSIC 5.271 (0.023) 6.015 (0.016) 1.815 (0.017) 0.867 (0.005)
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Table 2: Case 2 results, on average, for BRMVD

Methods MSE TZ INZ PC

n = 30

PSO- BRMVD 5.471 (0.013) 21.732 (0.014) 0.014 (0.011) 0.925 (0.006)

CAIC 9.748 (0.021) 14.528 (0.022) 3.106 (0.018) 0.772 (0.009)

CHQ 8.456 (0.021) 16.543 (0.021) 2.772 (0.018) 0.783 (0.008)

CSIC 8.018 (0.018) 17.118 (0.017) 1.086 (0.012) 0.841 (0.006)

n = 50

PSO- BRMVD 5.104 (0.013) 20.951 (0.015) 0.125 (0.010) 0.917 (0.007)

CAIC 9.364 (0.021) 15.592 (0.023) 3.066 (0.024) 0.767 (0.010)

CHQ 8.275 (0.021) 16.805 (0.021) 2.525 (0.022) 0.788 (0.009)

CSIC 7.747 (0.017) 18.176 (0.019) 1.112 (0.012) 0.861 (0.008)

n = 100

PSO- BRMVD 5.029 (0.014) 21.311 (0.015) 0.088 (0.012) 0.933 (0.005)

CAIC 9.389 (0.022) 15.601 (0.021) 3.204 (0.022) 0.780 (0.009)

CHQ 8.212 (0.019) 16.816 (0.021) 2.638 (0.021) 0.792 (0.007)

CSIC 7.669 (0.019) 18.887 (0.021) 1.414 (0.015) 0.873 (0.007)

n = 200

PSO- BRMVD 4.885 (0.011) 21.911 (0.014) 0.081 (0.012) 0.941 (0.005)

CAIC 9.044 (0.028) 14.601 (0.024) 3.573 (0.022) 0.785 (0.008)

CHQ 7.937 (0.022) 15.816 (0.022) 2.623 (0.021) 0.804 (0.006)

CSIC 7.118 (0.021) 18.187 (0.021) 1.614 (0.017) 0.882 (0.005)

6.2 real application results

In this section, a real application is considered for testing our proposed method to a data
from a body fat study, which had been analyzed by Zhao et al. (2014). In this data,
there are 252 observations for body fat patients on 13 explanatory variables, of which
the y is a quantitative measurement of the percentage of body fat. The 13 explana-
tory variables include age (years) (x1); weight (pounds) (x2); height (inches) (x3); neck
circumference (cm) (x4); chest circumference (cm) (x5); abdomen circumference (cm)
(x6); hip circumference (cm) ((x7); thigh circumference (cm) (x8); knee circumference
(cm) (x9); ankle circumference (cm) (x10); extended biceps circumference (x11); forearm
circumference (cm) (x12) and wrist circumference (cm) (x13). Related to citez30, the
response variable is following the beta distribution, and, thus the BRMVD is been more
suitable regression model with the logit link function to the mean sub-model and the
identity link function for the dispersion sub-model. Depending on the BRMVD analy-
sis, after exclusion the three identified outlier observations, five explanatory variables,
x2, x6, x7, x12, and x13, are significantly related to the response variables with a level
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of significant 0.05 for the mean sub-model, and one variable, s2, is significant. The
performance results of the used methods are summarized in Table 3.

It is seen from the result of Table 3 that PSO- BRMVD clearly succeeds to select
the most significant variables for both mean and dispersion sub-models except x6. On
the other hand, the PSO- BRMVD is able to produce the better prediction accuracy by
reducing the MSE comparing with CAIC, CHQ, and CSIC. Furthermore, it is obvious
that CAIC, CHQ, and CSIC selected non-statistically significant variables. For example,
CAIC selected x4., x9, s4, and s10 which they are not significant. Among the significant
variables, variables, x2, x7, s2 are the three common important selected variables by the
used methods.

Table 3: The selected variables and MSE body fat data

Methods Selected variables MSE

Mean sub-model Dispersion sub-model

PSO- BRMVD x2, x7, x12, x13 s2 251.731

CAIC x2, x4, x7, x9, x12 s2, s4, s10 463.109

CHQ x2, x4, x7, x12 s2, s4 418.749

CSIC x2, x4,x7 , x13 s2, s10 362.114

7 Conclusion

In this work, the problem of selecting variables in varying dispersion beta regression
model is investigated. A particle swarm optimization algorithm was proposed to perform
the variable selection. Simulation and real data application are carried out not only for
the PSO-BRMVD but also for other alternative methods. The obtained results prove
the dominance of the PSO-BRMVD against CAIC, CHQ, and CSIC in terms of MSE,
TZ, INZ, and PC.
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