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In order to gather the information about the lifetime distribution of a
product, a standard life testing method at normal operating conditions is not
practical when the product has an extremely long lifespan. Accelerated life
testing solves this difficult issue by subjecting the test units at higher stress
levels than normal for quicker and more failure data. The lifetime at the
design stress is then estimated through extrapolation using an appropriate
regression model. Estimation of the regression parameters based on exponen-
tially distributed lifetimes from accelerated life tests has been considered by
a number of authors using numerical methods but without systematic or an-
alytical validation. In this article, we propose an alternative approach based
on a simple and easy-to-apply graphical method, which also establishes the
existence and uniqueness of the maximum likelihood estimates for constant-
stress and step-stress accelerated life tests under progressive censorings.
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1 Introduction

With ever increasing reliability and substantially long life-spans of products, it is often
very difficult for standard life testing methods under normal operating conditions to
obtain sufficient information about the failure time distribution of the products. This
practical difficulty is overcome by accelerated life test (ALT). By subjecting test units to
higher stress levels than normal, the ALT collects more failure data in a shorter period
of time. By applying more severe stresses, ALT collects information on the parameters
of lifetime distributions more quickly. The lifetime at the normal operating stress can be
estimated through extrapolation using an appropriate stress-response regression model.
Some key references in the area of ALT include Nelson (1980), Meeker and Escobar
(1998), and Bagdonavicius and Nikulin (2001).

The parameter estimation and design optimization for the ALT models have been
discussed by numerous authors over the decades; see, for instance, Miller and Nelson
(1983), Bai et al. (1989), Leemis et al. (1990), Bagdonavičius and Nikulin (1997), Han
et al. (2006), Balakrishnan and Han (2008, 2009), Balakrishnan et al. (2011), Laronde, R.
et al. (2010), Han and Balakrishnan (2010), Wu and Huang (2010), Han and Ng (2013),
Sha and Pan (2014), Han and Kundu (2015), Ismail (2016), and Han (2015, 2017).
In the literature as noted by Balakrishnan and Kateri (2008), the estimation problem
has been approached by different techniques including probability plotting, method of
moments, and maximum likelihood estimation (MLE). In particular, the MLE requires
solving a series of likelihood equations computationally. Since the solution is numerical
in nature, one needs to address the issues of existence and uniqueness of the estimates,
which get quite involved in the case of progressive censoring. Studying the existence
and uniqueness of the estimates are not only theoretically but also practically important
in order to guarantee the estimability under general settings as well as to develop and
implement an efficient computational estimation algorithm. In this article, a simple
graphical method is proposed for determination of the MLE of the regression slope
parameter for the general k-level constant-stress and step-stress ALT under progressive
Type-I and Type-II censorings. This approach ensures the existence and uniqueness of
the MLE as well.

It is assumed that the physical relationship between the mean lifetime parameter and
stress level is log-linear along with the accelerated failure time (AFT) model for the effect
of changing stress in step-stress ALT. For deriving the analytical tractable results, it is
further assumed that the lifetimes are exponentially distributed at each stress level. Al-
though simple, the exponential distribution is a very good approximate model for many
practical applications, including the decay time of a radioactive particle, the waiting
time for service calls, the default time in credit risk modeling, and the distance between
mutations on a DNA strand. In electrical and mechanical engineering, it has been suc-
cessfully used to model the lifetime of an electric circuit and a semiconductor. Reliability
theory and reliability engineering also make extensive use of the exponential distribution
since its memoryless property renders it well-suited for modeling the constant hazard
rate portion of the bathtub curve. More importantly, its statistical property serves as a
theoretical proof of concept for other popular lifetime distributions such as gamma and
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Weibull, which is also the case based on the research outcomes of this study.

Here we also consider a generalized form of censoring known as it progressive censoring,
which has attracted considerable attention in the reliability literature for its efficient ex-
ploitation of the available resources in comparison to traditional designs. There are
two fundamental censoring schemes: Type-I and Type-II. Progressive Type-I censoring
occurs when a prefixed number of surviving units are continuously removed during the
experiment at the end of each pre-specified time interval. On the other hand, progres-
sive Type-II censoring corresponds to the situation where a prefixed number of surviving
units are continuously withdrawn from the experiment at each observed failure time un-
til the pre-specified number of units have failed; see Balakrishnan et al. (2011) for more
details. Both censoring schemes provide greater flexibility to the experimenter in the
design stage by allowing removal of test units at non-terminal time points. Those with-
drawn unfailed test units could be used in other experiments in the same or at a different
facility. As special cases, when no intermediate censoring takes place but the censoring is
allowed only at the terminal time point of an experiment, it reduces to the conventional
Type-I and Type-II censorings, respectively.

The rest of the paper is organized as follows. Section 2 presents the model descriptions
and formulations for k-level constant-stress ALT and step-stress ALT under progressive
Type-I and Type-II censorings. The MLEs of the model parameters are then derived, and
the proposed estimation procedure is described in Section 3 under the unified structure of
the likelihoods. Section 4 illustrates the proposed method using a real dataset. Finally,
Section 5 is devoted to some concluding remarks.

2 Model descriptions and MLE

Let s(t) be the given stress loading (a deterministic function of time) for ALT. Also,
let sH be an upper bound of stress level and sU be the normal use-stress level. The
standardized stress loading is then defined as

x(t) =
s(t)− sU
sH − sU

, t ≥ 0

so that the range of x(t) is [0, 1]. Now, let us define 0 ≡ x0 ≤ x1 < x2 < · · · < xk ≤ 1 to
be the ordered k standardized stress levels to be used in the test. It is further assumed
that under any stress level xi, the lifetime of a test unit follows an exponential distri-
bution whose probability density function (PDF) and cumulative distribution function
(CDF) are

fi(t) =
1

θi
exp

(
− t

θi

)
, 0 < t <∞, (1)

Fi(t) = 1− Si(t) = 1− exp

(
− t

θi

)
, 0 < t <∞, (2)
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respectively. Also, it is assumed that under any stress level xi, the mean time to failure
(MTTF) of a test unit, θi, is a log-linear function of stress given by

log θi = α+ βxi, (3)

where the regression parameters α and β need to be estimated. The log-linear rela-
tionship is a commonly used and well-studied model for the accelerated exponential
distribution model. Along with its simplicity, the log-linear link represents several sig-
nificant life-stress relationships built from physical principles such as Arrhenius, inverse
power law, Eyring, temperature-humidity, and temperature-non-thermal; see Miller and
Nelson (1983).

Here we consider two popular classes of ALT: constant-stress and step-stress. In
constant-stress testing, a unit is tested at a fixed stress level until failure occurs or the
life test is terminated, whichever comes first. On the other hand, (step-up) step-stress
testing allows the experimenter to gradually increase the stress levels at some prefixed
time points during the test. The following subsections present the likelihoods and the
MLEs of α and β for general k-level constant-stress ALT and step-stress ALT under
(progressive) Type-I and Type-II censorings. For simplicity, no notational distinction is
made in this article between the random variables and their corresponding realizations.
Also, we adopt the usual conventions that

∑m−1
j=m aj ≡ 0 and

∏m−1
j=m aj ≡ 1.

2.1 k-level step-stress test under progressive Type-I censoring

For i = 1, 2, . . . , k, let ni denote the (random) number of units failed at stress level xi
in time interval [τi−1, τi)). Let yi,l denote the l-th ordered failure time of ni units at xi,
l = 1, 2, . . . , ni while ci denotes the number of units censored at time τi. Furthermore,
let Ni denote the number of units operating and remaining on test at the start of stress
level xi. That is, Ni = n−

∑i−1
j=1 nj−

∑i−1
j=1 cj . Then, a step-stress ALT under progressive

Type-I censoring proceeds as follows. A total of N1 ≡ n test units is initially placed
at stress level x1 and tested until time τ1 at which point c1 live items are arbitrarily
withdrawn from the test and the stress is changed to x2. The test is continued on
N2 = n − n1 − c1 units until time τ2, when c2 items are withdrawn from the test and
the stress is changed to x3, and so on. Finally, at time τk, all the surviving items are
withdrawn, thereby terminating the life test. Note that since n ≡

∑k
i=1(ni + ci), the

number of surviving items at time τk is ck = n−
∑k

i=1 ni−
∑k−1

i=1 ci = Nk−nk. Obviously,
when there is no intermediate censoring (viz., c1 = c2 = · · · = ck−1 = 0), this situation
corresponds to the k-level step-stress ALT under conventional Type-I right censoring
as a special case. When there is no right censoring (viz., τk = ∞ and nk = Nk), this
situation corresponds to the k-level step-stress testing under complete sampling as a
special case.

It is noted that unlike progressive Type-II censoring, prefixing the progressive
Type-I censoring scheme (c1, c2, . . . , ck−1) has an inherent mathematical lapse due to
a non-zero probability that all the units could fail before reaching the last stress level
xk, resulting in an early termination of the test as well as failing to fully implement the
censoring scheme. To ensure the feasibility of progressive Type-I censoring, Balakrishnan
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and Han (2009) proposed a simple adjustment, which is to determine a sequence of a
fixed proportion of surviving items to be censored at the end of each stress level xi,
denoted by (π∗1, π

∗
2, . . . , π

∗
k−1) with 0 ≤ π∗i < 1. Then, the actual number of items

withdrawn at the end of xi is determined by ci = Υ((Ni − ni)π
∗
i ), where Υ(·) is a

discretizing function of choice to transform its argument to a whole number. It could
be round(·), trunc(·), floor(·), or ceiling(·), for example. This adjustment essentially
allows the ALT to terminate prior to reaching the final level xk. As the number of
surviving items at the end of each level before censoring occurs is random, the actual
censoring scheme (c1, c2, . . . , ck−1) is also random through this modification. Another
practical modification suggested is first to determine a sequence of a fixed number of
units to be censored at the end of each stress level xi, say (c∗1, c

∗
2, . . . , c

∗
k−1) with c∗i ≥ 0

and
∑k−1

i=1 c
∗
i < n. Then, the actual number of units withdrawn at the end of stress level

xi is determined by ci = min
{
c∗i , Ni−ni

}
. In case the number of remaining units at any

time point of censoring is at most the prefixed number of items to be withdrawn at that
time point, every surviving and operating item is withdrawn and the ALT is terminated.
Hence, this modification also allows an earlier termination of the ALT whenever the
number of the items remaining on the ALT is insufficient. Again, as the number of the
functioning items at the end of each stress level prior to censoring is random, the actual
censoring scheme (c1, c2, . . . , ck−1) is essentially random as well.

Since the step-stress loading is non-constant stress loading, an additional assump-
tion is required to represent the effect of changing stress. The AFT model, also referred
to as the additive accumulative damage model, is often appropriate as it generalizes
several well-known models in reliability engineering for the exponential distribution,
including the basic (linear) cumulative exposure model and the PH model; see Gerville-
Reache and Nikulin (2007). Now, under the AFT model along with the assumption of
exponentiality, the PDF and CDF of a test unit are

f(t) =

[
i−1∏
j=1

Sj(∆j)

]
fi(t− τi−1) if

{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k
,(4)

F (t) = 1−

[
i−1∏
j=1

Sj(∆j)

]
Si(t− τi−1)

if

{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1

τk−1 ≤ t <∞ for i = k
,(5)

where ∆j = τj − τj−1 is the step duration at stress level xj , and fi(t) and Fi(t) are as
given in (1) and (2), respectively. Then, using (4) and (5), the joint distribution function
of n = (n1, n2, . . . , nk) and y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained
as

fJ(y,n) = C

[
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (6)
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where

C =

k∏
i=1

Ni!

(Ni − ni)!
,

Ui =

ni∑
l=1

(yi,l − τi−1) + (Ni − ni)∆i (7)

for i = 1, 2, . . . , k. The detailed derivation of (6) is similar to Balakrishnan and Han
(2009). Note that Ui in (7) is the it Total Time on Test statistic at stress level xi. Now,
using (6) and the log-linear link given in (3), the log-likelihood function of (α, β) can be
written as

l(α, β) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Ui exp
[
− (α+ βxi)

]
. (8)

Upon differentiating (8) with respect to α and β, the MLEs α̂ and β̂ are obtained as
simultaneous solutions to the following two equations:[

k∑
i=1

ni

][
k∑
i=1

Uixi exp (−β̂xi)

]
=

[
k∑
i=1

nixi

][
k∑
i=1

Ui exp (−β̂xi)

]
, (9)

α̂ = log

(∑k
i=1 Ui exp (−β̂xi)∑k

i=1 ni

)
. (10)

2.2 k-level constant-stress test under Type-I censoring

For illustrative simplicity, let us consider the procedure of a constant-stress ALT under
Type-I censoring. A constant-stress ALT under progressive Type-I censoring can be
described in a similar manner like in the previous subsection by introducing a set of
time points for intermediate censoring. For i = 1, 2, . . . , k, Ni units are allocated on test
at stress level xi such that

∑k
i=1Ni = n. The allocated units are then tested until time

τi at which point all the surviving items are withdrawn, thereby terminating the life
test. Let ni denote the (random) number of units failed at stress level xi in time interval
[0, τi) and yi,l denote the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni while
Ni − ni denotes the number of units censored at time τi. Obviously, when there is no
right censoring (viz., τi = ∞ and ni = Ni), this situation corresponds to the k-level
constant-stress ALT under complete sampling as a special case.

Then, using (1) and (2), the joint distribution function of n = (n1, n2, . . . , nk) and
y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained as in (6) where

Ui =

ni∑
l=1

yi,l + (Ni − ni)τi, i = 1, 2, . . . , k. (11)
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Again, note that Ui in (11) is the Total Time on Test statistic at stress level xi. Using
(6) and the log-linear link in (3), the log-likelihood function of (α, β) can be written as
in (8) and as a result, we obtain the MLEs α̂ and β̂ as simultaneous solutions to (9) and
(10) with Ui given in (11).

2.3 k-level constant-stress test under progressive Type-II censoring

Let us now describe the procedure of a constant-stress ALT under progressive Type-II
censoring. For i = 1, 2, . . . , k, Ni units are allocated on test at stress level xi such that∑k

i=1Ni = n. Let ni denote the prefixed number of failure times to be observed at xi
along with the progressive censoring scheme given by Ri = (Ri,1, Ri,2, . . . , Ri,ni). Also,
let yi,l denote the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni. Then, a
constant-stress ALT under progressive Type-II censoring proceeds as follows. At stress
level xi, Ni units are tested until the first failure time yi,1 at which Ri,1 live items are
arbitrarily withdrawn from the test. The test continues until the second failure time yi,2
at which Ri,2 items are withdrawn from the test, and so on. Finally, at the ni-th failure
time yi,ni , all the surviving items are withdrawn, thereby terminating the life test. Note
that since Ni ≡ ni +

∑ni
l=1Ri,l, the number of items censored at the ni-th failure time is

Ri,ni = Ni − ni −
∑ni−1

l=1 Ri,l. Obviously, when there is no intermediate censoring (viz.,
Ri,1 = Ri,2 = · · · = Ri,ni−1 = 0), this situation corresponds to the k-level constant-stress
ALT under conventional Type-II right censoring as a special case. When there is no
right censoring (viz., ni = Ni), this situation corresponds to the k-level constant-stress
testing under complete sampling as a special case.

Then, using (1) and (2), the joint distribution function of y = (y1,y2, . . . ,yk)
with yi = (yi,1, yi,2, . . . , yi,ni) is obtained as

fJ(y) = C

[
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (12)

where

C =

k∏
i=1

ni−1∏
j=0

(
Ni − j −

j∑
l=1

Ri,l

)
,

Ui =

ni∑
l=1

yi,l(1 +Ri,l) (13)

for i = 1, 2, . . . , k. Note that the structure of (12) is identical to (6). Also, Ui in (13) is
the it Total Time on Test statistic at stress level xi. Using (12) and the log-linear link
in (3), the log-likelihood function of (α, β) can be written as in (8) and as a result, we
obtain the MLEs α̂ and β̂ as simultaneous solutions to (9) and (10) with Ui given in
(13).
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2.4 k-level step-stress test under progressive Type-II censoring

For i = 1, 2, . . . , k, let ni denote the (random) number of units failed at stress level xi
in time interval [τi−1, τi)) such that the total number of failure observations is fixed at
nT ≤ n (viz., nT =

∑k
i=1 ni) along with the progressive censoring scheme specified by

R = (R1, R2, . . . , Rn
T

). Also, let yi,l denote the l-th ordered failure time of ni units at
xi, l = 1, 2, . . . , ni while Ni denotes the number of units operating and remaining on
test at the start of stress level xi. That is, Ni = n −

∑i−1
j=1 nj −

∑i−1
j=1

∑ni
l=1Rj,l where

R∗ = (R1,R2, . . . ,Rk) with Ri = (Ri,1, Ri,2, . . . , Ri,ni) such that R matches with the
first nT elements of R∗. Then, a step-stress ALT under progressive Type-II censoring
proceeds as follows. A total of N1 ≡ n test units is initially placed at stress level x1
and tested until the first failure time y1,1 at which R1,1 ≡ R1 live items are arbitrarily
withdrawn from the test. The test continues until the second failure time y1,2 at which
R1,2 ≡ R2 items are withdrawn, and so on. During this process, if the testing time
reaches τ1, the stress is changed to x2. The test continues until time τ2 at which the
stress is changed to x3, and so on. Finally, at the nT -th failure time, all the surviving
items are withdrawn, thereby terminating the life test. Note that since n ≡ nT +

∑n
T
i=1Ri,

the number of items censored at the nT -th failure time is Rn
T

= n − nT −
∑n

T
−1

i=1 Ri.
When there is no intermediate censoring (viz., R1 = R2 = · · · = Rn

T
−1 = 0), this

situation corresponds to the k-level step-stress ALT under conventional Type-II right
censoring as a special case. When there is no right censoring (viz., nT = n), this
situation corresponds to the k-level step-stress testing under complete sampling as a
special case.

Using (4) and (5), the joint distribution function of y = (y1,y2, . . . ,yk) with
yi = (yi,1, yi,2, . . . , yi,ni) is obtained as in (12) where

C =

n
T
−1∏

j=0

(
n− j −

j∑
i=1

Ri

)
,

Ui =

ni∑
l=1

(yi,l − τi−1)(1 +Ri,l) +Ni+1∆i (14)

for i = 1, 2, . . . , k with ∆i = τi − τi−1 being the step duration at stress level xi. Again,
Ui in (14) is the Total Time on Test statistic at stress level xi. Using (12) and the
log-linear link in (3), the log-likelihood function of (α, β) can be written as in (8) and
as a result, we obtain the MLEs α̂ and β̂ as simultaneous solutions to (9) and (10) with
Ui given in (14).

3 Determination of the MLE

We can see from (9) and (10) that for the existence of β̂ and also of α̂, at least one failure
has to be observed from at least two different stress levels. Otherwise, the parameters
are not estimable. Under such a condition, to prove the existence and uniqueness of the
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MLEs of α and β, let us express (9) alternatively as∑k
i=1 nixi∑k
i=1 ni

=

∑k
i=1 Uixi exp (−βxi)∑k
i=1 Ui exp (−βxi)

, (15)

whose RHS is denoted by H(β;x,U). We will show that for given x and U, H(β;x,U)
is a monotone decreasing function of β with a limit smaller than LHS of (15) as β → +∞
and with a limit greater than LHS of (15) as β → −∞. Since LHS of (15) is a constant, it
then follows that the plots of

∑k
i=1 nixi/

∑k
i=1 ni and H(β;x,U) would intersect exactly

once, at the MLE of β. This intersection guarantees the unique existence of β̂ and also
of α̂ from (10).

For this purpose, we have to ensure that

∂

∂β
H(β;x,U) =

h(β;x,U)[∑k
i=1 Ui exp (−βxi)

]2 ≤ 0,

or equivalently that h(β;x,U) ≤ 0 where

h(β;x,U) = −

[
k∑
i=1

Uix
2
i exp(−βxi)

][
k∑
i=1

Ui exp(−βxi)

]
+

[
k∑
i=1

Uixi exp(−βxi)

]2
.

(16)
Setting ai = xi

√
Ui exp(−βxi) and bi =

√
Ui exp(−βxi) for i = 1, 2, . . . , k, (16) can be

expressed as

h(β;x,U) = −
k∑
i=1

a2i

k∑
i=1

b2i +

( k∑
i=1

aibi

)2

≤ 0

by the Cauchy-Schwarz inequality, which establishes the required property thatH(β;x,U)
is indeed a monotone decreasing function of β. It is also observed that the limits for
H(β;x,U) are

lim
β→+∞

H(β;x,U) = x1 ≤
∑k

i=1 nixi∑k
i=1 ni

,

lim
β→−∞

H(β;x,U) = xk∗ ≥
∑k

i=1 nixi∑k
i=1 ni

,

where xk∗ is the observed last stress level when the life test is terminated. Thus, a plot of
the LHS and RHS of (15) gives a simple graphical method of determining the MLE of the
parameter β; see Figure 1. The proposed method is advantageous compared to the tra-
ditional methods for obtaining the MLE of the model parameters. The Newton-Raphson
algorithm has been one of the standard procedures for the parameter estimation. In or-
der to implement the Newton-Raphson procedure, however, it is necessary to acquire the
second-order derivatives of the log-likelihood function, and this might be complicated
under progressive censorings. This is a clear benefit of the proposed method since its
simplicity does not require such derivations.
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Table 1: Progressively Type-I censored dataset from n = 30 prototypes of a solar lighting
device on a three-level step-stress ALT with τ1 = 15, τ2 = 20, and τ3 = 25

Failure Times at Failure Times at Failure Times at

Temperature Level 1 Temperature Level 2 Temperature Level 3

(x1 = 0.1) (x2 = 0.5) (x3 = 0.9)

1.515 15.164 20.318

2.225 15.355 21.228

4.629 15.953 21.543

4.654 16.735 24.541

6.349 18.796

8.003 19.248

8.262 19.295

10.416

11.381

12.433

14.755

n1 = 11 n2 = 7 n3 = 4

c1 = 4 c2 = 1 c3 = 3

n⊕ = 22, c⊕ = 8

4 Illustrative example

The graphical estimation method proposed here is illustrated with a real engineering case
study. A three-level step-stress ALT was conducted under progressive Type-I censoring
in order to assess the reliability characteristics of a solar lighting device, whose dominant
failure mode is controller failure. Here, temperature is the stress factor whose level
was changed during the test in the range of 293K to 353K with the normal operating
temperature at 293K. The standardized stress loading was x1 = 0.1, x2 = 0.5, and
x3 = 0.9. The stress change time points were τ1 = 15 (in hundred hours) and τ2 = 20
(in hundred hours) with the censoring time point at τ3 = 25 (in hundred hours). The
number of devices censored at τ1 = 15 and τ2 = 20 were c1 = 4 and c2 = 1, respectively,
in order to utilize them for further engineering analyses and in other tests. The dataset
obtained is presented in Table 1 and it consists of total n⊕ = 22 failure times from the
initial sample size of n = 30 prototypes (i.e., 26.7% right censoring).

Initially, Weibull models with a constant shape parameter across different stress
levels were fitted under the power law relationship but the inference for the shape pa-
rameter supported an exponential lifetime of the device at any constant temperature.
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Figure 1: Plot of H(β;x,U) and LHS functions of (15) for the progressively Type-I
censored data in Table 1

Consistent with our model assumption, fitting exponential distribution to the data with
the log-linear parameter-stress relationship in (3), the estimation procedure described in
Section 3 leads to a simple graphical solution of β̂ = −2.41309 with no need to use the
Newton-Raphson method; see Figure 1. This in turn produces α̂ = 3.659685 from (10).

5 Conclusion

In this work, a simpler estimation method was proposed for determination of the MLE of
the regression slope parameter for the general k-level constant-stress and step-stress ALT
under progressive Type-I and Type-II censorings. The unified structure of the likelihoods
was provided upon using the popular physics-based log-linear link function between the
mean lifetime parameter and the (transformed) stress level along with the AFT model for
explaining the effect of changing stress levels in step-stress ALT. It was demonstrated
that this proposed approach ensures the existence and uniqueness of the MLE. For
analytical tractability, the derivations and numerical results presented in this work are
based on the exponentially distributed lifetimes at each stress level. It is of practical
interest to extend the results of this research to other types of censoring schemes and the
failure data from other popular lifetime distributions containing non-scale parameters
such as Weibull, extreme value, gamma, and lognormal. With added distributional
parameters, it is challenging to assess the nature of the likelihood equations analytically
but luckily, the existence and uniqueness of the MLE can be inferred based on the results
reported in this work. For instance, if the failure times follow Weibull distributions with
a common shape parameter across stress levels, a simple power transformation converts
the lifetime distribution to an exponential, which has been discussed in this paper;
see Balakrishnan and Kateri (2008) for example. Research in these direction is under
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progress and it is hoped to report these findings in future communications.
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