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It is common to assume a normal distribution when discriminating and
classifying a multivariate data based on some attributes. But when such
data is lighter or heavier in both tails than the normal distribution, then
the probability of misclassification becomes higher giving unreliable result.
This study proposed multivariate exponential power distribution a family
of elliptically contoured model as underlining model for discrimination and
classification. The distribution has a shape parameter which regulate the
tail of the symmetric distribution to mitigate the problem of both lighter
and heavier tails data, this generalizes the normal distribution and thus will
definitely gives a lower misclassification error in discrimination and classifi-
cation. The resulting discriminant model was compared with fisher linear
discriminant function when applying to real data.
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1 Introduction

The main purpose of discriminant analysis is to assign an unknown subject to one of K
classes on the basis of multivariate observation x = (x1, ..., xp)

T , where p is the number
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of features. For simplicity of notation yi are defined to be integers ranging from 1 to K.
We assume that there are nk observations in class k with

xk,1, ..., xk,nk

i.i.d.∼ Np(µk,Σk), k = 1, ...,K

where µk and Σk are the corresponding mean vector and covariance matrix of the p−
dimensional multivariate normal distribution. The total number of observations is n =
n1 + .. + nk. Let πk denote the prior probability of observing a class k member with
π1 + ...+ πK = 1.
Under the normal distribution assumption, we assign a new subject x to class k, which
minimizes the following discriminant score

Dk(x) = (x− µk)TΣ−1
k (x− µk) + ln |Σk| − 2lnπk, (1)

that is we assign x to k̂ = argminkDk(x). This is the so-called quadratic discriminant
analysis (QDA) since the boundaries that separate the disjoint regions belonging to each
class are quadratic (Algamal, 2017). The first term on the right-hand side of equation (1)
is known as the squared Mahalanobis distance between x and µk. When the covariance
matrices are all the same, i.e., Σk = Σ for all k, the discriminant score can be simplified as

dk(x) = (x− µk)TΣ−1(x− µk)− 2lnπk (2)

This is referred to as linear discriminant analysis (LDA) [3]. LDA assigns a new
subject to k̂ = argminkdk(x) which uses linear boundaries. The mean vectors µk and
covariance matrices Σk when not known are estimated by their maximum-likelihood es-
timates,
µ̂k = 1

nk

∑nk
i=1 xk,i, Σ̂k = 1

nk

∑nk
i=1(xk,i − µ̂k)(xk,i − µ̂k)T , Σ̂ = 1

n

∑K
k=1 nkΣ̂k.

The prior probabilities are usually estimated by the fraction of each class in the pooled
training sample, i.e., π̂k = nk/n. The sample version rule for QDA is `(x) = argminkD̂k(x),
where

D̂k(x) = (x− µk)TΣ−1
k (x− µk) + ln |Σk| − 2lnπk,

Similarly, the sample version rule for LDA is

` = argminkd̂k(x),

where
d̂k(x) = (x− µk)TΣ−1(x− µk)− 2lnπk

Also for two populations, logistic discrimination was suggested by Day and Kerridge
(1967) with the restriction that estimation of the discriminator was based on samples
from the mixture of the populations. This method was extended (Andrews, 1972) to
more than two populations and to more usual plan of sampling from each distribution
separately, using Aitchison and Silvey (1958) method of constrained maximum likelihood
estimation. Logistic discriminators can be used in a simple linear form and when the
likelihood ratios of the populations are linear in the observations, they are optimal
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irrespective of the actual likelihoods. They are thus optimal for a much wider class of
distributions than standard linear discriminators. The method of logistic discrimination
can be extended to the case where the likelihood ratios are quadratic in the observations.
Algamal (2017) provided model for classification of gene expression based on adaptive
penalized logistic regression with the aim of identifying relevant genes and provided high
classification accuracy of autism data. Algamal et al. (2018), proposed a new Bayesian
Lasso method which employs a skewed Laplace distribution for the errors and a scaled
mixture of uniform distribution for the regression parameters, he further used Bayesian
MCMC for estimation. The classification rules are known to be sensitive to departures
from basic model assumptions and normal and logistic are known to be fixed at the tail
region. Given multivariate data with heavier or lighter tails than normal and logistic
distribution, the resulting probability of misclassification will be higher in values and
thus we obtain classification rule not suitable or reliable for future classification of any
new entrant from the same population density. Since it is well known that, multivariate
normal assumption are not realistic in many applications, hence there is need to study
a generalized class of the family of this elliptical density in which multivariate normal is
a special case.

2 Multivariate Exponential Power distribution

The family of elliptical density under consideration is the exponential power distribution
with the pdf

f(x;µ, σ, p) =
1

σp21+1/2pΓ(1 + 1
2p)

exp

{
−|y − µ|

2p

2σ2p
p

}
(3)

where −∞ < x < ∞, −∞ < µ < ∞, p > 0 and σp > 0. (3) is called exponential power
distribution with shape parameter p which regulates the tail region. The multivariate
extension is

f(x;µ,Σ, p) =
nΓ(n2 )

π
n
2

√
|Σ|Γ

(
1 + n

2p

)
2

1+ n
2p

exp

{
−1

2

[
(y − µ)TΣ−1(x− µ)

]p}
(4)

where the mean and variance are E(Y ) = µ, var(Y ) =
2
1
p
(

n+2
2p

)
nΓ

(
n
2p

) Σ and p determines the

kurtosis (Gómez et al., 1998). Thus, the correlation structure can be obtained directly
from Σ in the usual way. However, when p = 1, we have a multivariate normal distribu-
tion; when p = 1/2, it becomes multivariate Laplace (double exponential) distribution;
and when p → ∞, a multivariate uniform distribution. Hence, when p < 1, the distri-
bution has heavier tails than the multivariate normal distribution and this property can
be useful in providing robustness against outliers. Parameters of the exponential power
distribution were estimated using the method of maximum likelihood see. The resulting
equations were not in close form, therefore, we developed code in R environment to
estimate the Agro (1995) parameters of any given data. Similar code were developed
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for univariate case by Mineo (2007). Real data applications of multivariate exponen-
tial power distribution can be seen in Gómez et al. (1998) and Olosunde (2013) just to
mention few.

3 Discrimination and Classification Under Multivariate
Exponential Power Distribution

Extending (1) to (3) we can obtain that the mahalanobis distance Dk(y) between y and
µk, that will allocate y to πk as

ln [πkfk(y|µk,Σk, pk)]

= lnπk −
1

2

[
(y − µk)TΣ−1(y − µk)

]pk − 1

2
ln |Σk| − ln Γ

(
1 +

n

2pk

)
− n

2pk
ln 2

= max (ln [πifi(y|µi,Σi, pi)]) ∀ i = 1, 2, ..., g groups. (5)

Which implies that we allocate y to group k ifDk(y) = largest of {D1(y), D2(y), ..., Dg(y)}
∀ i = 1, 2, ..., g.

Comparing two groups (k, i) such that k 6= i we can evaluate Dk(y)−Di(y) ≥ 0 as

ln
(
πk
πi

)
− 1

2 ln
∣∣∣Σk

Σi

∣∣∣− 1
2

([
(y − µk)TΣ−1

k (y − µk)
]pk − [(y − µi)TΣ−1

i (y − µi)
]pi) − ln

[
Γ
(

1+ n
2pk

)
Γ
(

1+ n
2pi

)
]
− n

2

[
1
pk
− 1

pi

]
ln 2 (6)

Hence the overall mahalanobis discrimination and classification function Dki(y) in favour
of group k for the multivariate exponential power distribution two group case is given as

−1

2

{[
(y − µk)TΣ−1

k (y − µk)
]pk − [(y − µi)TΣ−1

i (y − µi)
]pi} ≥ H (7)

where H = ln

[
Γ
(

1+ n
2pk

)
Γ
(

1+ n
2pi

)
]

+ n
2

[
1
pk
− 1

pi

]
ln 2 + 1

2 ln
∣∣∣Σk

Σi

∣∣∣− ln
(
πk
πi

)
. This implies that y is

allocated to group k if Dki(y) ≥ H and to group i if Dki(y) < H.
This further implies that if the covariance matrix Σk = Σi then we have

H = ln

Γ
(

1 + n
2pk

)
Γ
(

1 + n
2pi

)
+

n

2

[
1

pk
− 1

pi

]
ln 2− ln

(
πk
πi

)
(8)

for the pooled variance Σ =
(nk−1)Σ2

k+(ni−1)Σ2
i

nk+ni−2 .
Which subsequently indicate that when Σk = Σi and pk = pi then Dki(y) becomes

−1

2

{[
(y − µk)TΣ−1

k (y − µk)
]pk − [(y − µi)TΣ−1

i (y − µi)
]pi} ≥ H (9)

where H = ln
(
πi
πk

)
and H = 0 when the prior probability are the same. So in (9) we

have allocate y to group k if Dki(y) ≥ H and to group i if Dki(y) < H.
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Table 1a: EPD with β = 2 versus normal distribution with unit variance in each case

pdf n=10000 n=100 n=50

Normal P1 = 0.35, P2 = 0.23 P1 = 0.39, P2 = 0.27 P1 = 0.36, P2 = 0.36

EPD P1 = 0.38, P2 = 0.29 P1 = 0.41, P2 = 0.25 P1 = 0.33, P2 = 0.25

Table 1b: EPD with β = 6 versus normal distribution with unit variance in each case

pdf n=10000 n=100 n=50

Normal P1 = 0.28, P2 = 0.27 P1 = 0.29, P2 = 0.27 P1 = 0.43, P2 = 0.37

EPD P1 = 0.25, P2 = 0.23 P1 = 0.10, P2 = 0.05 P1 = 0.05, P2 = 0.01

Note that µk is the mean vectors for each of the group i = 1, 2, ..., g which can be
obtained as the vector of the sample means from the n-variates in each group. The
shape parameter, p cannot be obtained in closed form, so by scaling each of variables to
make it dimensionless; and using the normalp r environment code ‘paramp[(y/s)i]’ on
set of combined scaled observations, we can obtain the shape parameter for each group.
Estimation of the parameters for any given data can be done using ‘normalp’ software.
Also some code were developed to extend it to multivariate cases.

4 Simulation Study

To simulate form MPED, we wrote a code using the rmvpowerexp from package MNM
(Nordhausen and Oja, 2011) in Team et al. (2013) environment. This program generate
data by making use of the stochastic representation for MPED proposed by Gómez et al.
(1998). Two samples were generated from EPD (µi,Σ, β) i = 1, 2. It is common as-
sumption in literature that the sample were from the normal population N(µi,Σ). Table
1a and 1b contains summary values of the numerical work, in particular misclassifica-
tion probabilities Pi i = 1, 2 for each case of normal and exponential power distribution
(EPD). Note that the same sample mean and covariance matrix were selected for both
normal and EPD but the latter was simulated with additional shape parameter β =
3 and 6. The resulting misclassification probabilities clearly showed that when β was
chosen closed to normal distribution (β = 1) the Pi’s were almost the same except when
sample was large normal distribution have misclassification error lower than the EPD.
But for large β, EPD performed better than normal distribution in both large and small
sample. Clearly, we conclude that for optimum classification result, EPD should be
preferred as discrimination and classification model when the tail of the data in con-
sideration is thicker or thinner than the normal distribution. P1 and P2 respectively
represent the probabilities of misclassification from population 1 and 2. Also, n is the
number of sample taken in each trial.
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Table 2: Summary of Data in Hand and Henley (1997).

Variables Mean Variance Shape (β)

X1 3.5182 0.5196364 2.8089

X2 2.1 0.476

Y1 2.5 0.8514286 6.088

Y2 3.24 1.548286

5 Applications

Example 1 :The resulting discriminant model in this study was first applied to the
data illustration in Hand and Henley (1997); values of urinary androsterone and etio-
cholanolone in healthy heterosexual and homosexual males in mg/24 hours. The data
has been used in several studies we applied he EPD discriminant model (7) to this data
owing to the fact that the data exhibited some level of departure from normal distribu-
tion at the tail, its shape parameter for the two groups is not unity (β 6= 1), for us to
assume exact normal distribution. The summary of the preliminary analysis of the data
is given in table 2, carried out under the assumption that the underlining distribution
is exponential power distribution. Also table shows the confusion matrix resulting from
classification using equal cost and equal prior probabilities which yields the estimated
error rates based on table 1.
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Table 3: (Confusion Matrix):

Predicted Membership

Correct Incorrect

Actual Group X 11 0

Membership Group Y 15 0

Total 26 0

In Table 3, the apparent misclassification error rate using exponential power distri-
bution is 0.00% compared to 3.85% obtained when normal distribution was assumed in
Hand and Henley (1997); Mineo (2007). This show there was a departure from normality
at the tail region of the data, hence the apparent misclassification error rate was higher
when compared with the case of the exponential power distribution.

Example 2: Another application was based on the laboratory experiment carried out
courtesy National Centre for Genetic Resources and Biotechnology (NACGRAB) Ibadan.
These data were concerned about the discrimination and classification of two cowpea
varieties (Ife Brown and Sampea 12) stored under different conditions (Ambient, Short
term, medium term) and later planted at different seasons (May when the rain just
started, August when the rain was at its peak, November during harmattan, February
when there was no rain at all) of the year. These with the aim of obtaining increase in
yields to meet up with the increase in demand by the consumers. The classification was
based on the mean yields of the each variety, the sampea is expected to give a higher
yields compare to local Ife brown. The hypothesis and the results from testing are as
follows:

1. Test H0 : Σsampea = Σife brown. Using −2 ln Λ ∼ χ2
12. We reject H0 and conclude

that the variance-covariance matrices are the same for the two groups.
2. Next, we test H0: µsampea=µife brown, given Σsampea = Σife brown. The test show that
the µ′s are different. The summary of the data is presented in table 4.
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Table 4: Summary of the data of cowpea varieties.

Variables Mean Variance Shape

x1 18.17 197.6667 10.4576861

x2 27.0825 99.85316

x3 26.2525 120.7239

y1 29.415 48.3763 5.0540495

y2 26.1675 75.30483

y3 24.085 58.51557

Table 5: Confusion Matrix.

Predicted Membership

Correct Incorrect

Actual Ife Brown (X) 4 0

Membership Sampea 12 (Y) 3 1

Total 7 1

Courtesy: National Centre for Genetic Resources and Biotechnology (NACGRAB)
Ibadan.

We observed that the number of seed germination in Ife Brown can be discriminated
from that of Sampea 12 with apparent misclassification error rate of 12.5% for both
distributions. The result was the same when using Fisher’s linear discriminant.

6 Conclusion

In the two examples given, it was observed that the exponential power performed bet-
ter in the first example but same performance was noticed in the example 2. This
affirmed our assertion, that exponential power serve as good substitute to the normal
distribution, the worst scenario is to have the shape parameter resulting to normal when
β = 1 or double exponential when β = 1/2. The discrimination model of exponential
power distribution generalized the discrimination model of normal and double exponen-
tial distribution and also performed well than that of normal especially, when the data
in question has either shorter or longer tail than the usual normal distribution. The
code written in r environment extended to multivariate exponential power discrimina-
tion model use in classifying the training data can be used to classify future observations,
although it was developed for bivariate and trivariate cases. The code can be extended
to nth variates.
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