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How many consecutive heads can we observe in a run of coin tossing of
length n? Although the problem seems to be easy to answer, this would be
actually a little bit tough when we try to find the solution straightforwardly.

The expected number of consecutive heads in a run is
3n− 2

8
(n ≥ 2) using

a recursive formula. However, if we define a solitary head coin such that a
head coin is isolated by neighboring tail coin(s) in a run, the problem of how
many solitary heads in a run can be solved easily. The expected number of

solitary heads in a run is
n+ 2

8
(n ≥ 2). Since the problem of solitary head

coin becomes a dual problem of the above, the consequence of the problem
of the consecutive heads is derived easily by considering the probability of a
solitary coin appearance. Using this duality, we can solve much more complex
problem such that how much the reward is expected in a run of coin tossing
of length n if the reward is 2k−1 (k ≥ 2) when k consecutive heads appears.

The expected reward is
1

16
(n2 + 3n − 2), (n ≥ 2). Applying this result to

adaptive e-learning systems, we can design the reward to promote self-study
for students.
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1 Introduction

There have been number of good discussions in coin tossing. Feller (1968) is most
referred to, and very intriguing subjects are also discussed; e.g., Mood (1940), Bloom
(1996), Finch (2003), Havil (2003), Gordon et al. (1986), Philippou and Marki (1986),
Schilling (1990), Schuster (1994), Spencer (1986), are among them. Some are in ideally
fair coins, and others are in actual coin, e.g., Keller (1986), Ford (1983). We deal with a
problem of the number of consecutive heads in a run in this paper. However, in addition
to this, we consider the reward problem to the consecutive heads.

Imagine that we are tossing a coin n times. The first question is how many consecutive
heads we can observe in a run of coin tossing of length n? When n = 3, for example,
the head (H) and tail (T) patterns are, HHH, HHT, HTH, ... , TTT; the number of all
possible patterns is 23 = 8. Among these eight patters, we find three consecutive heads
patterns; two consecutive heads cases are HHT and THH, and three consecutive heads
case is HHH. The number of consecutive heads is counted to be two, two or three to
each case. When n = 5, there are no consecutive heads in a run of THTTH or HTHTH.
When a run is HHTHH, we count the number of consecutive heads as 2 × 2 = 4; we
observed two heads two times. When a run is THHHT, it is 3×1 = 3; we observed three
heads one time. When THHHH, it is 4× 1 = 4; we observed four heads one time. The
number of consecutive heads is counted to be four, three or four to each case.

Next, we consider the rewards to the consecutive heads. In the above example cases,
we define that the reward is two to each pattern of HHT or THH, four to the pattern of
THHHT, and eight to the pattern of THHHH. That is, the reward soars exponentially
as the number of consecutive heads becomes large. Here, the reward is calculated to
be 2k−1 for k consecutive heads observation, where k ≥ 2. The second question is how
much reward we can expect in a run of coin tossing of length n. In the cases of n = 2

and n = 3, the expected rewards are
2

22
=

1

2
and

2 + 2 + 4

23
= 1, respectively.

2 Expected Number of Consecutive Heads in A Run

To count the number of consecutive heads, we append one point to a head coin of
consecutive heads and zero point otherwise. We first consider the case of n = 3 to grasp
the problem. When n = 3, we get three point from HHH and two point each from HHT

or THH, as shown in Figure 1; thus, the expected point in a run is
3 + 2 + 2

23
=

7

8
.

We define ai such that

ai = 1 ith flipped coin is head,
ai = 0 ith flipped coin is tail, (1)

and bi such that

bi = 1 ith flipped coin is one of the consecutive heads,
bi = 0 ith flipped coin is a solitary head or tail. (2)
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Figure 1: An example of ai, ti, f(n), when n = 2, 3.

We, then, can define the point tn(a1, a2, ..., an) in a run by

tn(a1, a2, ..., an) =
n∑

i=1

bi. (3)

By summing up tn for all possible runs, we define the total possible point of

f(n) =
∑

a1,a2,...,an

tn(a1, a2, ..., an). (4)

As an example, we show ai, tn, and f(n) for n = 2, 3 in Figure 1. Once we can obtain
f(n), the expected point, E[tn], becomes

E[tn] =
f(n)

2n
. (5)

To obtain f(n), we consider a recursive formula. The total point consists of the
following three in n coin tossing:

1) Whatever the value of an is, f(n − 1) by a1, a2, . . . , an−1 is taken into account of;
i.e., 2f(n−1) is counted in f(n) for an = 0 and an = 1. This is shown in (i) on the right
in Figure 1.

2) If an−1 = 1, and an = 1, then bn = 1. Thus, 2n−2 point are counted in f(n), since
we have 2n−2 possible cases for a1, a2, . . . , an−2. This is shown in (ii) on the right in
Figure 1.

3) If an−2 = 0, an−1 = 1, and an = 1, then bn−1 = 1. When we deal with n − 1
coin tossing, bn−1 = 0 if an−2 = 0, an−1 = 1. Thus, bn−1 changes its value from 0 to 1.
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According to this, 2n−3 point are counted in f(n) because we have 2n−3 possible cases
for a1, a2, . . . , an−3. This is shown in (iii) on the right in Figure 1.

Therefore, we have the recursive formula such that

f(n) = 2f(n− 1) + 2n−2 + 2n−3, (n ≥ 3). (6)

This formula can be solved as follows:

f(n) = 2f(n− 1) + 3 · 2n−3

= 2(2f(n− 2) + 3 · 2n−4) + 3 · 2n−3

= 22f(n− 2) + 3 · 2n−3 + 3 · 2n−3

= 22f(n− 2) + 3 · 2 · 2n−3

= 22(2f(n− 3) + 3 · 2n−5) + 3 · 2 · 2n−3

= 23f(n− 3) + 3 · 2n−3 + 3 · 2 · 2n−3

= 23f(n− 3) + 3 · 3 · 2n−3

...
= 2n−4(2f(3) + 3 · 21) + 3(n− 4)2n−3

= 2n−3f(3) + 3(n− 3)2n−3

= 2n−3(f(3) + 3(n− 3))
= 2n−3(3n− 2), (n ≥ 3). (7)

Therefore, the expected point, E[tn], which is equivalent to the expected number of
consecutive heads, Cn, becomes

E[tn] =
2n−3(3n− 2)

2n
=

3n− 2

8
= Cn, (n ≥ 2), (8)

in a run, because this formula also holds when n = 2.
Next, we want to consider the reward problem. Even though we look at Figure 1 very

carefully, we cannot easily imagine how to solve this problem by constructing a similar
recursive formula. However, the problem becomes easy if we change the idea to solve
this problem. That is, we consider a dual problem shown below.

3 Probability That A Coin is A Solitary Head Coin

When a1 = 1 and a2 = 0, then the very first flipped coin is the solitary head coin.
Whatever values the other ai have, the probability that the first flipped coin is a solitary

head coin is
1

4
because the probability that a1 = 1, a2 = 0, and ai = 0, 1 (3 ≤ i ≤ n)

is
2n−2

2n
. Let’s consider here that we append point one only to the solitary head coin.

Then, the expected point from this coin is 1× 1

4
=

1

4
. This is also true for the very last

flipped coin.
For the second flipped coin, it becomes a solitary head coin if a1 = 0, a2 = 1, and

a3 = 0, whatever values the other ai have, where 4 ≤ i ≤ n. Then, the expected point

from this coin is 1× 1

8
=

1

8
, and this is also true for a3, . . . , an−1.
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Therefore, the total expected point for the solitary heads, which is equivalent to the
expected number of solitary heads, Sn, in a run becomes,

Sn = 2× 1

4
+ (n− 2)× 1

8
=

n+ 2

8
. (9)

Considering that the problem of how many solitary heads we observe in a run becomes
a dual problem for the original consecutive heads observation problem, the expected
number of consecutive heads in a run, Cn, is

Cn =
n

2
− n+ 2

8
=

3n− 2

8
, (n ≥ 2). (10)

4 Reward to Consecutive Heads in A Run

Next, we consider the case that we add reward to the appearance of the consecutive
heads in a run. If k consecutive heads appears, we define that the reward attached to k
consecutive heads becomes 2k−1. We follow a precedent idea of solitary head coin.

We express the reward by g(n). To obtain g(n), we define sub-reward gk(n) to k

consecutive heads; g(n) =
n∑

k=2

gk(n). For example, in the case of the two consecutive

heads, g2(n) becomes,

g2(n) = {2× 1

22+1
+ (n− 3)× 1

22+2
} × 22−1 =

n+ 1

8
. (11)

Similarly, gk(n) is expressed by,

gk(n) = {2× 1

2k+1
+ (n− k − 1)× 1

2k+2
} × 2k−1

=
n− k + 3

8
, (2 ≤ k ≤ n− 1), (12)

and

gn(n) = (
1

2n
)× 2n−1 =

1

2
. (13)

Thus,

g(n) =

n∑
k=2

gk(n) =
1

16
(n2 + 3n− 2), (n ≥ 2). (14)

Since the reward to k consecutive heads grows explosively as k increases, we are
inclined to imagine that the expected rewards is also explosive. However, this is not
true. The growth curve for the expected rewards follows only a quadratic function in
coin tossing.
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5 Application

A web-based learning system, e.g., Hirose (2016) provides a series of questions adaptively.
That is, if a student solved one question, then the system selects the next question
automatically such that its problem difficulty is best fit to the estimated ability of
the student after estimating the ability using Bayes theory. The best fit means that
the system selects a question from the question item bank such that the amount of
information becomes to be maximum in the estimating procedure. Then, a student will
solve the next question successfully with 50% probability.

To promote self-study using such e-learning systems, the system can provide a reward
to a student. In such a situation, the result of the previous section can be directly
applied such that a student can solve each question successfully with 50% probability
and the reward is given in the same manner shown there. The expected reward curve is
quadratic with respect to the number of questions.

However, if a student can solve a question with probability p >
1

2
, then the expected

reward curve shows a different aspect. Equations gk(n, p), gn(n, p) and g(n, p) similarly
defined to gk(n), gn(n) and g(n) become

gk(n, p) = {2pk(1− p) + (n− k − 1)pk(1− p)2} × 2k−1,

(2 ≤ k ≤ n− 1), (15)

gn(n, p) = pn × 2n−1, (16)

g(n, p) =
n∑

k=2

gk(n, p)

=
p2

2(1− 2p)2
{(2p)n + 4(n− 1)(p− 1)2(1− 2p)

+8p2(p− 1)}, (n ≥ 2). (17)

In this situation, g(n, p) will blow up as n becomes large unlike the case of p =
1

2
. This

feature may be able to motivate students.

6 Concluding Remarks

We considered the problem of consecutive heads and its reward problem. The former is
how many consecutive heads we can observe in a run of coin tossing of length n. The
latter is how much reward we can expect in a run of coin tossing of length n. Although
the problem of consecutive heads in a run can be solved using a recursive formula,
its reward problem cannot be solved easily in a similar manner. However, the reward
problem becomes easy if we change the idea to solve these problems. We considered a
dual problem to the consecutive heads, i.e., the solitary head. Then, the solution can be
easily obtained using the duality. Applying this result to adaptive e-learning systems,
we can expect the amount of reward.
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