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This paper investigates estimating the association parameter of Morgen-
stern type bivariate distribution using a modified maximum likelihood method
where the regular maximum likelihood methods failed to achieve estimation.
The simple random sampling, concomitant of ordered statistics and bivariate
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the produced estimators are compared for two specific examples, Morgen-
stern type bivariate uniform and exponential distributions.
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1 Introduction

Suppose X and Y are two random variables with Cumulative Distribution Functions
(CDF) FX(x) and FY (y) respectively. Considerably, one can propose a few ways to
merge these CDF’s in a way that can accommodate the underlying relation of the data
appropriately. Morgenstern (1956) suggested a general class of bivariate distribution
function to join the CDF’s that have a moderate association by introducing an associa-
tion parameter α as follows:

FX,Y (x, y, α) = FX(x) FY (y) [1 + α (1− FX(x)) (1− FY (y))] , (1)
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 177

where −1 ≤ α ≤ 1. Thus, the corresponding probability density function (pdf ) has the
form:

fX,Y (x, y, α) = fX(x)fY (y) [1 + α (1− 2FX(x)) (1− 2FY (y))] (2)

where fX(x) and fY (y) are the marginal pdf ’s for the variable X and Y respectively.
An example of this family, when proposing standard uniform marginals, is Morgenstern

type bivariate uniform distribution. The pdf for this case can be written as:

fX,Y (x, y, α) = 1 + α (1− 2x)) (1− 2y) ; 0 < x < 1 , 0 < y < 1. (3)

Another member of this family is Morgenstern type bivariate exponential distribution
that has the pdf as

fX,Y (x, y, α) = e−(x+y)
[
1 + α

(
1− 2e−x

) (
1− 2e−y

)]
; 0 < x , 0 < y. (4)

Here, the standard exponential marginals are assumed for random variables (X,Y ).
A considerable amount of research focused in estimating the association parameter α

of the Morgenstern type bivariate distribution under different sampling methods. Scaria
and Nair (1999) used concomitant of order statistics approach to estimate the asso-
ciation parameter while Chacko and Thomas (2008) used ranked set sampling (RSS)
method to estimate this parameter in Morgenstern type bivariate exponential density.
Domma and Giardano (2015) estimated the association parameter for concomitant of
m–generalized order statistics from generalized Farlie–Gumbel–Morgenstern distribu-
tion family. Tahmasebi and Jafari (2015) summarized the literature of estimating the
association parameter of Morgenstern type bivariate gamma distribution using RSS.
In the literature, the Maximum Likelihood Estimate (MLE) method is not applicable for
this type of distribution because the solution cannot be found. However, Genest et al.
(1995) proposed Pseudo Maximum Likelihood estimation (PML) method to estimate
the association (dependence) parameter in a similar type of distribution family, called
copula type bivariate distributions.
The MLE method depends mainly on maximizing the likelihood of the joint distribution
of the bivariate random variables w. r. t. the targeted parameter. Let(Xi, Yi); i =
1, ..., n; be a Simple Random Sample (SRS) of size n, with joint Morgenstern density
fXi,Yi(x, y) in (2) then, the likelihood function can be written as:

L(α) =
n∏
i=1

fXi,Yi(x, y, α)

=
n∏
i=1

fXi(x)fYi(y)[1 + α(1− 2FXi(x))(1− 2FYi(y))]. (5)

The MLE can be gained by maximizing the likelihood function in (5) or equivalently,
maximizing its log function. Therefore, MLE estimator is equivalent to solving the
likelihood equation:

∂

∂α
log L(α) =

n∑
i=1

∂

∂α
log [fXi(x)fYi(y)[1 + α(1− 2FXi(x))(1− 2FYi(y))]] = 0.
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Simply, one can note that solving this likelihood equation is not applicable. So this
paper proposes a few procedures to achieve α estimation via developing maximum like-
lihood approaches whereas introducing a set of sampling methods to the likelihood.
Substantially, this paper estimates the association parameter of Morgenstern type bi-
variate distribution using PML estimation method where concomitant of order statistics
sampling method is used. Also, it proposes a modified ML estimation method when
a sampling method, known in the literature by Bivariate Ranked Sampling (BVRSS)
technique, is used.

The BVRSS technique was firstly proposed by Al-Saleh and Zheng (2002) as a bivariate
version of RSS. It can be used when we deal with two characteristics jointly. To describe
this method, assume (X,Y )is a bivariate random pair with the joint probability density
function fX,Y (x, y). We can summarize this method by the following steps.

Step 1: Select a random sample of size m4 from the targeted population and divide
it randomly into m2 pools, each pool includes m ×mmatrix of units. The units in the

first pool are denoted by {(X(1)
ij , Y

1
ij), i = 1, ...,m, j = 1, ...,m}, where X

(1)
ij and Y

(1)
ij are

the jth element of the ith row in the first pool for the first characteristic and the second
characteristic, respectively.

Step 2: For each row in the first pool, identify the minimum value based on first

characteristic by judgement. In symbols {(X(1)
i(j), Y

(1)
i[j] ), i = 1, ...,m, j = 1, ...,m}. Here,

Yi[j]is called the jth concomitant random variable of the jth ordered statisticXi(j).

Step 3: For the m minima obtained in Step 2, choose the pair that corresponds to the
minimum value of the second characteristic, identified by judgment, for actual quantifi-
cation. This step produces the first pair of BVRSS sample, label it by (1,1).

Step 4: Repeat Steps 2 and 3 for the second pool, but in Step 3, the pair that corresponds
to the second minimum value with respect to the second characteristic is chosen for actual
quantification. This produces the second pair of BVRSS sample, label it by (1,2).

Step 5: The process continues until the label (m,m)is yielded from the mth (last) pool.

In symbols {(X(k)
[i](j), Y

(k)
(i)[j]), i = 1, ...,m, j = 1, ...,m} and k = (j − 1)m+ i.

Step 6: If a larger sample size is needed, repeat the above steps r times (copies) to
obtain a sample of size n = rm2.

The above described method produces a BVRSS of size m2, which are denoted by

{(X(k)
[i](j), Y

(k)
(i)[j]), i = 1, ...,m, j = 1, ...,m and k = (j − 1)m + i}, are independent but

not identically distributed. Note that m4 units are selected to quantify m2 for actual
measurement. Also, the m4 sample units contribute the information with m2 quantify
units.

We draw attention in this paper, and as seen in equation (1) and (2), to note that
all model parameters other than the association parameter are assumed to be known.
Also, we propose two distribution examples that are Morgenstern type bivariate uniform
and exponential distribution however; extending our method to a general internment is
straightforward.

The following sections of this paper discuss the following issues. In Section 2, we estimate
the association parameter using PMLE method when concomitant random variables are
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introduced in the likelihood model. In Section 3, we develop the likelihood function by
introducing BVRSS sampling units to produce estimators. In Section 4, we illustrate
our findings on some artificial examples as well as give a brief discussion. In the last
section, Section 5, we give important conclusions.

2 Estimating α using ML method when concomitant of
ordered statistics is used

For 1 ≤ i ≤ m, suppose (X(i)k, Y[i]k)be the ithordered statistics of the variable X and
its corresponds concomitant of the variable Y. In some stages of this paper, we need to
compare this sample with SRS sample of size n. So, it can be repeated in r copies such
that k = 1, ... , rto attain sample size n = r m.
The joint pdf of (X(i), Y[i])can be written as:

fX(i),Y[i](x, y, α) = m

(
m− 1

i− 1

)
fXi,Yi(x, y, α) [FX(x)]i−1 [1− FX(x)]m−i . (6)

Then, the log likelihood can be expressed as:

`FS(α) =

r∑
k=1

m∑
i=1

log
(
Cm,ifXik

(x)fYik(y)[1 + α(1− 2FXik
(x))(1− 2FYik(y))]

[FXik
(x)]i−1[1− FXik

(x)]m−i
)

(7)

where Cm,i = m

(
m− 1

i− 1

)
= m!

(m−i)!(i−1)! .

Under specific regularity conditions, that were discussed by Abo-Eleneen and Nagaraja
(2002), the MLE of αmaximizes the likelihood equation in (7) such that:

∂

∂α
`FS(α) =

r∑
k=1

m∑
i=1

(1− 2FXik
(x))(1− 2FYik(y))

[1 + α(1− 2FXik
(x))(1− 2FYik(y))]

= 0

which is identical to likelihood equation under the simple random sampling situation.
This is because that: ∂∂α log fX(i),Y[i](x, y, α) = ∂

∂α log fXi,Yi(x, y, α). This result can be
written in general as:

n∑
i=1

∂
∂αfX,Y (x, y, α)

fX,Y (x, y, α)
=

r∑
k=1

m∑
i=1

∂
∂αfX(i)k,Y[i]k(x, y, α)

fX(i)k,Y[i]k(x, y, α)
= 0 (8)

such that n = rm.
Pseudo Maximum Likelihood (PML) estimation method was established by Gong and
Samaniego (1981). We describe their method using Morgenstern type bivariate distribu-
tion context. Under specific regularity conditions, the PML estimator of α, say α̂PMLE ,
satisfies maxima of the likelihood equation by solving:
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1

rm

∂

∂α
`FS(α) =

1

rm

r∑
k=1

m∑
i=1

∂

∂α
log fXik,Yik(x, y, α) = 0. (9)

By expanding (9) using the first two terms of Taylor series, we get:

1
rm

∂
∂α`FS(α)∣∣∣∣∣∣∣ α = α̂PMLE

∼= 1
rm

∑r
k=1

∑m
i=1

∂
∂α log fXik,Yik(x, y, α)

+ (α̂PMLE − α) 1
rm

∑r
k=1

∑m
i=1

∂2

∂α2 log fXik,Yik(x, y, α) = 0

Apply the last equation using Morgenstern type bivariate construction leads to:

1
rm

∂
∂α`FS(α)∣∣∣∣∣∣∣ α = α̂PMLE

∼= 1
rm

∑r
k=1

∑m
i=1

(1−2FXik
(x))(1−2FYik

(y))

[1+α(1−2FXik
(x))(1−2FYik

(y))]

− (α̂PMLE − α) 1
rm

∑r
k=1

∑m
i=1

[(1−2FXik
(x))(1−2FYik

(y))]2

[1+α(1−2FXik
(x))(1−2FYik

(y))]2
= 0.

As noted in the last likelihood equation, it depends on FXi(x) and FYi(y). Genest
et al. (1995) suggested a method in similar numerical situations by replacing the CDF’s
by their empirical CDF’s multiplied by the coefficient rm

(rm+1) such that:

F̄Z(a) = rm
(rm+1)

∑s
i=1 I(zi ≤ a), where I(.) is the indicator function on the random

sample z1, ..., zs that has CDF FZ(.).
Genest et al. (1995) suggestion can be applied on estimating the association parameter
for bivariate and multivariate families of distributions. Thus, we can replace FXi(x) and
FYi(y) in the last equation by their empirical CDF’s F̄X(x) and F̄Y (y) respectively.
This guides us to write the last likelihood equation in the form:

1
rm

∂
∂α`FS(α)∣∣∣∣∣∣∣ α = α̂PMLE

∼= 1
rm

∑r
k=1

∑m
i=1

(1−2F̄Xik
(x))(1−2F̄Yik

(y))

[1+α(1−2F̄Xik
(x))(1−2F̄Yik

(y))]

−(α̂PMLE − α) 1
rm

∑r
k=1

∑m
i=1

[(1−2F̄Xik
(x))(1−2F̄Yik

(y))]2

[1+α(1−2F̄Xik
(x))(1−2F̄Yik

(y))]2
= 0.

To simplify expression of this equation, we can write it as:

√
rm(α̂PMLE − α) ≡

√
rm

Wrm(α)

Urm(α)

where Wrm(α) = 1
rm

∑r
k=1

∑m
i=1

(1−2F̄Xik
(x))(1−2F̄Yik

(y))

[1+α(1−2F̄Xik
(x))(1−2F̄Yik

(y))]
and

Urm(α) = − 1

rm

r∑
k=1

m∑
i=1

[(1− 2F̄Xik
(x))(1− 2F̄Yik(y))]2

[1 + α(1− 2F̄Xik
(x))(1− 2F̄Yik(y))]2

.
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Consider Wrm(α) and Urm(α) are two functions of the true value α. The following result
is analogous to Genest et al. (1995).

Result 1 : Under regularity conditions,
√
rm(α̂PMLE − α) has asymptotic normal dis-

tribution with zero mean and Ω variance where Ω =
var(

√
rm Wrm(α))
U2
rm(α)

.

Simply, we can note that Urm(α) can be represented as:

Urm(α) = − 1

rm

r∑
k=1

m∑
i=1

∂2

∂α2
log fXik,Yik(x, y, α).

Asymptotically,

Urm(α)→ −E
[
∂2

∂α2
log fXik,Yik(x, y, α)

]

= E

[
∂

∂α
log fX,Y (x, y, α)

]2

which is the fisher information number, Stokes (1980).

3 Estimating α using modified maximum likelihood
method using BVRSS units

Assume {(X[i](j), Y(i)[j]) ; i = 1, ...,m and j = 1, ...,m} be a BVRSS sample with size
m2 which originally came from Morgenstern type bivariate distribution in (2). The joint
distribution of (X[i](j), Y(i)[j]) was given by Al-Saleh and Zheng (2002) as:

fX[i](j),Y(i)[j](x, y) = fY(i)[j](y)
fX(j)

(x)fY |X(y|x)

fY[j](y)

= Cm,i[FY[j](y)]i−1[1− FY[j](y)]m−iCm,j [FX(x)]j−1

[1− FX(x)]m−jfX,Y (x, y, α) (10)

where FY[j:m]
(y) is the CDF of the jth concomitant of Y. The coefficients Cm,i and Cm,j

can be define similarly as in (7).

Introducing the bivariate Morgenstern environment to (10), we obtain:

fX[i](j),Y(i)[j](x, y) = Cm,i

[
FYij (y)[1 + α

m− 2j + 1

m+ 1
(1− FYij (y))]

]i−1

[
1− FYij (y)[1 + α

m− 2j + 1

m+ 1
(1− FYij (y))]

]m−i
Cm,j [FXij (x)]j−1[1− FXij (x)]m−jfXij (x)

fYij (y)
[
1 + α(1− 2FXij (x))(1− 2FYij (y))

]
(11)
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where the CD, FY[j](y)= FYij (y)[1 + αm−2j+1
m+1 (1− FYij (y)) was derived by Scaria and

Nair (1999).

In this section, we develop the ML estimation method to estimate the association pa-
rameter α using BVRSS samples (X[i](j)k, Y(i)[j]k) that have the likelihood in (11) such
that k = 1, ..., r where r is the replicates size. The sample size here is n = rm2.

Accordingly, we can present the log likelihood function of (11) as:

r∑
k=1

m∑
j=1

m∑
i=1

log fX[i](j)k,Y(i)[j]k(x, y, α) =
r∑

k=1

m∑
j=1

m∑
i=1

log fX(j)
(x) +

r∑
k=1

m∑
j=1

m∑
i=1

log
fY(i)[j](y, α)

fY[j](y, α)

+

r∑
k=1

m∑
j=1

m∑
i=1

log
fXi,Yi(x, y, α)

fXi(x)
.

After eliminating the constant term (i.e the first term) from the above log likelihood,
we can fined the ML estimate of α by solving the following maximum likelihood equation:

r∑
k=1

m∑
j=1

m∑
i=1

∂
∂αfX[i](j)k,Y(i)[j]k(x, y, α)

fX[i](j)k,Y(i)[j]k(x, y, α)
+

r∑
k=1

m∑
j=1

m∑
i=1

∂
∂α

[
fY(i)[j]k (y,α)

fY[j] (y,α)

]
fY(i)[j]k (y,α)

fY[j] (y,α)

= 0.

One more simplification step gives:

r∑
k=1

m∑
j=1

m∑
i=1

∂
∂αfX[i](j)k,Y(i)[j]k(x, y, α)

fX[i](j)k,Y(i)[j]k(x, y, α)
+

r∑
k=1

m∑
j=1

m∑
i=1

[
∂
∂αfY(i)[j]k(y, α)

fY(i)[j]k(y, α)
−

∂
∂αfY[j]k(y, α)

fY[j]k(y, α)

]
= 0

(12)
As can be noted, there is a difficulty in solving (12). So, Al-Saleh and Samawi (2005)
suggested to apply a Modified ML (MML) estimation procedure. This procedure requires
replacing the second term of (12) by its expectation.

Result 2 : The expectation of the second term of (12) is zero and, thus, the modified
likelihood equation becomes:

r∑
k=1

m∑
j=1

m∑
i=1

∂
∂αfX[i](j)k,Y(i)[j]k(x, y, α)

fX[i](j)k,Y(i)[j]k(x, y, α)
= 0. (13)

Proof:

We take the expectation to the second term of equation (12) so, we get:

E

 r∑
k=1

m∑
j=1

m∑
i=1

∂
∂αfY(i)[j]k(y, α)

fY(i)[j]k(y, α)

− E
 r∑
k=1

m∑
j=1

m∑
i=1

∂
∂αfY[j]k(y, α)

fY[j]k(y, α)



=

r∑
k=1

m∑
j=1

m∑
i=1

∫ ∂
∂αfY(i)[j]k(y, α)

fY(i)[j]k(y, α)
fY(i)[j]k(y, α) dy −

r∑
k=1

m∑
j=1

m∑
i=1

∫ ∂
∂αfY[j]k(y, α)

fY[j]k(y, α)
fY[j]k(y, α) dy.
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Under the following regularity conditions:
∂
∂α

∫
fY[j](y, α) dy =

∫
∂
∂αfY[j](y, α) dy and ∂

∂α

∫
fY(i)[j]k(y, α) dy =

∫
∂
∂αfY(i)[j]k(y, α) dy

and by using the facts:∑m
j=1

∑m
i=1 fY[j](y, α) = m2fY (y) and

∑m
j=1

∑m
i=1 fY(i)[j](y, α) = m2fY (y)

thus, the proof can be finished straightforwardly.
A general result which was concluded by Abo-Eleneen and Nagaraja (2002) that ML
estimators of α using SRS and concomitant of ordered statistics have the same expression.
This result is summarized in equation (8) above. Analogously, we conclude that it has
the same expression when using the BVRSS which is equal to equation (13).
According to this result, we consider the following general procedure to estimate α. We
solve (13) to find an MML estimator for α using BVRSS units, say α̂MMLE,BV RSS .
Then, we can use either SRS or concomitant of ordered statistics sampling units in the
same solution to get ML estimators. Call them α̂MLE,SRS and α̂MLE,COS respectively.
Before concluding this section, we simplify presentation of the modified likelihood equa-
tion in (13). This simplification can make it easier when working with specific examples
as seen in Section (4).
Firstly, the joint pdf can be represented as:

fX[i](j),Y(i)[j](x, y, α) = Tij(x, y)[Wij(α)]i−1[1−Wij(α)]m−iZij(α) (14)

where Tij(x, y) = Cm,iCm,j [FXij (x)]j−1[1− FXij (x)]m−jfXij (x)fYij (y),
Wij(α) = FYij (y)

[
1 + αAj,m(1− FYij (y))

]
,Zij(α) = 1+α

(
(1− 2FXij (x))(1− 2FYij (y))

)
and Aj,m = m−2j+1

m+1 . Hint : For general sampling setup, we expressed the BVRSS units
by Xij and Yij instead.
So, the modified likelihood equation can be written as:

r∑
k=1

m∑
j=1

m∑
i=1

∂
∂αfX[i](j)k,Y(i)[j]k(x, y, α)

fX[i](j)k,Y(i)[j]k(x, y, α)
=

r∑
k=1

m∑
j=1

m∑
i=1

[
(i− 1)

∂
∂αWij(α)

Wij(α)
Zij(α)

+ (m− i)
∂
∂α(1−Wij(α))

(1−Wij(α))
Zij(α) +

∂

∂α
Zij(α)

]
= 0.

(15)

4 Examples and simulation studies

In this section, we apply the general procedure that has been mentioned at the end of
Section 3 to estimate the association parameter for Morgenstern type bivariate uniform
and exponential distributions as specific examples. These distributions have been defined
in (3) and (4), respectively.
We used the MML estimation method to estimate α. We solved the MML estimation
equation in (13) by introduced one of the three sampling procedures, SRS, concomitant
or BVRSS on this likelihood. We called the yielded estimators by: α̂MLE,SRS , α̂MLE,COS

and α̂MMLE,BV RSS respectively.
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Without loss of generality, we set the nonparametric case for these two specific distri-
butions and we considered all model parameters – other than the association parameter
– as known values. Also, since the modified likelihood equation in (13) does not affect
by number of copies (r) of BVRSS samples, we considered r = 1. However, in the
concomitant of ordered statistics sampling, we proposed r as needed.

4.1 Numerical examples

Example 1: The Morgenstern type bivariate uniform density

Assume the random variables X and Y have originally standard uniform marginals. This
produces the Morgenstern model in (3). To construct this model in the form as (14),
one can conclude that

Wij(α) = yij [1 + αAj,m(1− yij)] and Zij(α) = 1 + α(1− 2xij)(1− 2yij).

Thus, the MML estimator of αsatisfies the maximum likelihood equation:

m∑
k=1

m∑
j=1

m∑
i=1

[
(i− 1)

Aj,myij(1− yij)
yij [1 + αAj,m(1− yij)]

− (m− i) Aj,myij(1− yij)
1− yij [1 + αAj,m(1− yij)]

+
(1− 2xij)(1− 2yij)

1 + αAj,m(1− 2xij)(1− 2yij)

]
= 0. (16)

Example 2: The Morgenstern type bivariate exponential density

Assume the random variables X and Y have originally standard exponential marginals.
This produces the Morgenstern model in (4). To construct this model in the form as
(14), one can conclude that:

Wij(α) = (1− e−yij ) [1 + αAj,m e
−yij ] and Zij(α) = 1 + α(1− 2e−xij )(1− 2e−yij ).

Therefore, the MML estimator of α satisfies the maximum likelihood equation:

m∑
k=1

m∑
j=1

m∑
i=1

[
(i− 1)

Aj,me
−yij (1− e−yij )

(1− e−yij )[1 + αAj,me−yij ]
− (m− i) −Aj,me−yij (1− e−yij )

1− (1− e−yij )[1 + αAj,me−yij ]

+
(1− 2e−xij )(1− 2e−yij )

1 + α(1− 2e−xij )(1− 2e−yij )

]
= 0. (17)

4.2 Simulation studies

To illustrate our findings in this paper, we demonstrated simulation studies over the two
specific distributions above. Firstly, we generated SRS samples with size n. Then, we
used these samples to maximize the likelihood equations in (16) and (17). This pro-
duced the estimators: α̂MLE,SRS for the proposed distributions. Then, we generated the
concomitant of ordered statistics samples with size n = r m. Again, we employed these
samples to maximize the likelihood equations in (16) and (17) to produce the estimators:
α̂MLE,COS for the two distributions. Finally, we generated BVRSS samples with size
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n = rm = m2. These samples were implemented to maximize the likelihood equations
in (16) and (17) to produce the estimators: α̂MMLE,BV RSS for the two distributions.

A general procedure to generate Morgenstern bivariate random samples from specific
marginals was discussed by Migdadi (2018).
Different combinations of sample sizes as well as association parameter were assumed
such that m = 3, 5, 7 and 9 while values of the association parameter were α = 0.25, 0.50,
0.75 and 0.99. We used Mathematica software to solve equations in (16) and (17) after
introducing the simulated samples to get parameter estimators. We computed efficiency
and bias of these estimators. Generally, we can define the efficiency of the estimator

θ̂1 compared to the estimator θ̂2 by: eff
(
θ̂1, θ̂2

)
= V ar(θ̂2)/V ar(θ̂1) . For the case of

unbiased estimators, the variance becomes Mean Square Error (MSE). It can be noted

that the efficiency is greater than 1 when V ar
(
θ̂1

)
< V ar

(
θ̂2

)
. This means that θ̂1 is

more efficient than θ̂2.

A set of simulation runs were conducted to compute efficiency and bias of the three
estimators, which are α̂MLE,SRS and α̂MLE,COS and α̂MMLE,BV RSS , under the two
specific distributions. The results are summarized in the following tables: Table 1,
Table 2, Table 3 and Table 4.

Table 1: Efficiency and Bias of α̂MLE,COS compared with α̂MLE,SRS for Morgenstern
bivariate uniform distribution.

| α |
m 0.25 0.50 0.75 0.99

3 Efficiency 1.0197 1.1332 1.2006 1.2826

|BiasSRS | 0.0643 0.0481 0.0208 0.0085

|BiasCOS | 0.0674 0.0411 0.0210 0.0054

5 Efficiency 1.1172 1.2184 1.4079 1.4997

|BiasSRS | 0.0532 0.0218 0.0100 0.0006

|BiasCOS | 0.0467 0.0355 0.0076 0.0002

7 Efficiency 1.3177 1.3999 1.4361 1.5194

|BiasSRS | 0.0172 0.0090 0.0092 0.0003

|BiasCOS | 0.0085 0.0063 0.0014 0.0004

9 Efficiency 1.3764 1.4426 1.5093 1.5931

|BiasSRS | 0.0075 0.0048 0.0051 0.0002

|BiasCOS | 0.0036 0.0007 0.0003 0.0002
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Table 2: Efficiency and Bias of α̂MMLE,BV RSS compared with α̂MLE,SRS for Morgenstern
bivariate uniform Distribution.

| α |
m 0.25 0.50 0.75 0.99

3 Efficiency 1.2866 1.3622 1.4733 1.5430

|BiasSRS | 0.0924 0.0617 0.0682 0.0541

|BiasBV RSS | 0.0731 0.0475 0.0156 0.0094

5 Efficiency 1.3122 1.3768 1.5312 1.6723

|BiasSRS | 0.0557 0.0228 0.0101 0.0073

|BiasBV RSS | 0.0426 0.0205 0.0114 0.0052

7 Efficiency 1.6597 1.7856 1.9775 2.0123

|BiasSRS | 0.0155 0.0072 0.0039 0.0074

|BiasBV RSS | 0.0129 0.0058 0.0021 0.0001

9 Efficiency 1.7434 1.8052 1.9913 2.2789

|BiasSRS | 0.0386 0.0410 0.0024 0.0013

|BiasBV RSS | 0.0163 0.0037 0.0008 0.0003

5 Conclusions

A main benefit of BVRSS is originally to achieve more information from ordered obser-
vations after quantification rather than SRS. In this research, we apply this approach to
estimate parameters for Morgenstern type bivariate specific distributions.

As noted from tables in the simulation section, we can conclude that the produced
estimators, α̂MMLE,BV RSS and α̂MLE,COS , are more efficient than α̂MLE,SRS and under
the two proposed distributions. Simply, we can realise that α̂MMLE,BV RSS is the most
efficient than all other estimators. Also, it can be seen that efficiency of estimators
increased as the sample size increased as well as the association grew up.

Importantly, since value of bias in all iterations was very tiny, one can note that MML
estimation procedure we improved in this paper to estimate the association parameter
is admirable.

Further investigation can potentially study the effect of working with a single character-
istic instead of rank both. This issue practically raises in the case of moderate or small
association between variables. Therefore, costs can be minimized. A suggested research
that can be used to achieve this aim is, for example, Al-Saleh and Al Kadiri (2000).
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Table 3: Efficiency and Bias of α̂MLE,COS compared with α̂MLE,SRS for Morgenstern
bivariate exponential distribution.

| α |
m 0.25 0.50 0.75 0.99

3 Efficiency 1.0001 1.0674 1.1163 1.1792

|BiasSRS | 0.0841 0.0921 0.0374 0.0311

|BiasCOS | 0.0886 0.0724 0.0331 0.0287

5 Efficiency 1.0951 1.1866 1.1994 1.2227

|BiasSRS | 0.0376 0.0199 0.0071 0.0047

|BiasCOS | 0.0054 0.0075 0.0018 0.0008

7 Efficiency 1.1349 1.2017 1.2685 1.3004

|BiasSRS | 0.0079 0.0051 0.0055 0.0016

|BiasCOS | 0.0052 0.0006 0.0005 0.0004

9 Efficiency 1.1764 1.2861 1.3184 1.3761

|BiasSRS | 0.0009 0.0006 0.0001 0.0002

|BiasCOS | 0.0005 0.0006 0.0004 0.0003
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Table 4: Efficiency and Bias of α̂MMLE,BV RSS compared with α̂MLE,SRS for Morgenstern
bivariate exponential distribution.

| α |
m 0.25 0.50 0.75 0.99

3 Efficiency 1.0759 1.2940 1.3339 1.4267

|BiasSRS | 0.0916 0.0499 0.0061 0.0058

|BiasBV RSS | 0.0653 0.0471 0.0037 0.0039

5 Efficiency 1.1268 1.3973 1.4329 1.5612

|BiasSRS | 0.0051 0.0037 0.0031 0.0017

|BiasBV RSS | 0.0032 0.0018 0.0011 0.0008

7 Efficiency 1.3776 1.4834 1.5105 1.6012

|BiasSRS | 0.0021 0.0016 0.0007 0.0008

|BiasBV RSS | 0.0018 0.0021 0.0001 0.0004

9 Efficiency 1.4689 1.5370 1.6228 1.9821

|BiasSRS | 0.0027 0.0015 0.0011 0.0005

|BiasBV RSS | 0.0012 0.0009 0.0003 0.0001
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