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In observational studies, propensity score weighting methods are regarded
as the conventional standard for estimating the effects of treatments on out-
comes. We consider entropy balancing, which despite its excellent conceptual
properties, has been under-utilized in the applied studies. Using an extensive
series of Monte Carlo simulations, we evaluated the performance of entropy
balancing, in estimating difference in means, marginal odds ratios, rate ra-
tios, and hazard ratios. The performance of entropy balancing was relatively
compared with that of inverse probability of treatment weighting using the
propensity score. We found that entropy balancing outperformed the IPW
method in estimating difference in means, marginal odds ratios, and haz-
ard ratios, but when estimating marginal rate ratios, IPW performed better.
Entropy balancing produced more biased estimates in many cases. However,
the entropy balancing algorithm is capable of controlling bias by loosening
the tightening of the pre-specified tolerance on covariate balance. We report
findings as to when one technique is better than the other with no proclama-
tion on whether one method is in every case superior to the other. Entropy
balancing merits more widespread adoption in applied studies.
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



492 Amusa, Zewotir, North

1 Introduction

The evaluation of a treatment or intervention is particularly straightforward in experi-
ments but very complicated in observational studies where treatment assignment is not
random. In observational studies, treatment selection is usually related to the back-
ground covariates and can confound estimated treatment effects.

Estimation of treatment effects in observational studies has conventionally been done
using propensity score (PS) methods (Austin, 2014; Dehejia and Wahba, 2002; Guo et al.,
2006; Guo and Fraser, 2010; Hirshberg and Zubizarreta, 2017). Among the PS methods,
PS weighting (Hirano and Imbens, 2001) received more attention. In particular, the
inverse probability of treatment weighting (IPW) is the most commonly used weighting
method by applied researchers and practitioners, especially in the medical and health
sciences (Austin and Stuart, 2015).

Much recently, entropy balancing – an optimization-based method, has gained the
attention of applied researchers (Adhikary et al., 2016; Brettschneider et al., 2017; Grupp
et al., 2017; Mattke et al., 2015; Pearson et al., 2014). Entropy balancing (Hainmueller,
2012) performs excellently in achieving covariate balance and efficient estimation of
treatment effects. Additionally, entropy balancing (EB) is straightforward to implement.
EB calibrates weights using the control group’s distribution moments as constraints
while optimizing the covariate balance apriori. Consequently, EB obviates the need for
continually specifying the PS model until the desired covariate balance is achieved.

There is an increasing interest in using entropy balancing to estimate marginal or aver-
age treatment effects on outcomes of different types (Adhikary et al., 2016; Brettschneider
et al., 2017; Grupp et al., 2017; Mattke et al., 2015; Parish et al., 2018; Pearson et al.,
2014). Accordingly, we investigate the performance of entropy balancing in estimating
treatment effects on continuous, binary, count, and time-to-event outcomes.

Using the IPW method as a benchmark, the current study used Monte Carlo simula-
tions to examine the performance of entropy balancing in estimating some measures of
treatment effects. We considered the estimation of difference in means, odds ratios, rate
ratios, and hazard ratios for the continuous, binary, count and time-to-event outcomes,
respectively. We also utilized the average treatment effect among the treated (ATT) as
our estimand of interest.

This paper is structured as follows: In the next Section, we describe briefly the method-
ology of the entropy balancing, as well as the inverse probability of treatment weighting.
In Section 3, we describe the Monte Carlo simulation scheme that were used to exam-
ine the performance of the two considered techniques. In particular, we report on bias,
mean squared error (MSE), model-based standard errors, and 95% confidence interval
coverage. The simulation results are presented in Section 4. Finally, in Section 5, we
summarize our findings and gave final remarks.
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2 Methods

We briefly describe the weighting methods that were included in the simulation study.
We consider units or subjects indexed i (i = 1, ..., n). We assume that there is a binary
treatment variable, Ti, and the size of the treated and control group units, respectively,
n1, n0, are known, while Xk denote a K-dimensional column vector of the observed
background covariates.

2.1 Entropy balancing

Entropy balancing is a preprocessing method that can guarantee covariates balance, via
a reweighting scheme that assigns a scalar weight to each sample unit such that the
reweighted groups satisfy a set of balance constraints that are imposed on the sample
moments of the covariate distributions (Hainmueller, 2012). The reweighting scheme
belongs to the family of Maximum Entropy methods, which has roots in information
theory and applied statistics (Kullback, 1959; Golan, 2018; Aria et al., 2018; Ciavolino
and Carpita, 2015; Carpita and Ciavolino, 2017). The weights wi are selected to minimize
the relative entropy:

min
wi

H(w) = min
wi

∑
i|T=0

wi log(wi/qi) (1)

subject to the constraints:∑
i|T=0

wi cri (Xk) = mr, for r = 1, . . . , R (2)

∑
i|T=0

wi = 1 (3)

wi ≥ 0,∀i, (4)

where qi = 1
n0

is a vector of the base weights, and mr describes a set of R balance con-
straints imposed on the covariate moments of the reweighted control group. mr is the
formulation containing the rth order moment of a given variable Xk from the treated
group, while the moment functions are specified for the control group as cri (Xk) = Xr

k

or cri (Xk) = (Xk−µk)r, with mean µk. Equation (2) is the balance constraint specified
in terms of the rth moment to be achieved on all covariates; (3) is the normalization
constraint, while (4) is the non-negativity constraint.

The minimization problem described above is computed from an unconstrained dual
problem and reduced to a system of non-linear equations with R Lagrange multipliers
(Hainmueller, 2012) of the form:

min
z
Ld = log(q′ e−C

′z) +m′z (5)

where z = (λ1, . . . , λR)′ is a vector (z*) of Lagrange multipliers for the balance con-
straints, rewritten in matrix form as CW = M, with the (R × n0) constraint matrix,
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C = (c1(Xk), . . . , cR(Xk))′, and the vector of moments m = (m1, . . . ,mR)′. The corre-
sponding solution of (5) is:

W ∗ =
Q . exp(−C ′Z)

Q′ exp(−C ′Z)
(6)

An iterative Levenberg-Marquardt algorithm exploits the 2nd order information to solve
the dual problem:

znew = zold − l ∇2
z L

d−1 ∇z L
d (7)

Where l is the step length, ∇z and ∇2
z is the gradient and Hessian, respectively. The

optimal step length is selected for each iteration.

We utilized the ATT weights (Parish et al., 2018), which are defined for the entropy
balancing as fixing treated units’ weight at unity and reweighting the control group units
using the algorithm described above.

2.2 Inverse Probability of Treatment Weighting

The propensity score, defined by e(x) = P (T = 1|X), 0 < e < 1, is the probability of a
subject or unit receiving the treatment of interest given the observed baseline covariates
(Rosenbaum, 1983). In IPW, each unit’s weight equals the reciprocal of the probability
of receiving the treatment that the unit received. We utilized the ATT weights (Austin
and Small, 2014; Austin and Stuart, 2017), which are defined for the IPW as fixing

the treated units’ weight at unity, and the control units as ê(x)
1−ê(x) (Imbens, 2004). We

estimated ê(x) by using a logistic regression model to regress treatment status on the
covariates associated with the treatment.

3 Simulation study

We conducted a series of Monte Carlo simulations to examine the performance of entropy
balancing in estimating treatment effects while using the IPW method as a benchmark.
We considered continuous, binary, count and time-to-event outcomes. All simulations
were done using the R statistical package (R Core Team, 2019).

3.1 Data-generating process

We used a data generation scheme derived from previous studies (Lee et al., 2010; Se-
toguchi et al., 2008). We randomly generated ten baseline covariates, where each of them
(X1 −X10) ∼ N(0, 1). Some pair of covariates were induced with specified levels of de-
pendence. X1, X3, X5, X6, X8, X9 were dichotomized. Figure 1 describes the simulation
design in terms of the causal relationship of the variables.

As shown in Figure 1, the simulation study aligns with practice reality: X1, X2, X3, X4

are associated with both treatment and outcome, X5, X6, X7 are predictors of the treat-
ment variable only, while X8, X9, X10 are predictors of the outcome variable only. The
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Figure 1: Data structure of the simulation study

treatment status was generated from a Bernoulli distribution: Ti ∼ Ber(pi,trt) where
the probability of treatment selection pi,trt was determined from:

log

(
pi,trt

1− pi,trt

)
= α0,trt + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6 + α7X7 (8)

The coefficients, α1, . . . , α7 were based on real-life data utilized in a previous study
(Setoguchi et al., 2008), while α0,trt was selected so that the proportion of units who
received the treatment (subsequently referred to as prevalence of treatment) was fixed
at π = 10%, 20%, 30%, 40%, and 50%. We developed the following iterative algorithm
which was used to determine the value of α0,trt that induced targeted prevalence π
(Amusa et al., 2019a):

(i) We varied values of α0,trt within reason (-3 to 3 in this case), and simulated n
units.

(ii) For all the considered α0,trt values, the corresponding individual pi,trt values were
computed using (5), while the treatment variables Ti ∼ Ber(pi,trt) were generated,
and the mean of each Ti correspond to π.

(iii) Based on the principle of the law of large numbers: the average of the results
obtained from a large number of trials should be close to the expected value, Steps
(i) and (ii) were repeated 1000 times to increase the precision of the estimation,
and the value of α0,trt which correspond to the desired π is chosen.

For each of the units, we generated an outcome Yi conditional on Ti, and the seven
covariates (X1, X2, X3, X4, X8, X9, X10) associated with the outcome. Yi was generated
separately for continuous, binary, count, and time-to-event outcomes.
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3.1.1 Continuous outcomes

While we fixed the true treatment effect at γ = 1, the continuous outcome was generated
as

Yi = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi + εi (9)

where εi ∼ N(0, σ2)

3.1.2 Binary outcomes

We generated a binary outcome as Yi ∼ Bernoulli(pi) using a logistic model:

log

(
pi

1− pi

)
= β0 +β1X1 +β2X2 +β3X3 +β4X4 +β5X8 +β6X9 +β7X10 +βtrtTi (10)

3.1.3 Count outcomes

We generated a count outcome as Yi ∼ Poisson(ηi) using a Poisson model (Amusa et al.,
2019b):

log(ηi) = β1X1 + β2X2 + β3X3 + β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi (11)

3.1.4 Time-to-event outcomes

For time-to-event outcomes, we used a data-generating process described by a previous
study (Bender et al., 2005). Survival times ti are generated as

ti =

(
−log(Ui)

λeLP

) 1
v

(12)

Where Ui ∼ Uniform(0, 1), and the linear predictor, LP = β1X1 + β2X2 + β3X3 +
β4X4 + β5X8 + β6X9 + β7X10 + βtrtTi This process generates survival times from a
Cox-Weibull distribution. We assumed that all event times are observed for the current
analyses.

3.2 Parameter values for data generation

The regression coefficients in the outcome data generation took the values: β1 = β2 =
β3 = log(2), β4 = β5 = β6 = log(1.75), and β7 = log(1.5) to reflect very high, high, and
moderate effect sizes (Austin et al., 2007; Austin, 2014).

For continuous outcomes, the standard deviation values were fixed at σ = 1 and 0.5.
The conditional treatment effect βtrt values were fixed at log (1.5) and log (0.5) for odds
ratios, hazard ratios and rate ratios. The chosen values of βtrt = log (1.5) and log (0.5)
were aimed at reflecting beneficial (βtrt > 0) and adverse (βtrt < 0) treatment effect,
respectively. In generating dichotomous outcomes, the β0 value was set to ensure that
the prevalence of the event of interest occurred for approximately 70% of the units. We
set v = 2 and λ = 0.000001 when generating time-to-event outcomes.
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Finally, the above data-generating process has randomly generated treatment variable,
covariates, and four different outcomes each of size n units, while inducing a conditional
treatment effect.

A conditional treatment effect is the average effect, at the individual or unit level, of
moving a unit from control to treated group. In contrast, a marginal effect is the average
effect, at the population level, of moving the whole population from control to treated
group (Greenland, 1987). Since the difference in means is collapsible, the conditional
treatment effect coincides with the true marginal treatment effect. However, the other
three treatment effects are not collapsible (Austin, 2013; Gail et al., 1984). Thus, for
each of the conditional treatment effects (log-odds ratios, log-hazard ratios, and log-
rate ratios), we determined their corresponding true marginal treatment effects. Details
of this process of obtaining the true marginal treatment effect have been explained
elsewhere (Austin, 2013, 2014; Austin and Stuart, 2017). The obtained true marginal
treatment effect in the treated population from this process is regarded as the true ATT,
for each of the considered effects.

3.3 Statistical analyses in simulated datasets

For a given treatment effect associated with each of the type of outcome considered,
we randomly generated 1000 data sets of size 500 using the earlier described data-
generating scheme. Using each of the simulated datasets, we separately estimated the
different treatment effects, while utilizing each of the ATT weights of entropy balancing
and IPW. The treatment effects, γ, were estimated from the following generalized linear
model:

g(E(Y |T )) = β0 + γT, (13)

Where g was considered as the canonical link function for the normal linear model,
logistic model, Poisson model, and Cox survival model for estimating the difference in
means, odds ratios, hazard ratios, and rate ratios, respectively. We adopted the robust
sandwich estimator for estimating the standard errors (Austin and Stuart, 2015; Joffe
et al., 2004). We utilized the R-package ebal (Hainmueller, 2014) for implementing
entropy balancing.

Let γi denote the ith estimated treatment effect using a given method, whereas γ
is the true ATT. We then determined the following: Bias = 1

1000

∑1000
i=1 (γi − γ), mean

squared error (MSE) = 1
1000

∑1000
i=1 (γi − γ)2 . We also examined precision by averaging

the model-based standard errors (SE) over the 1000 simulated datasets. Finally, we
examined 95% coverage - the proportion of times γ is enclosed in the 95% confidence
interval of γ over the simulated datasets.

4 Results

We present the simulation results according to each of the type of estimated treatment
effects explained in the earlier Section. We focus on the performance of entropy balancing
method, using the IPW method as a threshold for evaluating the results. As a form of
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sensitivity analysis, we ran simulations for other sample sizes (n = 300, 1000), but we
do not present the results as no qualitative differences were observed in the relative
performance of the methods. However, we present results of the two standard deviation
values (σ = 1, 0.5) assumed while estimating difference in means, as well as the two
different true ATT values, varied each for odds ratios, hazard ratios, and rates ratios
estimation. Altering these parameter values also did not change the conclusions in all
the scenarios, except for when rate ratios were estimated.

4.1 Continuous outcomes: Difference in means

Results are summarized in Figures 2 and 3. In terms of bias, Figure 2 shows that both
methods produced estimates with very low (near zero) bias. However, EB produced
slightly higher biases, except for when the prevalence rate was 10%. For the MSE, EB
outperformed IPW across the board (Figure 2). Both methods yielded very similar
SE estimates, with the values decreasing with increasing prevalence rates (Figure 3).
Though EB produced superior CI coverages - near perfect in most cases, both methods
achieved reasonably high 95% CI coverage (Figure 3).

Figure 2: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating difference in means.
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Figure 3: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating difference in means.

Figure 4: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating odds ratios.
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Figure 5: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating odds ratios.

4.2 Binary outcomes: Odds ratios

In terms of bias, Figure 4 shows that EB consistently produced higher biased estimates.
For the MSE, EB outperformed IPW across the board, with the values decreasing with
increasing prevalence rates (Figure 4). Both methods yielded very similar SE estimates,
with the values decreasing with rising prevalence rates (Figure 5). Though EB produced
superior CI coverages, both techniques achieved reasonably high 95% CI coverage (Figure
5).

4.3 Count outcomes: Rate ratios

Figure 6 shows that the MSE of both methods increased as the treatment prevalence
increased from 10% to 40%. When the conditional rate ratio was positive (βtrt > 0),
EB consistently produced estimates with higher bias, higher MSE, and lower 95% CI
coverage. However, for (βtrt < 0), EB produced higher bias and MSE estimates only
when the treatment prevalence was 20% or lower (Figure 6). The SE estimates were very
similar between both methods, with the values decreasing with increasing prevalence
rates (Figure 7). Both methods achieved reasonably high 95% CI coverage. Though EB
had lower CI coverages when the conditional rate ratio was positive, it is not clear which
of them produced higher coverage when the conditional rate ratio was negative (Figure
7).
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4.4 Time-to-event outcomes: Hazard ratios

Figure 8 shows that the bias of both methods are not substantially different, except for
higher prevalence rates (40% and 50%) where EB produced higher bias estimates. For
the MSE, EB consistently outperformed IPW (Figure 8). As shown in Figure 9, the
SE estimates were again very similar between both methods, with the values decreasing
with increasing prevalence rates. Figure 9 illustrates that when the actual hazard ratio
= 0.5, EB produced 95% CIs slightly below the nominal coverage rate at prevalence
rates higher than 30%. However, EB provided superior CI coverages overall.

5 Discussion

Propensity score (PS) methods are the most widely used in estimating average treat-
ment effects in observational studies. While the inverse probability of treatment weight-
ing (IPW) method appears to be the most common implementation of PS methods, we
introduce entropy balancing – a relatively new, but under-utilized weighting method,
despite having nice conceptual properties. This study aims to use Monte Carlo simula-
tions to evaluate the performance of entropy balancing, relative to the traditional IPW,
in estimating some standard measures of treatment effect. While focusing on entropy
balancing, we summarize our findings, and where necessary, place them in the context
of existing literature.

Figure 6: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating hazard ratios.
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Figure 7: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating hazard ratios.

Figure 8: Bias (Top panels) and MSE (Bottom panels) of entropy balancing (EB) and
IPW methods for estimating rate ratios.
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Figure 9: Mean estimated standard error (Top panels) and 95% confidence intervals cov-
erage rates (Bottom panels) of entropy balancing (EB) and IPW methods for
estimating rate ratios.

Though both methods performed reasonably well in estimating the various treatment
effects considered, we found on average that entropy balancing outperformed IPW for
all the considered situations. However, a few exceptions were found: (i) When rate ra-
tios were estimated, entropy balancing tended to produce estimates with slightly higher
biases and mean squared errors. Although they considered conditional and not marginal
treatment effects, a previous study by Austin (2007) found that conditioning on the
propensity score did not substantially introduce bias into the estimation of rate ratios.
(ii) The model-based standard errors for both methods were consistently indistinguish-
able. (iii) In terms of bias, across all the estimated treatment effects, entropy balancing
consistently produced more biased estimates. Hence, there is an interesting bias-variance
trade-off of the two techniques. However, entropy balancing has the facility to optimize
the bias-variance trade-off by tightening the pre-specified tolerance on covariate balance
(Harvey et al., 2017). Previous studies (Austin, 2007, 2013; Austin and Stuart, 2017)
also support our findings in favour of IPW producing an unbiased estimation of odds
ratios and hazard ratios.

A significant strength of this study is in the use of an algorithm which determines
the true marginal treatment effect corresponding to a particular conditional treatment
effect. Many simulation studies estimated average or marginal treatment effects using a
conditional model to relate the outcome with the treatment and associated covariates,
even though the estimated effects are not collapsible (i.e. marginal and conditional
treatment effects will not coincide) (Austin, 2013; Gail et al., 1984; Greenland, 1987).
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For binary outcomes, even though odds ratios are not collapsible and other reasons
(Newcombe, 2006), we chose to adopt odds ratios due to its frequent usage in biomedical
research.

The limitation of this study is that we did not include censoring in our simulation of
time-to-event outcomes. The reason is due to computational simplicity. Allowing the
degree of censoring to be another factor in the design of the Monte Carlo simulations
would increase the computational burden of the simulations substantially and increase
the number of results that would require reporting. However, this may warrant future
investigations.

To our knowledge, no previous research had studied the performance of entropy bal-
ancing in estimating treatment effects of different types of outcomes, using Monte Carlo
simulations. Like any simulation, our simulation results might be limited to the scenar-
ios considered by our simulation data. Therefore, the results cannot be generalized to
settings that have not been evaluated.

6 Conclusion

Overall, we found the entropy balancing technique useful and excellent in performance.
Entropy balancing merits more widespread adoption for estimating treatment effects of
different types when using observational data.
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