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This paper improves estimating parameters of Morgenstern type bivariate
distribution by developing bivariate ranked set sampling procedure as an
alternative method to simple random sampling. This proposed procedure
gives an opportunity to estimate all distribution’s parameters simultaneously
which is not investigated in previous studies, yet. Simulation studies are
conducted to investigate properties of the new estimators and compare them
with some other existed estimators.
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1 Introduction

Assume X and Y are bivariate random variables with moderate association. A suitable
joint probability density function ”pdf” that can accommodate this association was
suggested by Morgenstern (1956) as:

fX,Y (x, y, θ, β) = fX(x, θ)fY (y, β)
[
1 + α

(
1− 2FX(x, θ)

)(
1− 2FY (y, β)

)]
(1)

where fX(x, θ) and fY (y, β) are the pdfs for X and Y respectively, FX(x, θ) and FY (y, β)
are their correspondence Distribution Functions ”DF”s, and θ, β and α are model pa-
rameters. The main parameter for this model is the association parameter α which is
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proportionally related to the correlation coefficient between the two variables of interest
and its range −1 ≤ α ≤ 1. This joint pdf in (1) known in the literature by Morgenstern
Type Bivariate Distribution ”“MTBD””.

Specific examples on this bivariate densities of correlated random variables are Mor-
genstern Type Bivariate Uniform Distribution “MTBUD” and Morgenstern Type Bi-
variate Exponential Distribution “MTBED” . Their pdfs respectively are:

fX,Y (x, y, θ, β) =
1

θ

1

β

[
1 + α

(
1− 2x

θ

)(
1− 2y

β

)]
, 0 < x < θ; 0 < y < β (2)

and

fX,Y (x, y, θ, β) =
1

θ

1

β
e
(−x
θ

+−y
β

)
[
1 + α

(
1− 2e

−x
θ

)(
1− 2e

−2y
β

)]
, 0 < x; 0 < y. (3)

Researchers paid attention on estimating parameters of MTBD for decades. For ex-
ample, Scaria and Nair (1999) depended on the concomitant of ordered statistics to
estimate β and α. Concomitant of ordered statistics means ordering values of a random
variable made according to corresponding values of another random variable which are
ranked perfectly (i.e. ordered statistics).

Chacko and Thomas (2008) and Tahmasebi and Jafari (2014) estimated the same
parameters when the underlying distribution is MTBED using a sampling technique
called Ranked Set Sampling ”“RSS””. Also, they proposed other modifications on this
sampling approach to gain estimation. Singh and Mehta (2016) improved estimating
parameters when the underlying distribution is MTBUD using concomitant of ordered
statistics.

Beside establishing theory for general concomitant of generalized order statistics from
generalized MTBD family, Domma and Giardano (2016) derived moments and recur-
rence relations between moments of concomitant of ordered statistics to estimate MTBD’s
parameters. Genest et al. (1995), Abo-Eleneen and Nagaraja (2002) and Stefanescu and
Turnbull (2009) investigated estimating the association parameter in MTBD using maxi-
mum likelihood approach or one of its modifications while Al Kadiri and Migdadi (2018)
proposed the same approach to estimate the association parameter using a modified
maximum likelihood approach.

Ranked sampling, such as RSS and BVRSS, are used as alternative sampling methods
to Simple Random Sampling ”SRS”. Mainly, ranked sampling depends on ordering a
small set of sample units visually or by a cheap method then measure only a subset of the
ordered units.These sampling techniques improve properties of the produced estimators
as well as can reduce sampling costs, Wolfe (2012). Modifications on RSS can potentially
facilitate method of selection as well. Al-Saleh and Al Kadiri (2000) and Al-Saleh and
Al-omari (2002), for example, made spots on similar issues.

In this paper, we develop BVRSS procedure then we examine the usefulness of these
modifications to improve estimating all MTBD parameters. We divide this sampling
method into two phases. The first phase produces copies of concomitant of ordered
statistics while the second phase produces the regular BVRSS units. As known, BVRSS
depends on sample units of the second phase to achieve estimation while in this paper,
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we apply both phases to gain parameter estimation. Additionally, we build theoretical
infrastructure needed to investigate properties of new estimators.

BRSS was introduced by Al-Saleh and Zheng (2002) as a bivariate version of the usual
RSS to be used when we deal with two characteristics jointly.

In the following, we describe this procedure.

Suppose (Xi, Yi) is a bivariate random variables with a joint probability density func-
tion fX,Y (x, y). To generate a BVRSS sample, we need to do the following steps:

Step 1: For a set of size m, select a “SRS” of size m4 from the population and divide
it randomly into m2 pools, each pool has m ×m units. The elements in the first pool

are denoted by (X
(1)
ij , Y

(1)
ij ), i = 1, 2, ...,m; j = 1, 2, ...,m, where X

(1)
ij and X

(1)
ij are the

jth element of the ith row in the first pool for the first characteristic and the second
characteristic, respectively.

Step 2: For each row in the first pool, identify the minimum value based on first

characteristic by judgment. In symbols (X
(1)
i(j), Y

(1)
i[j] ), i = 1, 2, ...,m; j = 1, 2, ...,m. This

step produces the first phase sampling in our paper such that Y
(1)
i[j] is concomitant of the

ordered statistic X
(1)
i(j). The round brackets on the lower subscripts of the letters means

that the ranking is perfect (i.e. ordered statistics) while square brackets means ordering
corresponds to the perceived orders that match the other variable (i.e. concomitant
ordered statistics).

Step 3: For the m minima obtained in Step 2, choose the pair that corresponds
to the minimum value of the second characteristic, identified by judgement, for actual
quantification. This pair labelled by (1,1) in the second phase BVRSS.

Step 4: Repeat Steps 2 and 3 for the second pool, but in Step 3, the pair that
corresponds to the second minimum value with respect to the second characteristic is
chosen for actual quantification. This pair labelled by (1,2).

Step 5: The process continues until the label (m,m) is selected from the mth (last)

pool. In symbols (X
(k)
[i](j), Y

(k)
(i)[j]), i = 1, 2, ...,m; j = 1, 2, ...,m and k = (j − 1)m+ i.

Step 6: For sampling comparison purposes, larger sample size is possibly required.
So we can repeat the above steps r times to obtain a sample of size n = rm2. Here, n
represents the SRS sample size.

The above method produces an independent but not identically distributed BVRSS

sample of size m2, which its units are denoted by (X
(k)
[i](j), Y

(k)
(i)[j]). Note that m4 units

are selected to measure m2 for actual quantification. Considerably, the m4 sample units
contribute the information to m2 quantified units.

This paper is established as follows. Section (2) builds a theoretical infrastructure
needed to achieve parameter estimation in this paper. Then, Section (3) improves esti-
mating parameters of MTBD in general and for a few specific examples while Section
(4) presents simulation studies to illustrate properties of estimators. A brief discussion
and conclusions come in Section (5).
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2 Basic theory setups

Let (Xi, Yi) be a sequence of bivariate SRS sample with joint MTBD pdf in (1) where
i = 1, 2, ..., n. Consider µX and µY are population means and varX(x) and varY (y) are
population variances.

Also, let (X
(k)
i(j), Y

(k)
i[j] ) be the produced first stage BVRSS sample from the kth pool

where i = 1, 2, ...,m and j = 1, 2, ...,m. Consider their correspondence means EX(j:m)
(x) =

µX(j:m)
, EY[j:m]

(x) = µY[j:m]
and correspondence variances varX(j:m)

(x) and varY[j:m]
(x).

The produced samples from this stage are copies of concomitant of ordered statistics
where each pool contains m copies.

Scaria and Nair (1999) defined pdf of the first stage concomitant variable Y[j:m] for
MTBD as follows:

fY (y, β) = fY (y, β)
[
1 + α Aj,m

(
1− 2FY (y, β)

)]
where Aj,m =

m− 2j + 1

m+ 1
.

Note that the pdf of X(j:m) is the usual pdf of the jth ordered statistic (see for example
Ehsanullah et al. (2013); page 19).

Similarly, assume (X
(k)
[i:m](j), Y

(k)
(i:m)[j]) be the produced second stage BVRSS sample

from the kth pool such that i = 1, 2, ...,m and j = 1, 2, ...,m. Consider means of these
random variables are EX[i:m](j)

(x) = µX[i:m](j)
, EY(i:m)[j]

(x) = µY(i:m)[j]
and their variances

are varX[i:m](j)
(x) and varY(i:m)[j]

(x) respectively.

Note that the pdf of X
(k)
[i:m](j) is the density of the ith concomitant random variable

when it is selected from a set of ordered statistics with rank j (i.e. not SRS sample).

Also, the pdf of Y
(k)
(i:m)[j] is the density of the ith ordered statistics when this random

variable is selected from a set of concomitant variables with rank j. Marginal and joint
pdfs of these two random variables are settled in the following result.

Result 2.1. The marginal pdf of the random variable X
(k)
[i:m](j) can be expressed as

fX[i:m](j)
(x, θ) = fX(j)

(x, θ)[1 + α Ai,m(1− 2 FX(j)
(x, θ))] (4)

where fX(j)
(x, θ) and FX(j)

(x, θ) are the pdf and DF of the ordered statistic X(j) respec-

tively. Furthermore, the marginal pdf of the random variable Y
(k)
(i:m)[j] can be written

as
fY(i:m)[j]

(y, β) = Cm,i[FY[j:m]
(y, β)]i−1[1− FY[j:m]

(y, β)]m−ifY[j:m]
(y, β) (5)

where FY[j:m]
(y, β) is the DF of the jth concomitant variable and the constant

Ca,b = a!
(b−1)!(a−b)! . Also, the joint density can be written as

fX[i:m](j),Y(i:m)[j]
(x, y; θ, β, α) = Cm,ifX(j:m)

(x, θ)[FY[j:m]
(y, β)]i−1[1− FY[j:m]

(y, β)]m−i

fY |X(y|x) (6)

where the conditional density in (6) is:
fY |X(y|x) = fY (y;β)[1 + α(1− 2FX(x, θ))(1− 2FY (y;β))].
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Definition 2.1. 1) Under general distribution assumption, Mclntyre (1952) estimated

the population mean µX by the unbiased estimator µ̂
(1)
X = 1

m

∑m
j=1X

(k)
(j:m). While Scaria

and Nair (1999) estimated the population mean µY for specific MTBD by the unbiased

estimator µ̂
(1)
Y = 1

m

∑m
j=1 Y

(k)
[j:m].

2) Al-Saleh and Zheng (2002) proposed the following unbiased estimators for popula-

tion means: µ̂
(2)
X = 1

m2

∑m
i=1

∑m
j=1X

(k)
[i:m](j)and µ̂

(2)
Y = 1

m2

∑m
j=1

∑m
i=1 Y

(k)
(i:m)[j]

.

The previous definition, in its two parts, comes from basic identities of pdfs which are
summarized in the following remark.
Remark: 1) (Takahasi and Wakimoto (1968)) fX(x) = 1

m

∑m
j=1 fX(j:m)

(x) and simi-

larly fY (y) = 1
m

∑m
j=1 fY[j:m]

(Y ).

2)(Scaria and Nair (1999)) fY (y) = 1
2(fY[j:m]

(y)+fY[m−j+1:m]
(y)) for MTBD specifically.

3)(Al-Saleh and Zheng (2002)) fX,Y (x, y) = 1
m2

∑m
i=1

∑m
j=1 fX[i:m](j)

,Y(i:m)[j]
(x, y) and

therefore, fX(x) = 1
m2

∑m
i=1

∑m
j=1 fX[i:m](j)

(x) and fY (y) = 1
m2

∑m
i=1

∑m
j=1 fY(i:m)[j]

(y).

Lemma 2.1. According to Domma and Giardano (2016), we can state that the con-
comitant variable Y[j:m], from any arbitrary pool, which originally comes from MTBD
has the following mean and variance:
1) EY[j:m]

[y] = µY[j:m]
= µY + αAj,mEY [y(1− 2FY (y, β))].

2)varY[j:m]
(y) =

varY (y)+α Aj,mEY [y2(1−2FY (y, β))]−2αAj,mµYEY [y(1−2FY (y, β))]−α2A2
j,mE

2
Y [y(1−

2FY (y))].

According to this lemma, Domma and Giardano (2016) suggested the following ex-
pression to represent the association parameter α

α̂ =
Y[m−s+1:m] − Y[s:m]

2As,mEY [y(1− 2FY (y, β))]
(7)

at specific s such that s =

{
1, 2, ....,

[
m+1
2

]
− 1 if m is odd

1, 2, ....,
[
m+1
2

]
if m is even

. Here the operation

[a] means the greatest integer less than or equal a.

Theorem 2.1. Analogous to Lemma (2.1), we can state the following mean and vari-
ance for the concomitant variables of the second stage BVRSS:

1) The mean EX[i:m](j)
(x) = µX(j:m)

+α Ai,m

(
µX(j:m)

− 2Cm,j
∑m

k=j

(
m
k

)
1

C2m,k+j
µX(k+j:2m)

)
where µX(k+j:2m)

= EX(k+j:2m)
(x).

2) The variance
varX[i:m](j)

(x)

= varX(j:m)
(x) + αAi,m

(
EX(j:m)

[x2(1 − 2FX(j:m)
(x))] − 2EX(j:m)

[x(1 − 2FX(j:m)
(x))] ×

(
µX(j:m)

+ α Ai,mEX(j:m)
[x(1− 2FX(j:m)

(x))]
))
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where FX(j:m)
(x) is the DF of the ordered statistics X(j:m).

Proof: 1) We can define expectation for random variable X[i:m](j) as
E[X[i:m](j)] = EX(j:m)

(x) + αAi,mEX(j:m)
[x(1− 2FX(j:m)

(x))].

By re-expressing the last term in the above equation as
EX(j:m)

[x(1− 2FX(j:m)
(x))] = µX(j:m)

− 2EX(j:m)
[xFX(j:m)

(x)]
and by using the result by David and Nagaraja (2003), Chapter (2), which is:
FX(j)

(x) =
∑m

k=j

(
m
k

)
FX(x)k(1− FX(x))m−k

we can conclude that,

EX(j:m)

[
x
(

1− 2FX(j:m)
(x)
)]

= µX(j:m)
− 2Cm,j

∑m
k=j

(
m
k

) ∫
xfX(x)FX(x)k+j−1[1− FX(x)]2m−k−jdx

= µX(j:m)
− 2Cm,j

∑m
k=j

(
m
k

)
1

C2m,k+j
µX(k+j:2m)

.

Thus, part 1) of this theorem is straightforward.

2) Proof the second part of this theorem is similar to part (2) of Lemma (2.1) �

Lemma 2.2. Variances of the unbiased estimators µ̂
(2)
X and µ̂

(2)
Y , can be expressed under

MTBD as:

1) var(µ̂
(2)
X ) =

varX(x)

m2 − 1
m4

∑m
j=1

∑m
i=1(µX [i:m](j)

− µX)2.

2) var(µ̂
(2)
Y ) = varY (y)

m2 − 1
m4

∑m
j=1

∑m
i=1(µY ()i:m)[j] − µY )2.

Proof two parts of the above lemma for general distribution assumption can be found in
Al-Saleh and Zheng (2002) however, we need variance formulas to include the association
parameter of MTBD. So, we develop the following result.

Result 2.2. Variances of the unbiased estimators µ̂
(2)
X and µ̂

(2)
Y can be re-expressed under

MTBD as

1)var(µ̂
(2)
X ) =

1

m4

m∑
j=1

varX(j:m)
(x)− α2 (m− 1)

3m3(m+ 1)

m∑
j=1

E2
X(j:m)

[x(1− 2FX(j:m)
(x))]

2)var(µ̂
(2)
Y ) =

1

m4

m∑
j=1

varY[j:m]
(y)− α2 (m− 1)

3m3(m+ 1)

m∑
j=1

E2
Y[j:m]

[y(1− 2Fy[j:m]
(y))].

Proof: We prove the first part of the above result while proof of the second part can
be done similarly. Since all BVRSS units are independent, we can write:

var(µ̂
(2)
X ) = 1

m4

∑m
j=1

∑m
i=1 varX[i:m](j)

(X). Applying Theorem 2.1 part 2) we get:
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var(µ̂
(2)
X ) =

1

m4

m∑
j=1

m∑
i=1

varX(j:m)
(x) +

1

m4

m∑
j=1

m∑
i=1

αAi,mEX(j:m)
[x2(1− 2FX(j:m)

(x))]

− 2α
1

m4

m∑
j=1

m∑
i=1

Ai,mEX(j:m)
[x2(1− 2FX(j:m)

(x))]µX(j:m)

− 1

m4

m∑
j=1

m∑
i=1

α2A2
i,mE

2
X(j:m)

[x(1− 2FX(j:m)
(x))].

Since
∑m

i=1Ai,m = 0 and
∑m

i=1A
2
i,m = m(m−1)

3(m+1) , we get

var(µ̂
(2)
X ) = 1

m4

∑m
j=1

∑m
i=1 varX(j:m)

(x)−α2 (m−1)
3m3(m+1)

∑m
j=1E

2
X(j:m)

[x(1− 2FX(j:m)
(x))]�

Theorem 2.2. The pdf for the random variable X[i:m](j) can be written in terms of DF
of SRS as

fX[i:m](j)
(x) = fX(j:m)

(x)
[
1 + αCm,iκ(i, j,m)

(
[1− 2FX(x)]−Aj,m

)]
where the constant

κ(i, j,m) =

∫
fY (y)

[
1− 2FY (y)

][
FY[j:m]

(y)
]i−1[

1− FY[j:m]
(y)
]m−i

dy.

3 Estimating Model parameters

In this section, we improve estimating parameters of MTBD distribution that we defined
in (1) then, we applied these improved estimators for some specific examples. These
examples are: MTBUD and MTBED. As we noted from previous literature, α and β
of MTBD were estimated however θ was not. So, in this paper we suggest improving
BVRSS to estimate all model parameters.

We start estimating the association parameter α. Similar to Domma and Giardano
(2016) estimator in (7), we suggest the following new estimators for α.

Definition 3.1. We develop the following estimators for the association parameter α
in (1) by using the first stage BVRSS units Y[i:m] (i.e copies of concomitant of ordered
statistics):

1) α̂1 =
Y[i:m] − µ̂Y

Ai,mEY [y(1− 2FY (y, β))]
at specific i.

2) α̂2 =
µ̂Y[i:m]

− µ̂Y
Ai,mEY [y(1− 2FY (y, β))]

at specific i where µ̂Y[i:m]
= 1

m

∑m
ω=1 Y[i:m]ω.

To achieve computing estimators in the above definition, we suggest formulas for µ̂Y
that introduced in Definition (2.1) or the SRS estimator, µ̂Y = 1

m

∑m
i=1 Yi. Hence, in

this paper, we consider the SRS estimator.

In the following theorem, we mention properties of estimators in Definition (3.1).
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Theorem 3.1. The estimators in Definition 3.1 are unbiased with variances:

var(α̂1) =
varY[i:m]

(y) + 1
mvarY (y)

A2
i,mE

2
Y [y(1− 2FY (y))]

and

var(α̂2) =
1
m [varY[i:m]

(y) + varY (y)]

A2
i,mE

2
Y [y(1− 2F (y))]

, respectively.

Proof: We prove this theorem when the SRS average; µ̂Y = 1
m

∑m
i=1 Yi; is assumed

to define α̂1 and α̂2. We prove the first part of this theorem while the second part can
be proved in a similar way.

Proof unbiasedness property of the first estimator, α̂1, can be achieved by noting that

the parameter α can be rewritten as α =
µY[j:m]

−µY
Aj,mEY [y(1−2FY (y,β))] , from part 1 of Lemma

(2.1). This simply leads to write E(α̂1) = α.

Likewise, proof variance property of α̂1 is straightforward.

Similar proofs can be done when other estimators of µY in Definition (2.1) are used
to define α̂1 and α̂2. Considerably, when assuming µ̂Y = 1

m

∑m
j=1 Y[j:m], the proof can be

achieved by using Lemma (2.1) part 2) while when assuming µ̂Y = 1
m2

∑m
i=1

∑m
j=1 Y(i:m)[j],

the proof can be achieved using Theorem (2.1) part 2) �

Definition 3.2. Using the second stage BVRSS units, we define the following estima-
tors for the association parameter of MTBD:

1) α̂3 =
X[m−s+1:m](j) −X[s:m](j)

2Am−s+1,mEX(j)
[x(1− 2FX(j)

(x))]
at specific j and s where s was defined un-

der (7).

2) α̂4 =
µ̂X[i:m](j)

− µ̂X(j:m)

Am−i+1,mEX(j:m)
[x(1− 2FX(j:m)

(x))]
at specific i and j where

µ̂X(j:m)
= 1

m

∑m
ω=1X(j:m)ω and µ̂X[i:m](j)

= 1
m2

∑m
i=1

∑m
j=1X[i:m](j).

Theorem 3.2.

1) The estimator in Definition (3.2), part 1), is unbiased with variance:

var(α̂3) =
varX(j:m)

(x)− α2A2
s,mE

2
X(j:m)

[x(1− 2FX(j:m)
(x))]

2A2
s,mE

2
X(j:m)

[x(1− 2FX(j:m)
(x))]

.

2) The estimator in Definition (3.2), part 2), is unbiased with variance:

var(α̂4) =
1
m2 [varX[i:m](j)

(x)− varX(j:m)
(x)]

A2
i,mE

2
X(j:m)

[x(1− 2FX(j:m)
(x))]

.

Proof of this theorem is straightforward �
In the following section, we continue estimating other model parameters that are θ

and β. We propose two distribution examples to achieve estimation which are MTBUD
and MTBED. These two distributions were defined in (2) and (3) respectively.
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3.1 Estimating parameters for specific examples

Scaria and Nair (1999) estimated α and β for MTBD and proved their properties. For
MTBUD, they proposed the following unbiased estimators for β:

β̂ = Y[m−s+1:m] + Y[s:m] (8)

at specific s with variance var(β̂U ) = β2

6

(
1− 1

3α
2A2

s,m

)
. They also proposed a ”quick

estimator” for α which was originally defined by David and Nagaraja (2003).
For MTBED, Scaria and Nair (1999) proposed the following unbiased estimator for β:

β̂ =
Y[m−s+1:m] + Y[s:m]

2
(9)

at specific s with variance var(β̂U ) = β2

2

(
1 − 1

4α
2A2

s,m

)
and they also gave a quick

estimator for α. Note that both estimators in (8) and (9) depend on concomitant of
ordered statistics.

Next, our purpose is to estimate θ and β for MTBUD and MTBED densities as well
as summarize their properties. We improve estimation by using first and second stage
samples of BVRSS. It is worth mentioning that our developed estimators of α above
are still available for these specific distributions. For the MTBUD specific density, we
suggest the following estimators for β:

For MTBUD,

β̂
(1)
U =

2

m

m∑
j=1

Y[j:m] (10)

and

β̂
(2)
U =

2

m2

m∑
j=1

m∑
i=1

Y(i:m)[j]. (11)

Lemma 3.1. The estimators in (10) and (11) are unbiased with variances:

var(β̂
(1)
U ) =

β2

3m

[
1− (m− 1)

9(m+ 1)
α2

]
and

var(β̂
(2)
U ) = 4

 β2

12m2
− 1

m4

m∑
j=1

m∑
i=1

(µY [i:m](j)
− β

2
)2

 respectively.

Proof unbiasedness property of these estimators is straightforward while proof vari-
ances can be concluded from Lemma (2.1) and part 2) of Result (2.2), respectively �

Parallel, we consider second stage BVRSS samples to estimate θ for MTBUD as fol-
lows:

θ̂
(1)
U =

1

m

m∑
j=1

[
X[s:m](j) +X[m−s+1:m](j)

]
(12)
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at any suitable s that similarly defined as in (7).

θ̂
(2)
U =

2

m2

m∑
j=1

m∑
i=1

X[i:m](j). (13)

Lemma 3.2. The estimators in (12) and (13) are unbiased with variances:

var(θ̂
(1)
U ) = θ2

6m

[
2

(m+1) − α
2A2

s,m
12
m

∑m
j=1

[
j

(m+1) − 2Cm,j
∑m

k=j

(
m
k

)
1

C2m,k+j

(k+j)
(2m+1)

]2]
and

var(θ̂
(2)
U ) = θ2

3m2(m+1)

[
1− α2 2(m−1)

3m

∑m
j=1

[
j

(m+1) − 2Cm,j
∑m

k=j

(
m
k

)
1

C2m,k+j

(k+j)
(2m+1)

]2]
,

respectively.

Proof unbiasedness property of these estimators is straightforward while proof vari-
ances can be achieved depending on Theorem (2.1) and using the following remark:

EX(i)
(x) = µX(i)

(x) = jθ
(m+1) and varX(i)

= j(m−j+1)θ2

(m+1)2(m+2)
�

Analogously, we can develop estimating θ and β for MTBED. The following estimators
are unbiased for β:

β̂(1)exp =
1

m

m∑
j=1

Y[j:m] (14)

and

β̂(2)exp =
1

m2

m∑
j=1

m∑
i=1

Y(i:m)[j] (15)

where their variances are

var(β̂(1)exp) =
β2

m

[
1− (m− 1)

12(m+ 1)
α2

]
and

var(β̂(2)exp) =
β2

m2
− 1

m4

m∑
j=1

m∑
i=1

(µY(i:m)[j]
− β)2.

The following estimators are unbiased for θ

θ̂(1)exp =

∑m
j=1

[
X[s:m](j) +X[m−s+1:m](j)

]
2m

(16)

θ̂(2)exp =
1

m2

m∑
j=1

m∑
i=1

X[i:m](j) (17)

where their variances are

var(θ̂
(1)
exp) = θ2

2m2

(∑m
j=1

∑j
k=1

1
(m−k+1)2

− α2A2
s,m

∑m
j=1

[∑j
k=1

1
(m−k+1) − 2Cm,j

∑m
k=j

(
m
k

)
1

C2m,k+j

∑k+j
i=1

1
(2m−i+1)

]2)
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and

var(θ̂
(2)
exp) = θ2

m3

(
1
m

∑m
j=1

∑j
k=1

1
(m−k+1)2

−α2 (m−1)
3m(m+1)

∑m
j=1

[∑j
k=1

1
(m−k+1) − 2Cm,j

∑m
k=j

(
m

k

)
1

C2m,k+j

∑k+j
i=1

1
(2m−i+1)

]2
.

The two variances can be proved using the properties: EX(i)
(x) = θ

∑j
k=1

1
(m−k+1)

and varX(i)
(x) = θ2

∑j
k=1

1
(m−k+1) .

4 Comparing estimators via artificial data

In this section, we illustrated simulation studies to show performance of our developed
estimators. We generated data from MTBUD and MTBED, particularly. A general
algorithm to yield artificial samples from these densities can be found in (Balakrishnan
and Lai (2009)), page 50.

In this paper, we compared our estimators with a few estimators from previous re-
search. Main concepts we used to achieve comparisons are: Average Relative Esti-
mate ”ARE” and Relative Efficiency ”RE”. ARE shows how an estimator is close
to the parameter’s true value. We define ARE for a sequence of iterated estimators

δ̂1,m, δ̂2,m, ..., δ̂r,m at a true value δ0 as ARE(δ0) = 1
r

∑r
i=1

δ̂i,m
δ0

where m is the sample
size.

The second concept to achieve comparison is RE which compares quality of two es-
timators. We define RE to compare the two unbiased estimators, δ̂1,m and δ̂2,m say, at

specific sample size m by RE(δ̂2,m, δ̂1,m) =
var(δ̂1,m)

var(δ̂2,m)
. In some cases, exact variance is

intractable so, estimated variance can be used to calculate RE.

In all of our simulation studies, we performed Monte Carlo runs with 10000 iterations
to gain estimation. We choose |α| = 0.25, 0.50, 0.75 and 0.90 while we choose the sample
size as m = 3, 5, 7 and 9. Parameters we concern to estimate are α, β and θ for MTBD
that defined in model (1). Also, population means µX and µY are under investigation.

We considered the estimators α̂1, α̂2, α̂3 and α̂4 that were defined in Section(3) to
estimate α. Then we compared quality of these estimators with the estimator defined
in (7) using RE principle. Similarly, we used β̂(1) and β̂(2) to estimate β then efficiency
of these estimators compared with the estimator in (8) for MTBUD and compared with
the estimator in (9) for MTBED. To estimate θ, we used θ̂(1) and θ̂(2) however, since
there is no estimators in previous research, we presented variance for estimators.

Remarkably, through simulation studies we run to estimate α where one or more
specific ranks s, i or j need to be selected, we found that assuming another values
was not change the accuracy of the produced estimators. Therefore, one example was
reported for each estimator. Simultaneously, it’s recommended to select s appropriately.
For example, when assuming m = 3, selecting s = 2 is prohibited.

We demonstrated simulation runs under two specific examples that are MTBUD and
MTBED. The following two sub-sections consider these two distributions respectively.
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4.1 Estimating parameters for MTBUD

The proposed distribution to perform simulation in this particular part of study is MT-
BUD. After generating samples, quality of our developed estimators was investigated.
Table (1) shows accuracy of the estimators by computing ARE principle. Even though
estimators are either over or under estimate, they still close to their true values. Fur-
thermore, this table shows the accuracy is not affected by varying value of m.

Table 1: Average Relative Estimate for estimated parameters compared with exact value
when the density is MTBUD at s = 1, i = 1 and j = m.

m |α| α̂1 α̂2 α̂3 α̂4 β̂
(1)
U β̂

(2)
U θ̂

(1)
U θ̂

(2)
U

3 0.25 1.2331 1.0675 1.1318 1.2365 0.9957 0.9951 1.0944 0.9910

5 0.50 1.0007 0.9798 0.9784 1.0881 0.9975 0.9993 1.0616 0.9931

7 0.75 0.9718 1.0080 0.9760 1.0790 1.0007 0.9980 0.9994 1.0288

9 0.90 0.9928 0.9999 0.9899 1.0815 0.9992 0.9978 0.9991 0.9800

Our goal now is to calculate RE for α estimators compared to the estimator defined
in (7) when the underlying distribution is MTBUD. So, variance of each estimator is
required. Using Theorem (3.1) , we can find that:

var(α̂1) =
3− α2A2

i,m + 3
m

A2
i,m

and var(α̂2) =
1
m(3− α2A2

i,m) + 3
m

A2
i,m

. Since the difficulty in

computing exact var(α̂3) and var(α̂4) , we used their estimated values. These variances

were compared with var(α̂) =
1
12 − α

2A2
s,m(16)2

2A2
s,m(16)2

.

Table (2) summarizes RE of the above estimators with respect to α̂. It shows some
exact and simulated RE. It can be noted that all estimators are efficient but with one
less efficient estimator that is α̂1. However, we can increase efficiency by increasing m
at fixed α.

Table (3) presents RE for β̂
(1)
U and β̂

(2)
U with respect to β̂U and variances for θ̂

(1)
U and

θ̂
(2)
U . As noted in this table, estimators we improved in this paper are more efficient.

However, we can increase efficiency by increasing m at fixed α.

Efficiency of estimators was not affected by changing values of parameters θ and β.
This was seen in exact efficiency formulas which are free of these parameters as well
as were clearly seen in the simulated outputs. Nevertheless, efficiency was significantly

affected by changing values of the rank s when using θ̂
(1)
U .

To see how exact variance of θ̂
(1)
U vary at different values of s, with fixed m, we give

general variance formula at m = 2:

var(θ̂
(1)
U ) = 1

4(2θ
2

9 −
16(3−2s)2α2θ2

2025 ). It can be noted that the variance increases as s
increases.
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Table 2: Relative efficiency for α̂1, α̂2, α̂3 and α̂4 with respect to α̂ for MTBUD with
s = 1 and i = 1.

m |α| RE(α̂1, α̂)
Exact Estimated

RE(α̂2, α̂)
Exact Estimated

RE(α̂3, α̂)
Estimated

RE(α̂4, α̂)
Estimated

5 0.25
0.75
0.95

0.4160 0.4159
0.4104 0.4098
0.4062 0.4069

1.2442 1.2510
1.1957 1.1999
1.1605 1.5897

1.7438
1.6951
1.6789

2.6952
2.3954
2.1019

7 0.25
0.75
0.95

0.4369 0.4355
0.4311 0.4297
0.4266 0.4109

1.7397 1.7641
1.6526 1.6492
1.5883 1.5783

2.2178
2.1081
2.0426

3.9152
3.4406
3.1337

9 0.25
0.75
0.95

0.4494 0.4519
0.4439 0.4412
0.4395 0.4352

2.2349 2.2400
2.1064 2.1108
2.0103 2.0094

2.8125
2.6791
2.4803

4.5262
4.3189
4.1623

Our last goal in this section is to investigate efficiency of the estimated population

means µ
(1)
X , µ

(2)
X , µ

(1)
Y and µ

(2)
Y with respect to SRS estimated population means .

At proposing MTBUD distribution, it is straightforward to prove that exact efficiencies

for µ̂
(1)
X (when using ordered statistics sampling units) and µ̂

(1)
Y (when using concomitant

sampling units)are:

RE(µ̂
(1)
X , µ̂X) = 1

1−m−1
m+1

where the produced efficiency depends on the sample size m.

Particularly, for m = 3 we have RE = 2 while for m = 5 gives RE = 3 and for m = 7
gives RE = 4.

Although RE(µ̂
(1)
Y , µ̂Y ) = 1

1−α2 m−1
9(m+1)

. It can be noted that the minimum value of RE

is always 1 by assuming α= 0 while the maximum value depends on value of m and

taking |α| = 1. For m= 3 we have RE(µ
(1)
Y , µY ) ≤ 18/17 = 1.0588, for m =5 we get

RE(µ
(1)
Y , µY ) ≤ 27/25 = 1.08 and for m =7 we have RE(µ

(1)
Y , µY ) ≤ 12/11 = 1.0909.

Table (4) reports values of RE(µ̂
(2)
X , µ̂X) with respect to SRS population mean µ̂X for

some particular values of m and α. It can be realised that the relative efficiency increases
by increasing one or both of m and α.

4.2 Estimating parameters for MTBED

The proposed distribution to perform simulation in this particular part of study is
MTBED. After generating samples, quality of our developed estimators was investigated.
In Table (5), we compared estimators with arbitrarily selected true values to compute
ARE. This table can show how our estimators are close to their correspondence true
values.

Table (5) reports ARE for estimated parameters compared with exact value when the
density is MTBED at s =1, i = 1 and j= m.
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Table 3: Relative efficiency for β̂
(1)
U and β̂

(1)
U with respect to β̂U and variances of θ̂

(1)
U

and θ̂
(2)
U . The proposed parameters θ = 1, β = 1 and s = 1 to compute θ̂

(1)
U .

m |α| RE( β̂
(1)
U , β̂U )

Estimated Exact
RE( β̂

(2)
U , β̂U )

Estimated
V ar(θ̂

(1)
U )

Exact
V ar(θ̂

(2)
U )

Exact

3 0.25 1.4993 1.4974 1.9701 0.02764 0.01845

0.75 1.4709 1.4758 1.9488 0.02654 0.01797

0.90 1.4840 1.4647 1.9401 0.02580 0.01764

5 0.25 2.4468 2.4884 2.9789 0.01101 0.00443

0.75 2.4136 2.3913 2.8955 0.01024 0.00427

0.90 2.3705 2.3404 2.5607 0.00971 0.00417

7 0.25 3.4344 3.4771 3.9991 0.00589 0.00169

0.75 3.2887 3.2887 3.8021 0.00536 0.00162

0.90 3.1185 3.1833 3.6972 0.00500 000158

9 0.25 4.5045 4.4648 4.9861 0.00366 0.00082

0.75 4.3052 4.1684 4.7508 0.00328 0.00078

0.90 3.9811 4.0112 4.5973 0.00303 0.00076

Our goal now is to calculate RE for α estimators compared to the estimator defined
in (7) when the underlying distribution is MTBED. So, variance of each estimator is
required. Using Theorem (3.1) , we can find that:

var(α̂1) =
4− 2αAi,m − α2A2

i,m + 4
m

A2
i,m

and var(α̂2) =
1
m(4− 2αAi,m − α2A2

i,m + 4
m)

A2
i,m

. Since

the difficulty in computing exact var(α̂3) and var(α̂4) , we used their estimated values

to calculate RE. These variances were compared to var(α̂) =
1− α2A2

s,m(12)2

2A2
s,m(12)2

.

Table (6) summarizes RE of these estimators with respect to α̂. It shows some exact
and simulated RE. It can be noted that our estimators are efficient with one less efficient
estimator that is α̂1. However, we can increase efficiency by increasing the sample size
m.

Table (7) presents RE of
ˆ
β
(1)
exp and

ˆ
β
(2)
exp with respect to β̂exp. Importantly, there is no

previous estimators for θ to compute REs so, we show variances of ˆθ(1)exp and
ˆ
θ
(2)
exp.

To see how exact variance of θ̂
(1)
exp changing at different values of s, with fixed m, we

give general variance formula at m = 2:

var(θ̂
(1)
exp) = 3θ2

16 −
29(2−2s)2α2θ2

5184 . It can be noted that the variance increases as s in-
creases.

Our last goal from this section is to investigate efficiency of the estimated population
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Table 4: Relative efficiency for µ̂
(2)
X with respect to SRS population mean µ̂X when

MTBUD.

m |α| RE(µ̂
(2)
X , µ̂X)

Exact

3 0.25 2.0066

0.75 2.0610

0.95 2.0998

5 0.25 3.0131

0.75 3.1225

0.95 3.2016

7 0.25 4.0197

0.75 4.1847

0.95 4.3048

Table 5: Average Relative Estimate for estimated parameters compared with exact value
when the density is MTBED at s = 1, i = 1 and j = m

m |α| α̂1 α̂2 α̂3 α̂4 β̂
(1)
exp β̂

(2)
exp θ̂

(1)
exp θ̂

(2)
exp

3 0.25 1.0319 0.9092 0.9615 0.9906 1.0435 1.0062 1.0754 1.0294

5 0.50 1.0219 1.0075 0.9947 0.9159 1.0182 1.0501 1.0595 1.0120

7 0.75 0.9808 1.0055 1.0003 0.9079 1.0272 1.0174 1.0397 1.0663

9 0.90 0.9931 0.9998 0.9991 0.9129 1.0457 0.9913 0.9976 1.0126

means µ
(1)
X , µ

(2)
X , µ

(1)
Y and µ

(2)
Y with respect to SRS estimated population means .

At proposing MTBED distribution, the efficiency for µ̂
(1)
X (when using ordered statis-

tics sampling units) and µ̂
(1)
Y (when using concomitant sampling units) can be written

as:

RE(µ̂
(1)
X , µ̂X) = 1

1− 1
m

∑m
i=1(

∑i
k=1

1
m−k+1

−1)2 where it depends only on the sample size m.

Specific examples to compute the efficiency at selected m is given next. For m = 3 we
have RE = 18

11 = 1.6363 while for m = 5 gives RE = 300
137 and for m = 7 gives RE =

980
363 = 2.6997.

Similarly, we can investigate efficiency of µ̂
(1)
Y which is simply can be written as

RE(µ̂
(1)
Y , µ̂Y ) = 1

1−α2 m−1
9(m+1)

. It can be noted that the minimum value of RE is al-

ways 1 by assuming α= 0 while the maximum value depends on value of m and taking
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Table 6: Relative efficiency for α̂1, α̂2, α̂3 and α̂4 with respect to α̂ for MTBED with
s = 1 and i = 1.

m |α| RE(α̂1, α̂)
Exact Estimated

RE(α̂2, α̂)
Exact Estimated

RE(α̂3, α̂)
Estimated

RE(α̂4, α̂)
Estimated

5 0.25
0.75
0.95

0.4474 0.4401
0.5282 0.5349
0.5745 0.5589

1.3000 1.3109
1.3889 1.3774
1.4207 1.4124

1.7609
1.7856
1.8027

2.3109
2.4598
2.7525

7 0.25
0.75
0.95

0.4764 0.4631
0.5884 0.5860
0.6617 0.6704

1.8284 1.8115
1.9658 1.9566
2.0146 2.1735

2.1015
2.1687
2.2904

3.1537
3.4628
3.9485

9 0.25
0.75
0.95

0.4945 0.4886
0.6310 0.6324
0.7291 0.7361

2.3571 2.3382
2.5425 2.5841
2.6092 2.5908

2.6803
2.9179
3.0081

4.1901
4.3798
4.5571

|α| = 1. For example, if m= 3 we get RE(µ
(1)
Y , µY ) ≤ 24

23 = 1.0435, for m =5 we get

RE(µ
(1)
Y , µY ) ≤ 18

17 = 1.0588 and for m =7 we have RE(µ
(1)
Y , µY ) ≤ 16

15 = 1.0667.

Table (8) reports values of RE(µ̂
(2)
X , µ̂X) for some particular values of m and α. It can

be realised that the relative efficiency increases by increasing one of m and α or both.

5 Conclusions and Discussion

A main benefit of RSS, as well as BVRSS, is originally to gain more information from
ordered observations after quantification rather than SRS. This research gained an extra
advantage from a modification on stages of BVRSS where the first stage units (which
include copies of concomitant of ordered statistics) were used to achieve estimation
similarly as the second stage units. An example can be stated here is when estimating
α by using α̂4 where copies of concomitant of ordered statistics were used to compute
µ̂X(j:m).

Efficiency of our estimators was not affected by changing values of distribution pa-
rameters; θ and β. We were seen this in exact efficiency formulas which are free of these
parameters as well as were clearly seen in the simulated outputs. Additionally, efficiency
of the estimators α̂3 and θ̂(1) attains its maxima when s = 1 since this rank gives the
minimum variance.

In both distribution examples that considered in this paper, we found that α̂1 is less
efficient than SRS estimator however, it can be noted that this estimator is doing better
for MTBED than MTBUD. Also, the efficiency can be improved by increasing m.

It is well known in the literature that maximum RE(µ̂
(1)
X , µ̂X) (i.e using RSS units

vs SRS units) can be achieved if the distribution is uniform and its value is 1
1−m−1

m+1

. In

this paper, we proved that maximum RE(µ̂
(1)
X , µ̂X), if the distribution is exponential, is
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Table 7: Relative efficiency for
ˆ
β
(1)
exp and

ˆ
β
(2)
exp with respect to β̂exp. The proposed value

of s to compute ˆθ(1)exp is 1.

m |α| RE( β̂
(1)
exp, β̂exp)

Estimated exact
RE( β̂

(2)
exp, β̂exp)

Estimated
var( ˆθ(1)exp)
Exact

Var( ˆθ(2)exp)
Exact

3 0.25 1.3435 1.4980 1.9663 0.10141 0.06771

0.75 1.5306 1.4820 1.9357 0.09788 0.06614

0.90 1.4928 1.4738 1.9291 0.09613 0.06536

5 0.25 2.2378 2.4913 2.9686 0.04530 0.01809

0.75 2.5533 2.4194 2.8832 0.04240 0.01761

0.90 2.6498 2.3822 2.5557 0.04097 0.01733

7 0.25 3.1871 3.4828 3.8997 0.02619 0.00753

0.75 3.4783 3.3406 3.7792 0.02403 0.00725

0.90 3.7106 3.2667 3.6681 0.02296 0.00712

9 0.25 4.3203 4.4736 4.9683 0.01726 0.00386

0.75 4.5319 4.2546 4.7013 0.01562 0.00371

0.90 4.6730 4.1404 4.5558 0.01481 0.00364

equal to
1

1− 1
m

∑m
i=1 (

∑i
k=1

1
m−k+1− 1)2

.

Moreover, for the concomitant of ordered statistics for MTBD, we showed that maxi-

mum RE(µ̂
(1)
Y , µ̂Y ) is equal to 1

1−α2 m−1
9(m+1)

if the marginal distribution is uniform and is

equal to 1
1−α2 m−1

12(m+1)

if the marginal distribution is exponential.

Some researchers pay attention on proving the relationship between the association
parameter in MTBD and the population correlation coefficient ρ. See for example,
Schucany et al. (1978) and Scaria and Nair (1999). Specifically, for MTBUD the relation
is ρ = α/3 and for MTBED the relation is ρ = α/4. Therefore, we can produce many
estimators for ρ by substituting estimators of α that we derived in Definition (3.1) or
Definition (3.2) on these relations. Thus, a proposed estimator for MTBUD is ρ̂ = α̂/3
and for MTBED is ρ̂ = α̂/4.
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Table 8: Relative efficiency for µ̂
(2)
X with respect to SRS population mean µ̂X when

MTBED.

m |α| RE(µ̂
(2)
X , µ̂X)

Exact

3 0.25 1.6411

0.75 1.6800

0.95 1.7076

5 0.25 2.1985

0.75 2.2709

0.95 2.3230

7 0.25 2.7120

0.75 2.8146

0.95 2.8890
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